
System Architecture System Architecture

5 Threads5 Threads

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Thread Model, Implementation

November 5 2008
Winter Term 2008/09

Gerd Liefländer

Agenda

 Motivation

 Thread Models

 Thread Types

 Problems with Threads

Overview

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

 Problems with Threads

 Controlling Threads

 Implementing Threads (TCB)

MotivationMotivation

3© 2008 Universität Karlsruhe (TH), System Architecture Group

Single-Threaded Example

 Imagine the following C program:

main() {
ComputePI(“pi.txt”);

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

ComputePI(pi.txt);
PrintClassList(“clist.txt”);

}

 What behavior?

Multithreaded Example

 Version of previous program with(out) Threads:
main() {

CreateThread(ComputePI(“pi.txt”));
CreateThread(PrintClassList(“clist.txt”));

}

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

 What does “CreateThread” do?
 Start an independent thread running the function
ComputePI(“pi.txt”)

 Start an independent thread running the function
PrintClassList(“clist.txt”)

 How many threads? What behavior?

Memory Footprint of Example

 If we stopped this program and examined it
with a debugger, we would see
 Three sets of CPU registers

 Three sets of Stacks

Stack 1

Stack 2

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

 Three sets of Stacks

 Problems:
 How to position stacks?

 Maximum size of stacks?

 How to handle stack overflow?
Code

Global Data

Heap

Stack 3

A
ddress Space

POSIX Threads Standard C/C++
#include <pthread.h>
#include <stdio.h>
void * run (void * d) {
int q = *((int *) d);
int v = 0;
for (int i = 0; i < q; i++) { v = v +
expensiveComputation(i); }

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

return (void *) v;
}
main() {
pthread_t t1, t2;
int r1, r2;
pthread_create (&t1, NULL, run);
pthread_create (&t2, NULL, run);
pthread_wait (&t1, (void *) &r1);
pthread_wait (&t2, (void *) &r2);
printf (“r1 = %d, r2 = %d\n”, r1, r2);

}

Example: JAVA Threads
import java.lang.*;
class Worker extends Thread implements Runnable {
public Worker (int q) { this.q = q; this.v = 0; }
public void run() {

int i;
for (i = 0; i < q; i++) { v = v + i; }

}
public int v;
private int q;

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

}
public class Example {
public static void main(String args[]) {

Worker t1 = new Worker (100);
Worker t2 = new Worker (100);
try {

t1.start();
t2.start();
t1.join();
t2.join();

} catch (InterruptedException e) {}
System.out.println ("r1 = " + t1.v + ", r2 = " + t2.v); }

}

Classifying “Threaded” Systems

UNIX, Ultrix,
MacOS, Win95

MS-DOS

Address Space

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 One or many address spaces
 One or many threads per AS

Mach,
Linux,
Solaris,
WinNT/2000/XP

Embedded systems

T
H
R
E
A
D

Processes versus Task

Task

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

3 processes with 1 main thread 1 task with 3 threads

PUT

Potential Benefits of Threads

 Responsiveness
 Reaction time on external or internal events

 Convenience of programming
 Special threads for different activities
 Install appropriate attributes for a thread

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

 Install appropriate attributes for a thread
 Access rights
 Scheduling info

 Economy
 Resource Sharing
 Cheaper creation and deletion

 Better utilization of SMPs
 Heavily depending on thread model

Thread ModelThread Model

12© 2008 Universität Karlsruhe (TH), System Architecture Group

Abstract Thread Model

Task

Thread Model

User
Address

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

Remark: In whatever thread model,
each thread has its own user stack

Address
Space

Common Properties of Thread Models

Thread Model

 Code and data regions of a thread are always located
in the user space of the surrounding task
 Code of a thread can be located in the shared code segment

of the task or in a private code segment

 A user stack is always private to its thread, i.e. no

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 A user stack is always private to its thread, i.e. no
other thread of the same AS can access its contents
with a usual stack operation, BUT ….

 it can violate the others user stacks contents via pointer
operations, when it can guess the stack addresses of the
other user stacks

