
System ArchitectureSystem Architecture

6 Thread Switching6 Thread Switching

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Yielding, General Switching

November 10 2008
Winter Term 2008/2009

Gerd Liefländer

Agenda

 Review & Motivation

 Thread Switching Mechanisms
 Cooperative PULT Scheduling + Thread Switch
 Cooperative KLT Scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

p g
 KIT Thread Switch of KLTs

 Additional Design Parameters
 User and Kernel Stack
 Idle Thread
 Initialization/Termination

Review & MotivationReview & Motivation

3© 2008 Universität Karlsruhe (TH), System Architecture Group

Problems to Solve
 How to design mechanism thread_switch?

A

B

IP

IP

?

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

C

D

IP

IP

time

?

 How to schedule threads, and for how long?
 Do we need time slices in every computer?

?

Influence of CPU Switching

 CPU switching back and forth among threads:

 Rate at which a thread performs its computation
will not be uniform

N ill it b d ibl if th t f

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

 Nor will it be reproducible if the same set of
threads will run again

 Its timing (e.g. waiting times) can depend on
other application- or system-activities

 Threads should never be programmed
with built-in assumptions about timing

Conclusion

Implementing Threads

 Never accept a solution relying on timing conditions

 If you program portable application don’t rely on
 specific scheduling policies

number of processors

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

 number of processors
 …

 In case, you can rely on a specific platform offering
different scheduling policies, try to get the most
promising one

 In each system the scheduling policies should be
supported by a policy-free dispatching mechanism

PultPult SchedulingScheduling

7© 2008 Universität Karlsruhe (TH), System Architecture Group

T1
T2

i

Common research trick:
simplify whenever possible

Cooperative Scheduling

Assumption: Given 2 pure CPU- bound threads T1 and T2,
one CPU and no interference with a device
Dispatch only cooperatively via yield()

Yield

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

yield(T2)

running

yield(T1)

running

yield(T2)
running

running

time

T1 T2

yield(T2)

yield()

call yield
save context of T1

reload context of T2
? return from

yield !!! A bit tricky !!!

Simplified User Level Yield (1)

Yield

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

yield(T2)

yield(T1)

yield(T2)

y
Return to another caller

time

T1 T2

yield(T2)

call yield
save context of T1

reload context of T2
?

return from
yield

yield

Yield

Simplified UL-Yield (2)

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

yield(T2)

yield(T1)

yield(T2)

save context of T2

reload context of T1
? call yieldreturn from

yield

time

What is happening at
?

procedure yield(NT:thread)
{
…
save context of CT

… ? …

Part of yield still runs
under control of caller

How to solve this problem?

Yield

Simplified UL-Yield (3)

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

load context of NT
…
return;
}
Assumption: Both threads T1 and T2 already have

called yield() once before

Corollary: Each thread gets and gives up control within
the procedure yield at exactly the same
(user land) instruction

Part of yield will
run under control
of the next thread

procedure yield(NT:thread)
{
…
save context of CT
CT.sp := SP; SP := NT.sp;CT.sp := SP; SP := NT.sp;

Part of yield still runs
under control of caller

Change stack pointersChange stack pointers

Yield

Simplified UL-Yield (4)

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

load context of NT
…
return;
}

Part of yield will run
under control of the
next thread

SP = stack pointer register

sp = entry in TCB

Stack Contents during UL-Yield (1)

Yield

SP’

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

Local Variables of T1

Local Variables of T1
SP

Local Variables of T2

Local Variables of T2

Parameter T1

Return Address to T2

Local Variables of yield

Local Variables of yield
SP’

T1
runs

Yield

SP’

Stack Contents during UL-Yield (2)

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1 Call
yield

Local Variables of T2

Local Variables of T2

Parameter T1

Return Address to T2

Local Variables of yield

Local Variables of yield
SP’

SP

Yield

SP’SP

Stack Contents during UL-Yield (3)

