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Activity Switch (2): Process-Task
P1 Task2
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Blocking System Call?

 2 major classes:
 Waiting for work to be done on the peripheral or
 Waiting for work to be done by some other KLT 

or process
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 General template:
1. Enter kernel
2. If the desired service not yet done then

 block caller and wait until desired event will happen
 switch to some other executable activity (e.g. another 

process, another KLT) 
3. Exit kernel



Blocking I/O System Call

1. Does some initial work in the kernel to 
prepare the desired I/O service

2. Starts service running on a peripheral 
device by updating peripheral registers, etc.
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 Blocks the calling user-land activity, e.g. the 
KLT (or process) and induces an 
activity_switch, i.e. 

 a thread_switch to another KLT of the same task 
or of another task or 

 a process_switch to another process  



Cross-AS KLT Switch 
Task1 Task2
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AS-Internal KLT Switch 
Task1 Task2
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AS-Internal PULT Switch 
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group
7

Kernel Scheduler

TaskCB2

PULT1 PULT2

User-Level SchedulerUser-Level Scheduler

TaskCB1



Cross-AS PULT Switch
Task1 Task2
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Thread-Save Programming

 Threads share their AS
 Code of a thread should be reentrant, i.e. it should 

also work if executed multiple by another thread
 Threads should not overwrite global variables mutually, 

but should use only local variablesbut should use only local variables
 Local variables are pushed onto their stacks

 Per thread there must exist a private global 
variable errno
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