 Thread data can be part of the public data region
(e.g. heap, global variables)

Thread Model

Multithreaded Application (1)

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

Word “processor” with three threads:

• Controlling keyboard input and updating word document

• Displaying current content

• Updating word document on the disk

Multithreaded Application (2)

Thread Model

User
Address

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

A multithreaded Web server

Shared resource

Address
Space

Implementation of Threads

 Thread Control Block (TCB) contains
 Execution Context

 CPU registers, instruction pointer, stack pointer
 HW specific

 Scheduling Info
S h d li St t (l t) i it ti t d CPU ti

Thread Model

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

 Scheduling State (more later), priority, estimated CPU time
 Policy specific

 Resource Usage Info
 Already used CPU time
 HW & OS specific

 Various Pointers:
 Implementing thread states, pointer to enclosing TaskCB
 Implementation specific

 …

Task versus Thread

Thread Model

 Items shared by all threads of the same task in most
thread models
 Address space
 Global variables
 Open files
 Children (what type of?)

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

 Children (what type of?)
 Pending alarms
 Signals and signal handlers
 Accounting information

 Items private to each thread
 Instruction pointer (“program counter”)
 Registers, flags etc.  context of thread
 Stack pointer & stack (user stack, kernel stack?)
 Thread state (external state)

Thread Models
 Pure User-Level Threads (PULT*)

 Known only outside the kernel (e.g. within the task, or
subsystem, or runtime system), often implemented by a
thread library, i.e. its TCBs are located inside user space

 “Pure” Kernel-Level Threads (KLT*)

Thread Model

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

 Every KLT is explicitly known to the kernel, its TCB (at least
parts of it) is located inside the kernel

 Hybrid Threads (HLT)
 Take advantage of both pure models

*often called user threads, user-space threads, green threads …

*This term is KIT specific, also called native threads (or even kernel threads,
which is completely misleading)

Types of ThreadsTypes of Threads

20© 2008 Universität Karlsruhe (TH), System Architecture Group

Kernel-Level Threads (KLT)
Pure User-Level Threads (PULT)
Hybrid-Level Threads (HLT)
Kernel(-Mode) Threads (KMT)
Examples

Implementing KLTs

Task

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

Task

TCBs of all known
kernel-level threads

Task CBs of
2 tasks

data data

Management of KLTs
 Kernel knows about tasks and the KLTs

 Threads of type KLT are objects of CPU scheduling
 TaskCB contains info on shared resources, AS + set of its threads
 TCB contains info on CPU context, state + task affiliation
 TCB might be moved between thread states

T kID 4711 TaskID 4000

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

 TCBs can be made smaller than a TaskCB, e.g.
 Linux TaskCB has 106 fields

 Linux TCB would only require 24 fields (but????)

IP

Registers

TaskID 4711
ThreadID 0815
State: ready

IP

Registers

TaskID 4000
ThreadID 2201
State: ready

Ready Queue
Header TCB

Advantages of KLTs

Types of Threads

 KLTs from the same task can be assigned to different
CPUs on a SMP ( real parallelism)
 Always a speed up?
 Speed up even on a single processor?

 A blocking system call only blocks the calling KLT

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

 A blocking system call only blocks the calling KLT
(not the complete task)

 A thread_switch between 2 KLTs of the same task
is faster than ~ between 2 KLTs of different tasks,
because you do not need an AS-Switch with
 Switching paging information
 TLB flushing & restoring

Disadvantages of KLTs

Types of Threads

 Each thread related operation requires overhead, it
always needs kernel entrance/kernel exit

 Relatively high initialization costs

All KLTs must live with the more or less flexible kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

 All KLTs must live with the more or less flexible kernel
scheduling policy
  few systems with customizable kernel scheduling policies

 Besides the entities “process” and “task” the kernel also
has to know about threads
 Kernel is more complicated
 More kernel space is needed for TaskCBs + TCBs

Examples Systems offering KLTs

 Windows NT/XP/2000
 Solaris 9 and later versions
 Tru64 UNIX

BeOS

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

 BeOS
 MacOS X
 Linux

 Implements the Posix 1003.1c package
 Using the clone() system call
 To take full advantage of SMPs

When to use KLTs?

