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Single-Threaded Example

 Imagine the following C program:

main() {
ComputePI(“pi.txt”);
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ComputePI( pi.txt );
PrintClassList(“clist.txt”);

}

 What behavior?



Multithreaded Example

 Version of previous program with(out) Threads:
main() {

CreateThread(ComputePI(“pi.txt”));
CreateThread(PrintClassList(“clist.txt”));

}
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 What does “CreateThread” do?
 Start an independent thread running the function 
ComputePI(“pi.txt”)

 Start an independent thread running the function 
PrintClassList(“clist.txt”)

 How many threads? What behavior?



Memory Footprint of Example 

 If we stopped this program and examined it 
with a debugger, we would see
 Three sets of CPU registers

 Three sets of Stacks

Stack 1

Stack 2
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 Three sets of Stacks

 Problems: 
 How to position stacks?

 Maximum size of stacks?

 How to handle stack overflow?
Code

Global Data

Heap

Stack 3

A
ddress Space



POSIX Threads Standard C/C++
#include <pthread.h>
#include <stdio.h>
void * run (void * d) {
int q = *((int *) d);
int v = 0;
for (int i = 0; i < q; i++) { v = v + 
expensiveComputation(i); }
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return (void *) v;
}
main() {
pthread_t t1, t2;
int r1, r2;
pthread_create (&t1, NULL, run);
pthread_create (&t2, NULL, run);
pthread_wait (&t1, (void *) &r1);
pthread_wait (&t2, (void *) &r2);
printf (“r1 = %d, r2 = %d\n”, r1, r2);

}



Example: JAVA Threads
import java.lang.*;
class Worker extends Thread implements Runnable {
public Worker (int q) { this.q = q; this.v = 0; }
public void run() {

int i;
for (i = 0; i < q; i++) { v = v + i; }

}
public int v;
private int q;
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}
public class Example {
public static void main(String args[]) {

Worker t1 = new Worker (100);
Worker t2 = new Worker (100);
try {

t1.start();
t2.start();
t1.join();
t2.join();

} catch (InterruptedException e) {}
System.out.println ("r1 = " + t1.v + ", r2 = " + t2.v); } 

}



Classifying “Threaded” Systems

UNIX, Ultrix,
MacOS, Win95

MS-DOS

Address Space
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 One or many address spaces
 One or many threads per AS

Mach,
Linux,
Solaris,
WinNT/2000/XP

Embedded systems

T
H
R
E
A
D



Processes versus Task 

Task 

Motivation
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3 processes with 1 main thread 1 task with 3 threads

PUT



Potential Benefits of Threads

 Responsiveness
 Reaction time on external or internal events

 Convenience of programming
 Special threads for different activities
 Install appropriate attributes for a thread

Motivation
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 Install appropriate attributes for a thread
 Access rights
 Scheduling info

 Economy
 Resource Sharing
 Cheaper creation and deletion

 Better utilization of SMPs 
 Heavily depending on thread model



Thread ModelThread Model
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Abstract Thread Model

Task

Thread Model

User
Address
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Remark: In whatever thread model, 
each thread has its own user stack

Address
Space



Common Properties of Thread Models

Thread Model

 Code and data regions of a thread are always located 
in the user space of the surrounding task
 Code of a thread can be located in the shared code segment 

of the task or in a private code segment

 A user stack is always private to its thread, i.e. no
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 A user stack is always private to its thread, i.e. no 
other thread of the same AS can access its contents 
with a usual stack operation, BUT ….

 it can violate the others user stacks contents via pointer 
operations, when it can guess the stack addresses of the 
other user stacks

 Thread data can be part of the public data region 
(e.g. heap, global variables) 



Thread Model

Multithreaded Application (1) 
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Word “processor” with three threads:

• Controlling keyboard input and updating word document

• Displaying current content

• Updating word document on the disk



Multithreaded Application (2)

Thread Model

User
Address
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A multithreaded Web server

Shared resource

Address
Space



Implementation of Threads

 Thread Control Block (TCB) contains
 Execution Context 

 CPU registers, instruction pointer, stack pointer
 HW specific 

 Scheduling Info 
S h d li St t ( l t ) i it ti t d CPU ti

Thread Model
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 Scheduling State (more later), priority, estimated CPU time
 Policy specific

 Resource Usage Info
 Already used CPU time
 HW & OS specific

 Various Pointers:
 Implementing thread states, pointer to enclosing TaskCB
 Implementation specific

 … 



Task versus Thread

Thread Model

 Items shared by all threads of the same task in most 
thread models
 Address space
 Global variables 
 Open files 
 Children (what type of?)
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 Children (what type of?)
 Pending alarms 
 Signals and signal handlers 
 Accounting information

