
Activity Switch (1) Process-Switch
P1 P2

© 2007 Universität Karlsruhe(TH), System Architecture Group
1

Kernel Scheduler

PCB1 PCB2

Activity Switch (2): Process-Task
P1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 2

Kernel Scheduler

PCB1 TaskCB2

TCB1 TCB1

KLT1 KLT2

Blocking System Call?

 2 major classes:
 Waiting for work to be done on the peripheral or
 Waiting for work to be done by some other KLT

or process

© 2007 Universität Karlsruhe(TH), System Architecture Group 3

 General template:
1. Enter kernel
2. If the desired service not yet done then

 block caller and wait until desired event will happen
 switch to some other executable activity (e.g. another

process, another KLT)
3. Exit kernel

Blocking I/O System Call

1. Does some initial work in the kernel to
prepare the desired I/O service

2. Starts service running on a peripheral
device by updating peripheral registers, etc.

© 2007 Universität Karlsruhe(TH), System Architecture Group 4

 Blocks the calling user-land activity, e.g. the
KLT (or process) and induces an
activity_switch, i.e.

 a thread_switch to another KLT of the same task
or of another task or

 a process_switch to another process

Cross-AS KLT Switch
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 5

Kernel Scheduler

TaskCB2

TCB21 TCB22

KLT21 KLT22

TaskCB1

TCB11 TCB12

KLT11 KLT12

AS-Internal KLT Switch
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 6

Kernel Scheduler

TaskCB2

TCB21 TCB22

KLT21 KLT25

TaskCB1

TCB11 TCB12

AS-Internal PULT Switch
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group
7

Kernel Scheduler

TaskCB2

PULT1 PULT2

User-Level SchedulerUser-Level Scheduler

TaskCB1

Cross-AS PULT Switch
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group
8

Kernel Scheduler

TaskCB2

PULT1 PULT2

User-Level SchedulerUser-Level Scheduler

TaskCB1

Thread-Save Programming

 Threads share their AS
 Code of a thread should be reentrant, i.e. it should

also work if executed multiple by another thread
 Threads should not overwrite global variables mutually,

but should use only local variablesbut should use only local variables
 Local variables are pushed onto their stacks

 Per thread there must exist a private global
variable errno

© 2007 Universität Karlsruhe(TH), System Architecture Group 9