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of yield

Local Variables of yield Save
Context
of T1

Local Variables of T2

Local Variables of T2

Parameter T1

Return Address to T2

Local Variables of yield

Local Variables of yield
SP’SP

Save to current TCB,
i.e. to TCB of T1

Switch Stack Pointer

Yield

SP’SP

Stack Contents during UL-Yield (4)

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of yield

Local Variables of yield Save
Context
of T1

Local Variables of T2

Local Variables of T2

Parameter T1

Return Address to T2

Local Variables of yield

Local Variables of yield
SP’SP

Yield

SP’ SP

Load from NT.TCB

Switch Stack Pointer

Stack Contents during UL-Yield (5)

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of yield

Local Variables of yield
SP’

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of yield

Local Variables of yield
SP

Yield

SP’ SP

Stack Contents during UL-Yield (6)

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of yield

Local Variables of yield Restore
Context
of T2

SP’

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2

Local Variables of yield

Local Variables of yield
SP

Yield

SP’

Stack Contents during UL-Yield (7)

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

Local Variables of T1

Local Variables of T1

Parameter T2

Return address to T1

Local Variables of yield

Local Variables of yield
SP’

Local Variables of T2

Local Variables of T2

Parameter T1

Return address to T2
SPReturn

from
yield

Yield

SP’

Stack Contents during UL-Yield (8)

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

Local Variables of T1

Local Variables of T1

Return address to T1

Parameter T2

Local Variables of yield

Local Variables of yield
SP’

Local Variables of T2

Local Variables of T2
SP

T2
runs

Summary of a PULT-Yield

Assumption:
Suppose we have a single processor system,
and yield is the only dispatching possibility

Only the stack of the running thread is “visible”

Yield

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

 Only the stack of the running thread is “visible”

 Number of involved stack elements as well as
their order is the same

 Content of involved stack elements differ a bit

 Of course, T1 or T2 can have different local
variables

Thread Library Contents

 Can contain code for:

 Creating and destroying PULTs

 Passing messages between PULTs

Thread Library

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

 Passing messages between PULTs

 Scheduling thread execution

 Synchronizing with other PULTs

 Saving/restoring context of a PULT

Potential Kernel Support for PULTs

Thread Library

Though the kernel is not aware of a PULT, it is still
managing the activity of the task that hosts the PULT

Example:
When a “PULT” does a “blocking system call ”
kernel blocks its whole task

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

From the point of view of the PULT scheduler
this PULT is still in the PULT thread state running !*

Thesis:
PULT thread states are independent of
task states

Cooperative Scheduling Cooperative Scheduling
of KLTsof KLTs

24© 2008 Universität Karlsruhe (TH), System Architecture Group

Anthony D. Joseph
http://inst.eecs.berkeley.edu/~cs162

KIT Thread Switch of KLTsKIT Thread Switch of KLTs

25© 2008 Universität Karlsruhe (TH), System Architecture Group

Thread Control

synchronous

Causes for a Thread Switch

Additional reasons for switching to another thread:
 Current Thread (CT) terminates
 CT calls synchronous I/O, must wait for result
 CT waits for a message from another thread

CT i ti h d CPU t th th d

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

asynchronous

“preemption”

 CT is cooperative, hands over CPU to another thread

 CT exceeds its time slice
 CT has lower priority than another ready thread:

 CT interrupted by a device waking up another thread
 A higher-priority thread’s sleep time is exhausted
 CT creates a new thread with higher priority

 CT gets a software interrupt from another thread

Needed: External Events

 What might happen if a KLT never does any I/O, never waits for
anything, and never calls yield()?
 Could the ComputePI program grab all resources and never

release the processor?
 What if it didn’t print to console?