 Items private to each thread
 Instruction pointer (“program counter”)
 Registers, flags etc.  context of thread
 Stack pointer & stack (user stack, kernel stack?)
 Thread state (external state)



Thread Models
 Pure User-Level Threads (PULT*)

 Known only outside the kernel (e.g. within the task, or 
subsystem, or runtime system), often implemented by a 
thread library, i.e. its TCBs are located inside user space

 “Pure” Kernel-Level Threads (KLT*)

Thread Model
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 Every KLT is explicitly known to the kernel, its TCB (at least 
parts of it) is located inside the kernel

 Hybrid Threads (HLT)
 Take advantage of both pure models

*often called user threads, user-space threads, green threads …

*This term is KIT specific, also called native threads (or even kernel threads, 
which is completely misleading)



Types of ThreadsTypes of Threads
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Kernel-Level Threads (KLT)
Pure User-Level Threads (PULT)
Hybrid-Level Threads (HLT)
Kernel(-Mode) Threads (KMT)
Examples



Implementing KLTs

Task 

Types of Threads
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Task   

TCBs of all known 
kernel-level threads

Task CBs of 
2 tasks

data data



Management of KLTs
 Kernel knows about tasks and the KLTs

 Threads of type KLT are objects of CPU scheduling
 TaskCB contains info on shared resources, AS + set of its threads
 TCB contains info on CPU context, state + task affiliation
 TCB might be moved between thread states 

T kID 4711 TaskID 4000
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 TCBs can be made smaller than a TaskCB, e.g.
 Linux TaskCB has 106 fields

 Linux TCB would only require 24 fields (but????)

IP

Registers

TaskID 4711
ThreadID 0815
State: ready

IP

Registers

TaskID 4000
ThreadID 2201
State: ready

Ready Queue
Header TCB



Advantages of KLTs

Types of Threads

 KLTs from the same task can be assigned to different 
CPUs on a SMP ( real parallelism)
 Always a speed up?
 Speed up even on a single processor?

 A blocking system call only blocks the calling KLT
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 A blocking system call only blocks the calling KLT 
(not the complete task)

 A thread_switch between 2 KLTs of the same task 
is faster than ~ between 2 KLTs of different tasks, 
because you do not need an AS-Switch with 
 Switching paging information
 TLB flushing & restoring



Disadvantages of KLTs

Types of Threads

 Each thread related operation requires overhead, it 
always needs kernel entrance/kernel exit

 Relatively high initialization costs 

All KLTs must live with the more or less flexible kernel
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 All KLTs must live with the more or less flexible kernel 
scheduling policy
  few systems with customizable kernel scheduling policies

 Besides the entities “process” and “task” the kernel also 
has to know about threads
 Kernel is more complicated
 More kernel space is needed for TaskCBs + TCBs



Examples Systems offering KLTs

 Windows NT/XP/2000
 Solaris 9 and later versions
 Tru64 UNIX

BeOS

Types of Threads
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 BeOS
 MacOS X
 Linux

 Implements the Posix 1003.1c package
 Using the clone() system call
 To take full advantage of SMPs



When to use KLTs?

What parts of a program should or can be threaded? 

 A few rules of thumb:
  groups of lengthy or special operations, e.g.

 painting a window
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 printing a doc
 responding to a mouse-click
 calculating a spreadsheet column

 Amount of shared data is relatively small, i.e. mutually 
obstruction neither occurs too often nor too long 

 Preview: However, you should be prepared to worry 
about deadlocks and race conditions



Pure User-Level Threads

Task   

Types of Threads
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Task   

Java green threads
(classic VM)



Controlling PULTs

All PULT related operations are done inside the 
thread library, i.e. in user mode land

 Advantages:
 Fast thread manipulation typically 10-100x faster

Types of Threads
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 Fast thread manipulation, typically 10-100x faster 
than slipping into the kernel and back again

 UTCB can be smaller (e.g. IP, PSW, and SP)

 Each application might use a tailored scheduling 
policy for its PULTs 

 Usable in an OS that does not offer KLTS (often 
called native threads)



Controlling PULTs

 Disadvantages:
 Only one single PULT of a multi-threaded task can 

run on an SMP at any given time

 A task always gets the same amount of the CPU  
i d d tl f th b f it PULT

Types of Threads
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independently of the number of its PULTs

 A blocking system call (e.g. synchronous I/O) 
blocks the entire task, not only the calling PULT

 Some say: Kernel might preempt a task with a 
PULT holding a system wide lock (thus slowing 
system down)



Analysis
 As long as the kernel is involved in granting a lock to 

a PULT it can notify this fact in the related TaskCB 
(e.g. setting a “non preemption flag”)

