
Activity Switch (1) Process-Switch
P1 P2

© 2007 Universität Karlsruhe(TH), System Architecture Group
1

Kernel Scheduler

PCB1 PCB2



Activity Switch (2): Process-Task
P1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 2

Kernel Scheduler

PCB1 TaskCB2

TCB1 TCB1

KLT1 KLT2



Blocking System Call?

 2 major classes:
 Waiting for work to be done on the peripheral or
 Waiting for work to be done by some other KLT 

or process

© 2007 Universität Karlsruhe(TH), System Architecture Group 3

 General template:
1. Enter kernel
2. If the desired service not yet done then

 block caller and wait until desired event will happen
 switch to some other executable activity (e.g. another 

process, another KLT) 
3. Exit kernel



Blocking I/O System Call

1. Does some initial work in the kernel to 
prepare the desired I/O service

2. Starts service running on a peripheral 
device by updating peripheral registers, etc.

© 2007 Universität Karlsruhe(TH), System Architecture Group 4

 Blocks the calling user-land activity, e.g. the 
KLT (or process) and induces an 
activity_switch, i.e. 

 a thread_switch to another KLT of the same task 
or of another task or 

 a process_switch to another process  



Cross-AS KLT Switch 
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 5

Kernel Scheduler

TaskCB2

TCB21 TCB22

KLT21 KLT22

TaskCB1

TCB11 TCB12

KLT11 KLT12



AS-Internal KLT Switch 
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group 6

Kernel Scheduler

TaskCB2

TCB21 TCB22

KLT21 KLT25

TaskCB1

TCB11 TCB12



AS-Internal PULT Switch 
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group
7

Kernel Scheduler

TaskCB2

PULT1 PULT2

User-Level SchedulerUser-Level Scheduler

TaskCB1



Cross-AS PULT Switch
Task1 Task2

© 2007 Universität Karlsruhe(TH), System Architecture Group
8

Kernel Scheduler

TaskCB2

PULT1 PULT2

User-Level SchedulerUser-Level Scheduler

TaskCB1



Thread-Save Programming

 Threads share their AS
 Code of a thread should be reentrant, i.e. it should 

also work if executed multiple by another thread
 Threads should not overwrite global variables mutually, 

but should use only local variablesbut should use only local variables
 Local variables are pushed onto their stacks

 Per thread there must exist a private global 
variable errno

© 2007 Universität Karlsruhe(TH), System Architecture Group 9