 Must find a way that the kernel dispatcher regains control

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

 Must find a way that the kernel dispatcher regains control

 Answer: Utilize External Events
 Interrupts: signals from hardware or software that stop the

running code and jump to kernel
 Timer: like an alarm clock that goes off every x milliseconds

 If we ensure that external events occur frequently enough,
the dispatcher can gain control again

Thread Control

Events triggering a Thread Switch

Exceptions (all synchronous events):

 Faulty event (reproducible)
 Division by zero (during instruction)
 Address violation (during instruction)

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

 Unpredictable event
 Page fault (before instruction)

 Breakpoint
 Data (after instruction)
 Code (before instruction)

 System call
 Trap

Thread Control

Events triggering a Thread Switch

Interrupts (all asynchronous events1):

 Clock
 End of time slice
 Wake up signal

 Printer

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

 Printer
 Missing paper
 Paper jam, …

 Network
 Packet arrived, …

 Another CPU1

 Inter-Processor signal
 Software Interrupt

1From the point of view of the interrupted CPU

Thread Control

Nested Interrupt Handling (2)

APIC sits in between CPU and peripherals

 IR-”Input” register
 Pending interrupts are listed here (as “1” bits)

 MR-”Mask” register

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

 MR Mask register
 Where IRs can be masked out

 IR-”Compare” register
 Helps to decide whether interrupting the current

interrupt handling is allowed

 Dynamic or static interrupt scheme
 Rotating or fixed priorities

Thread Control

Linux Interrupt Handling

urgent phase, e.g.
reading and clearing
device registers

less urgent phase,
e.g. copying buffers

Linux: Bottom-Half Handler Top-Half Handler/tasklet

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

current thread

HW-
topic

Interrupt-Handler

RTI

next thread*

*Depending on system and/or interrupt, sometimes
next thread = current thread

Thread Control

Nested Exception Handling (1)

Division

Division
by 0

?Bug in exception handler?

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

current
application

1,2,3,

Division
by 0 Divison by 0 handler

Remark:
Some systems allow application-specific exception handlers.

Thread Control

Nested Exception Handling (2)

Invalid
Address

?Bug in exception handler?

At least somewhere in the kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

current
application

1,2,3,

Division
by 0 Divison by 0 handler

Remark:
Some systems allow two to three nested exceptions, but not more

Construction Conclusion

Due to these events we need a centralized control
instance in the

 Microkernel or
 Kernel

Thread Control

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

Due to the sensitivity of these events, thread switching
and thread controlling need special protection:

 Kernel Mode
 Code and Data inside Kernel Address Space

Let’s study the case:
Current KLT CT has consumed its complete time slice

Thread Switch

End of Time Slice …

Objective: Establishing Fair Scheduling

Assumption: No other thread-switching events
to be discussed in detail

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

time

Start of Time Slice of CT End of Time Slice of CT

CPU Time Slice of Current Thread CT

Simplification: No detailed clock interrupt handling

?

Return from
Internal call

Return from

green green blueblue

Clock

Thread
Switch

Internal
Call

Clock

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

time

? ? ?
to

User Mode

New Current
Thread

? ? ?

User Level

Kernel Level

Current
thread

Interrupt HandlingInterrupt

Again: Just switch the stack pointer

Return from
Internal call

Return from

green green blueblue

Clock

Thread
Switch

Internal
Call

Clock

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

time

? ? ?
to

User Mode

New Current
Thread

? ? ?

User Level

Kernel Level

Current
thread

Interrupt HandlingInterrupt

Clock

Thread
Switch

greengreen blueblue Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

timetime

Clock

Thread
Switch

Clock Clock Clock

Internal
call

Thread
Switch

green green blueblue Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt

time

Intr HandlingIntr Handling

Clock

Thread
Switch

Clock Clock Clock

Internal
call

Thread
Switch

greengreen blueblue

? ? ?

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt

time

Intr HandlingIntr Handling
? ? ?

