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Activity Switch (2): Process-Task
P1 Task2
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Blocking System Call?

 2 major classes:
 Waiting for work to be done on the peripheral or
 Waiting for work to be done by some other KLT 

or process
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 General template:
1. Enter kernel
2. If the desired service not yet done then

 block caller and wait until desired event will happen
 switch to some other executable activity (e.g. another 

process, another KLT) 
3. Exit kernel



Blocking I/O System Call

1. Does some initial work in the kernel to 
prepare the desired I/O service

2. Starts service running on a peripheral 
device by updating peripheral registers, etc.
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 Blocks the calling user-land activity, e.g. the 
KLT (or process) and induces an 
activity_switch, i.e. 

 a thread_switch to another KLT of the same task 
or of another task or 

 a process_switch to another process  



Cross-AS KLT Switch 
Task1 Task2
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AS-Internal KLT Switch 
Task1 Task2
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AS-Internal PULT Switch 
Task1 Task2
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Cross-AS PULT Switch
Task1 Task2
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Thread-Save Programming

 Threads share their AS
 Code of a thread should be reentrant, i.e. it should 

also work if executed multiple by another thread
 Threads should not overwrite global variables mutually, 

but should use only local variablesbut should use only local variables
 Local variables are pushed onto their stacks

 Per thread there must exist a private global 
variable errno
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