What parts of a program should or can be threaded?

 A few rules of thumb:
  groups of lengthy or special operations, e.g.

 painting a window

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

 printing a doc
 responding to a mouse-click
 calculating a spreadsheet column

 Amount of shared data is relatively small, i.e. mutually
obstruction neither occurs too often nor too long

 Preview: However, you should be prepared to worry
about deadlocks and race conditions

Pure User-Level Threads

Task

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

Task

Java green threads
(classic VM)

Controlling PULTs

All PULT related operations are done inside the
thread library, i.e. in user mode land

 Advantages:
 Fast thread manipulation typically 10-100x faster

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

 Fast thread manipulation, typically 10-100x faster
than slipping into the kernel and back again

 UTCB can be smaller (e.g. IP, PSW, and SP)

 Each application might use a tailored scheduling
policy for its PULTs

 Usable in an OS that does not offer KLTS (often
called native threads)

Controlling PULTs

 Disadvantages:
 Only one single PULT of a multi-threaded task can

run on an SMP at any given time

 A task always gets the same amount of the CPU
i d d tl f th b f it PULT

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

independently of the number of its PULTs

 A blocking system call (e.g. synchronous I/O)
blocks the entire task, not only the calling PULT

 Some say: Kernel might preempt a task with a
PULT holding a system wide lock (thus slowing
system down)

Analysis
 As long as the kernel is involved in granting a lock to

a PULT it can notify this fact in the related TaskCB
(e.g. setting a “non preemption flag”)

 Whenever the kernel wants to preempt a task, it can
control whether the “non preemption flag” of the
corresponding task is set

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

corresponding task is set

 But, assume a shared memory concept and a
common lock -handled in user land- for more than 1
AS

 Then the kernel might preempt a PULT that holds a
lock, some other PULTS from the related ASes are
waiting for
 increased latency

CROSS-AS-LOCK at User Level

AS1 AS2 AS3

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

SHARED MEMORY

User Level Lock

Kernel Scheduler

Hybrid Threads
Current
UTCBs

Types of Threads

Virtual threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

Map user-level threads to “kernel-level threads”

Task table
kernel

Current
KTCBs

Thread table

Example: Solaris 2 Threads

Types of Threads

?

m:n mapping of
ULTs to KLTs

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

?

Cons of Hybrid Thread Model*
Types of Threads

 OS must offer native threads

 2 scheduling layers
 The “KLT part” of the application is managed by the kernel

 The user-level part is managed by a scheduler in the library

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

 Kernel scheduler and library scheduler have to cooperate

 Problem:
Fundamental reliance on kernel (lower layer) calling
procedures in user space (higher layer) via so called
“UPCALLS”, violating the principle of layered systems

*see Anderson et al: “Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism”,
ACM, Trans. on Computer Systems, Feb. 1992

Pros of Hybrid Thread Model*
Types of Threads

 Two ways to handle blocking system calls

1. A blocking system call in the user-level thread
only blocks its counterpart in the kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

 Only those user-level threads are blocked which are
mapped to this blocked KLT

 When the blocking criteria no longer holds, the kernel
will unblock the related KLT as usual

Pros of Hybrid Thread Model*
Types of Threads

2. Kernel blocks current KLT temporarily, recording
the relevant blocking criteria in the kernel
 But instead of blocking the KLT for a while, it returns

control to the user-level scheduler (via a scheduler
activation)

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

)

 This user-level scheduler blocks the responsible ULT and
can switch to another ready ULT which has been
planned for this KLT

 When the blocking situation no longer holds, the kernel
informs the corresponding user-level-scheduler, which
then can unblock the related user-level thread and can
put it to the ready list for its KLT

Hybrid Thread Blocking

Types of Threads

task

scheduler
thread

User-level threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

kernel

blocking system call

notify scheduler thread

save info

One way to handle the above situation are scheduler activations
(see: Anderson et al)

PThreads

 POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization.