Clock

Thread
Switch

Clock Clock Clock

Internal
call

Thread
Switch

greengreen blue blue greengreen

Clock

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt

time

Intr HandlingIntr Handling
Clock

Interrupt
finish

Clock

Thread
Switch

Clock Clock Clock

Internal
call

Thread
Switch

Clock

greengreen blue blue greengreen Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt

time

Intr HandlingIntr Handling
Clock

Interrupt
finish

Return
to

User Mode

New Current
Thread

Clock

Thread
Switch

Clock Clock Clock

Internal
call

Thread
Switch

Clock

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt

time

Intr HandlingIntr Handling
Clock

Interrupt
finish

Return
to

User Mode

New Current
Thread

Clock

Thread
Switch

Clock Clock

Internal
call

clck Intr

Thread
Switch

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

Old Current
Thread

Intr Handling

Current
Thread

? ? ?

time

Interrupt Intr Handling post

time

Return
to

User Mode

New Current
Thread

Clock

Thread
Switch

clck Intr

Thread
Switch

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

Old Current
Thread

Intr Handling post Return
to

User Mode

New Current
Thread

time

Clock

Thread
Switch

clck Intr

Thread
Switch

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

Old Current
Thread

Intr Handling post Return
to

User Mode

New Current
Thread

time

Clock clck Intr

Thread
Switch

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

Old Current
Thread

Intr Handling post Return
to

User Mode

New Current
Thread

time

Clock Clock Intr

Thread Switch

Simplified Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

Old Current
Thread

Intr Handling post Return
to

User Mode

New Current
Thread

Review
Task Address Space

yield()

PULTs
T1 T2

TCB1 TCB2

Task Address Space

KLTs
T1 T2

T1’ T2’

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

thread_switch

yield()

thread_switch

TCB1 TCB2timeslice

Thread Switch

Thread Switch Implementation

Assumption1:
 Whenever entering the kernel, i.e. via

 interrupt
 exception

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

p
 system call

 the HW automatically pushes SP, IP and status
flags, e.g. the user-context of the current
thread, e.g. CT = T1 onto the kernel stack (T1)

 Kernel stack is implemented in its related TCB,
e.g. TCB1

1Some processors use shadow register instead of

RAM Memory
Clock IH

Current thread T1 is running
Processor

IP of T1
SP of T1

Flags of T1

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Note:
As long as T1 is running in user mode, the kernel stack is nearly empty,
However, at least the start address of the kernel stack is kept in TCBT1.SP

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread Switch

Processor

Memory

IP of T1
SP of T1

Flags of T1

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and ...

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread Switch

Processor

Memory

SP of CIH
Flags of CIH

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.

IP of CIH

Kernel SP

TCB T2TCB T1
Kernel SP

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Processor

Memory

SP of TSw
Flags of TSw

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.
CIH decides end of time slice for
T1 calling thread_switch(T2)IP of TSw

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread SwitchThread Switch

Data

Processor

Memory

SP of TSw
Flags of TSw

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.
CIH decides end of time slice for T1
calling thread_switch(T2)
Save kernel SP(TCB1) and ...

IP of TSw

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread SwitchThread Switch

Data

Processor

Memory

SP of TSw
Flags of TSw

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.
CIH decides end of time slice for T1
calling thread_switch(T2).
Save kernel SP(TCB1) and ...

IP of TSw

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread SwitchThread Switch

Data

Processor

Memory

SP of TSw
Flags of TSw

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.
CIH decides end of time slice for T1
calling thread_switch(T2).
Save kernel SP(TCB1) and
load kernel SP(TCB 2)

IP of TSw

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread SwitchThread Switch

Data

Processor

Memory

SP of TSw
Flags of TSw

Clock IH

CT T1 is running in user mode.
Clock interrupt saves context of T1
and loads context of clock IH.
CIH decides end of time slice for T1
calling thread_switch(T2).
Save kernel SP(TCB1) and
load kernel SP(TCB 2)
Next Steps? Complete for yourself.