 Whenever the kernel wants to preempt a task, it can 
control whether the “non preemption flag” of the 
corresponding task is set

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

corresponding task is set

 But, assume a shared memory concept and a 
common lock -handled in user land- for more than 1 
AS

 Then the kernel might preempt a PULT that holds a 
lock, some other PULTS from the related ASes are 
waiting for
 increased latency



CROSS-AS-LOCK at User Level

AS1 AS2 AS3
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SHARED MEMORY

User Level Lock

Kernel Scheduler



Hybrid Threads
Current 
UTCBs

Types of Threads

Virtual threads
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Map user-level threads to “kernel-level threads”

Task table
kernel

Current 
KTCBs

Thread table



Example: Solaris 2 Threads

Types of Threads

?

m:n mapping of
ULTs to KLTs
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?



Cons of Hybrid Thread Model*
Types of Threads

 OS must offer native threads

 2 scheduling layers
 The “KLT part” of the application is managed by the kernel

 The user-level part is managed by a scheduler in the library
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 Kernel scheduler and library scheduler have to cooperate

 Problem:
Fundamental reliance on kernel (lower layer) calling 
procedures in user space (higher layer) via so called 
“UPCALLS”, violating the principle of layered systems

*see Anderson et al: “Scheduler Activations: Effective Kernel Support 
for the User-Level Management of Parallelism”, 
ACM, Trans. on Computer Systems, Feb. 1992 



Pros of Hybrid Thread Model*
Types of Threads

 Two ways to handle blocking system calls

1. A blocking system call in the user-level thread 
only blocks its counterpart in the kernel
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 Only those user-level threads are blocked which are 
mapped to this blocked KLT

 When the blocking criteria no longer holds, the kernel 
will unblock the related KLT as usual



Pros of Hybrid Thread Model*
Types of Threads

2. Kernel blocks current KLT temporarily, recording 
the relevant blocking criteria in the kernel
 But instead of blocking the KLT for a while, it returns 

control to the user-level scheduler (via a scheduler 
activation) 
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)

 This user-level scheduler blocks the responsible ULT and 
can switch to another ready ULT which has been 
planned for this KLT

 When the blocking situation no longer holds, the kernel 
informs the corresponding user-level-scheduler, which 
then can unblock the related user-level thread and can 
put it to the ready list for its KLT



Hybrid Thread Blocking

Types of Threads

task

scheduler 
thread

User-level threads
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kernel

blocking system call

notify scheduler thread

save info

One way to handle the above situation are scheduler activations
(see: Anderson et al)



PThreads

 POSIX standard (IEEE 1003.1c) API for 
thread creation and synchronization.

 API specifies behavior of the thread library; 
i l i i h d l f h

Types of Threads
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implementation is up to the developer of the 
library.

 Common in UNIX operating systems.



K42 Hybrid Threads1

Types of Threads

Address 
Space

Dispatcher
User-Level
Threads

User Space

User-Level
Threads

Dispatcher
User-Level
Threads

User-Level
Threads
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Scheduling
Class 1

Dispatcher
Descriptor Kernel Space

CPU Domain

Scheduling
Class 2

1read the white papers: http://www.research.ibm.com/K42/



Kernel (-Mode) Threads (KMT)

 Yet another type of threads?

 Just to confuse you completely?

Kernel-level threads
or native threads

Always 
executing in
kernel-mode

Types of Threads
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Pure user-level threads
or “green threads”

or native threads

Kernel (-Mode )Threads



Kernel-Mode Threads

 Already in early Unix versions  some kernel 
“processes” (daemons, e.g. the swapper completely 
mapped to KAS) and always running in kernel-mode

 root = owner of UNIX kernel processes

Types of Threads
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 Modern OS may use kernel-mode threads 

 Additional problems:
 How (when)to schedule kernel-mode threads?
 How to interact with kernel-mode threads?
 How to protect sensitive kernel data from misbehaving 

kernel-mode threads?



Thread ProgrammingThread Programming
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Concurrent Programming
Examples of Problems
Common Problems



Why to study Thread Programming?

 Concurrent correct application programs are not yet 
very widespread

 Some of them have been(still are) error-prone1,2 

 Skill of concurrent programming has to be trained

Problems with Threads

p g g

 Famous Mars Pathfinder problem
 Problems with the correct synchronization of three concurrent 

processes
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1For further software horror stories see:
http://www.cs.tau.ac.il/~nachumd/horror.html

2http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html



What can go wrong with Threads?