 API specifies behavior of the thread library;
i l i i h d l f h

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

implementation is up to the developer of the
library.

 Common in UNIX operating systems.

K42 Hybrid Threads1

Types of Threads

Address
Space

Dispatcher
User-Level
Threads

User Space

User-Level
Threads

Dispatcher
User-Level
Threads

User-Level
Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

Scheduling
Class 1

Dispatcher
Descriptor Kernel Space

CPU Domain

Scheduling
Class 2

1read the white papers: http://www.research.ibm.com/K42/

Kernel (-Mode) Threads (KMT)

 Yet another type of threads?

 Just to confuse you completely?

Kernel-level threads
or native threads

Always
executing in
kernel-mode

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

Pure user-level threads
or “green threads”

or native threads

Kernel (-Mode)Threads

Kernel-Mode Threads

 Already in early Unix versions  some kernel
“processes” (daemons, e.g. the swapper completely
mapped to KAS) and always running in kernel-mode

 root = owner of UNIX kernel processes

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

 Modern OS may use kernel-mode threads

 Additional problems:
 How (when)to schedule kernel-mode threads?
 How to interact with kernel-mode threads?
 How to protect sensitive kernel data from misbehaving

kernel-mode threads?

Thread ProgrammingThread Programming

42© 2008 Universität Karlsruhe (TH), System Architecture Group

Concurrent Programming
Examples of Problems
Common Problems

Why to study Thread Programming?

 Concurrent correct application programs are not yet
very widespread

 Some of them have been(still are) error-prone1,2 

 Skill of concurrent programming has to be trained

Problems with Threads

p g g

 Famous Mars Pathfinder problem
 Problems with the correct synchronization of three concurrent

processes

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

1For further software horror stories see:
http://www.cs.tau.ac.il/~nachumd/horror.html

2http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

What can go wrong with Threads?

 Safety hazards
 Program does the wrong thing due to race

conditions

Li li h d

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

 Liveliness hazards
 Program never does the right thing (live lock,

deadlock)

 Performance hazards
 Program is too slow due to excessive

synchronization

Preview: Thread Scheduling

 Scheduler decides when to run a “ready” thread

T1 T2 T3

Potential execution sequence

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

 Programs should make no assumption about the
scheduler
 Scheduler is a “black box”

CPU

scheduler <T1, T2, T3, T1, …>

Threads Safety

 A program is thread safe if it behaves correctly when
accessed from multiple threads, regardless of the
scheduling or interleaving of those threads

 Race condition: program’s output is different
depending on scheduler’s interleaving

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

depending on scheduler s interleaving

 Such a behavior is a program bug

 Study the following program example on your own

1. public class ThreadTest extends Thread {
2. private static int x =1;
3. public void run() {
4. x++;
5. }

6. public static void main(String[] args){
7. thread t1 = new ThreadTest();
8. thread t2 = new ThreadTest();
9 t1 t t()

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

9. t1.start();
10. t2.start();
11. try {
12. t1.join; // wait for t1 to finish
13. t2.join; // wait for t2 to finish
14. }
15. catch(InterruüptedException iex) {}
16. printf(“Value of x == %d“, x);
17. }

18.}

Safety Hazard: x++

 Key point: x++ is not an atomic instruction,
but consist of multiple CPU instructions, e.g.
 Load x from memory

 Increment x

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

Increment x

 Store x to memory

 In MIPS assembly this could mean:
LW St, offset($s)

ADDI $t,$t,1

SW $t, offset($s)

Unsafe Thread Schedule

 Given threads t1 and t2:
LW $t, offset($s) //for t1
LW $t, offset($s) //for t2
ADDI $t $t 1 //for t2

Thread
switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

ADDI $t,$t,1 //for t2
SW $t, offset($s) //for t2
ADDI $t,$t,1 //for t1
SW $t. offset($s) //for t1

 Final result: Value of x == 2

Thread
switch

Thread Cancellation

 “Killing” a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the thread

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

y
immediately

 Deferred (lazy) cancellation allows the thread to
periodically check if it should be cancelled, e.g.
whenever control flows enters the kernel

Signal Handling

 Signals are used in UNIX systems to notify a process
that a particular event has occurred

 How to signal PULTs or KLTs of a task?