IP of TSw

TCB T1
Kernel SP Kernel SP

TCB T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

Stack T1 Stack T2

Code T1 Code T2

Thread Switch

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Saved IP
Saved SP

Saved Flags

CIH Data
CIH Data

Data
Thread SwitchThread Switch

Data

Additional Additional
Design ParameterDesign Parameter

59© 2008 Universität Karlsruhe (TH), System Architecture Group

Implementation Alternatives

Number of kernel stacks involved:

 1 Kernel stack for all threads

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

 Each KLT/process has a kernel stack

Discuss carefully!!

Stack Management

 Each process/KLT has
two stacks
 Kernel stack

 User stack

Kernel Address Space

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

 Stack pointer changes
when entering/exiting
the kernel

Why is this necessary?
User Address Space

SP

Thread Switch

Open Questions

 If thread T2 not known in advance need for scheduling
policy? (see later chapters)

 If we know thread T2, where do we get its TCB? (see exercise)
 If kernel stack is part of TCB danger of stack overflow?

 How to handle thread initiation and termination?

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

Remark:
Limitation on kernel stack size is no real problem in practice.

If your system suffers from a kernel stack overflow

 obvious sign of a severe kernel bug
Examine your kernel design and implementation,
before playing around with increasing kernel stack sizes

Thread Switch

Open Questions

How to handle thread initiation and termination?

General remark (Principle of Construction):

“S l i l ith th l

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

“Solve special cases with the normal-case
solution”

Thread Termination

How to terminate a thread?
 Do all necessary work for cleaning up thread’s

environment
 Switch to another thread, never return to exiting

thread
No additional mechanisms required

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

Thread T1

Thread

1. Part of exit

Switch

Thread T2

Kernel Op

Kernel OP

Some nested
Kernel Ops of T2

 No additional mechanisms required

Thread Initialization

What to do, when switching to a brand new thread
for the very first time?

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

New Thread T2Thread T1

Thread ? Something
is missing
in between!!

Thread Initialization

 Initialize new thread’s (T2) kernel stack with the second
part of the thread_switch and the exit function

 Returning from thread_switch leads to second part of
system call exit,
 “return” to T2 in user mode, and

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

New Thread T2Thread T1

Thread Same trick
Switch

2. part of exit()

 start with the first instruction of T2

Idle CPU Problem

 What to do, when there is no thread to switch to?

Solution:
Avoid that situation by introducing an

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

Avoid that situation by introducing an
idle thread that is always runnable

Question:
Major properties of an idle thread?

Idle Thread

 When to install?
 Before booting
 While booting
 After booting

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 68

 How to guarantee that idle thread is always
runnable?
 Avoid any wait events in the idle thread

 …
 …
 …

Summary: Kernel-Level Threads

 All thread management is
done by the kernel

 No thread library, but API
to kernel thread facility

Kernel maintains TCBs for

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 69

 Kernel maintains TCBs for
the task and threads.

 Switching between
threads requires kernel.

 Scheduling on thread basis

Advantages:
Kernel can simultaneously
schedule threads of same
task on different processors

Disadvantages:
Thread switching within
same task involves the
kernel. We have two
dditi l d it h

Thread Switch

Pros/Cons of KLTs

© 2008 Universität Karlsruhe (TH), System Architecture Group 70

A blocking system call only
blocks the calling thread,
but no other thread from
the same application

Even “kernel” tasks can
be multi-threaded

additional mode switches
per thread switch!!

This can result in a
significant slow down!!

Summary

Thread Switch

Thread-Switching Environment:
 Kernel Entry + Mode Switch (User → Kernel)
 Changing Old Thread State

 Select New Thread (optional)

© 2008 Universität Karlsruhe (TH), System Architecture Group 71

 Select New Thread (optional)

 Thread_Switch (context switch)

 Changing New Thread State
 Kernel Exit + Mode Switch (Kernel → User)

Remark: (Only needed for kernel-level threads)

Preview

 Thread Control

 Thread Representation

Thread Switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 72

 Thread Switch

 Thread States orthogonal to Task States

 Dispatching of Threads