 A signal handler is used to process appropriate
actions after the signal has arrived

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

actions after the signal has arrived
1. Signal is generated by a particular event
2. Signal is delivered to a task/process
3. Signal is handled

 Design options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the task
 Deliver the signal to certain threads in the task
 Assign a specific thread to receive all signals for the task

Thread Pools

 Create a number of “worker threads” in a pool where
they are waiting for work

 You might need different pools of worker threads

 Advantages:

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

g
 Usually slightly faster to service a request with an existing

waiting thread instead of creating a new pop-up thread
before starting the service

 Allows the number of threads in the application(s) to be
bound to the size of the pool

 Disadvantage:
 Some of these worker threads might never be needed

Problems: Programming Threads

Types of Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

Conflicts between threads using a global variable, e.g.
Unix’s errno (contains error code of current system call)

Thread Control Block (TCB)Thread Control Block (TCB)

54© 2008 Universität Karlsruhe (TH), System Architecture Group

Implementing Threads

Thread Representation

Implementing thread control, we need a data structure
representing a thread, i.e. something representing the
existence of a thread including its

TID = thread identifier (see our passport)

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

Why and when do we really need a TID?

Hint: Compare a TCB with your passport
 Crossing borders

 Controlling/arresting suspicious people

 Additional unique and non forgeable attributes?

Thread Representation

TID all together with other useful information
characterizing a thread is collected within the

thread control block or TCB

Definition:

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

Remark:

Different systems might have different attributes in their TCBs

TCBs can vary concerning size and/or internal structure

Definition:
A thread attribute describes or characterizes a thread

Example:
A thread intensively using I/O is called “I/O-bound”

Thread Identifier (TID)

Minimal TCB

Implementing Threads

Instruction Pointer (IP) Don’t say program counter!!!

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

Stack Pointer (SP)

Status Flags (SF)

<IP, SP, SF> = minimal context of a thread

Potential TCB Attributes

 Thread identifier TID

 Context related
 User registers

K l i

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

 Kernel registers

 Scheduling related

 Stack related

 Additional private “resources”
 private global data

• User-Visible Registers
- Stack-Related
- General Purpose
- Floating-Point
- Index

Thread Control Information

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

• Control and Status Registers

Stacks are used to support procedure and system calls
(establishing local variables, transfer of parameters etc.)

A stack pointer points to the top of the stack.

• User-Visible Registers
- Stack-Related
- General Purpose
- Floating-Point
- Index

Implementing Threads

Thread Control Information

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

Instruction Pointer (address of next instruction)

Condition Codes (results of previous instruction,
e.g. equal bit, overflow bit)

Status Information (execution mode etc.)

• Control and Status Registers

Implementing Threads

Thread Control Information

 Events related to a thread’s execution, e.g. waiting
for a specific I/O result ( scheduling)

 Priorities

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

 Inter-Process Communication (IPC)

 Mapping Information (task-specific)

 Current resource holder (e.g. lock holder)

 Resource ownership and utilization (task-specific)

Implementing Sets of TCB’s

Implementation techniques

 Contiguous table of TCB’s (thread table)
 Real array

Virtual array

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

 Virtual array

 Structured list of TCB’s

Hint:
Considering different system constraints, discuss
appropriate data structures for implementing a
structured list of TCBs

Traditional Location of KLT TCBs

Kernel-level land

User-level land

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

Kernel
µ-Kernel

respectively in a

TCB

Literature

Bacon, J.: Operating Systems (PI, 4)

Stallings, W.: Operating Systems (3, 4)

Silberschatz, A.: OS Concepts (2)

Tanenbaum A : MOS (2)

Overview

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

Tanenbaum, A.: MOS (2)

 http://jamesthornton.com/linux/FAQ/Thre
ads-FAQ/ThreadLibs.html

 http://linuxdevices.com/articles/AT6753
699732.html

 http://www.gridbus.org/~raj/asc98.html