 Safety hazards
 Program does the wrong thing due to race 

conditions

Li li h d
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 Liveliness hazards
 Program never does the right thing (live lock, 

deadlock)

 Performance hazards
 Program is too slow due to excessive 

synchronization



Preview: Thread Scheduling

 Scheduler decides when to run a “ready” thread

T1          T2          T3

Potential execution sequence
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 Programs should make no assumption about the 
scheduler
 Scheduler is a “black box”

CPU

scheduler <T1, T2, T3, T1, …>



Threads Safety

 A program is thread safe if it behaves correctly when 
accessed from multiple threads, regardless of the 
scheduling or interleaving of those threads

 Race condition: program’s output is different 
depending on scheduler’s interleaving
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depending on scheduler s interleaving

 Such a behavior is a program bug

 Study the following program example on your own



1. public class ThreadTest extends Thread {
2. private static int x =1;
3. public void run() {
4. x++;
5. }

6. public static void main(String[] args){
7. thread t1 = new ThreadTest();
8. thread t2 = new ThreadTest();
9 t1 t t()

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

9. t1.start();
10. t2.start();
11. try {
12. t1.join; // wait for t1 to finish
13. t2.join; // wait for t2 to finish
14. }
15. catch(InterruüptedException iex) {}
16. printf(“Value of x == %d“, x);
17. }

18.}



Safety Hazard: x++

 Key point: x++ is not an atomic instruction, 
but consist of multiple CPU instructions, e.g.
 Load x from memory

 Increment x
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Increment x

 Store x to memory

 In MIPS assembly this could mean:
LW St, offset($s)

ADDI $t,$t,1

SW $t, offset($s)



Unsafe Thread Schedule

 Given threads t1 and t2:
LW $t, offset($s)     //for t1
LW $t, offset($s)     //for t2
ADDI $t $t 1 //for t2

Thread 
switch
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ADDI $t,$t,1          //for t2
SW $t, offset($s)     //for t2
ADDI $t,$t,1          //for t1
SW $t. offset($s)     //for t1

 Final result: Value of x == 2

Thread 
switch



Thread Cancellation

 “Killing” a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the thread  
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y
immediately

 Deferred (lazy) cancellation allows the thread to 
periodically check if it should be cancelled, e.g. 
whenever control flows enters the kernel



Signal Handling

 Signals are used in UNIX systems to notify a process 
that a particular event has occurred

 How to signal PULTs or KLTs of a task?

 A signal handler is used to process appropriate 
actions after the signal has arrived
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actions after the signal has arrived
1. Signal is generated by a particular event
2. Signal is delivered to a task/process
3. Signal is handled

 Design options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the task
 Deliver the signal to certain threads in the task
 Assign a specific thread to receive all signals for the task



Thread Pools

 Create a number of “worker threads” in a pool where 
they are waiting for work

 You might need different pools of worker threads

 Advantages:
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g
 Usually slightly faster to service a request with an existing 

waiting thread instead of creating a new pop-up thread 
before starting the service

 Allows the number of threads in the application(s) to be 
bound to the size of the pool

 Disadvantage:
 Some of these worker threads might never be needed 



Problems: Programming Threads

Types of Threads
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Conflicts between threads using a global variable, e.g.
Unix’s errno (contains error code of current system call)



Thread Control Block (TCB)Thread Control Block (TCB)
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Implementing Threads

Thread Representation

Implementing thread control, we need a data structure
representing a thread, i.e. something representing the
existence of a thread including its 

TID = thread identifier (see our passport)
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Why and when do we really need a TID? 

Hint: Compare a TCB with your passport
 Crossing borders

 Controlling/arresting suspicious people

 Additional unique and non forgeable attributes?



Thread Representation

TID all together with other useful information
characterizing a thread is collected within the 

thread control block or TCB

Definition:

Implementing Threads
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Remark:

Different systems might have different attributes in their TCBs 

TCBs can vary concerning size and/or internal structure 

Definition:
A thread attribute describes or characterizes a thread

Example: 
A thread intensively using I/O is called “I/O-bound”



Thread Identifier (TID)

Minimal TCB

Implementing Threads

Instruction Pointer (IP) Don’t say program counter!!!
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Stack Pointer (SP)

Status Flags (SF)

<IP, SP, SF> = minimal context of a thread



Potential TCB Attributes

 Thread identifier TID

 Context related
 User registers

K l i

Implementing Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

 Kernel registers 

 Scheduling related

 Stack related

 Additional private “resources”
 private global data



• User-Visible Registers
- Stack-Related 
- General Purpose
- Floating-Point
- Index

Thread Control Information

Implementing Threads
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• Control and Status Registers

Stacks are used to support procedure and system calls
(establishing local variables, transfer of parameters etc.)

A stack pointer points to the top of the stack.



• User-Visible Registers
- Stack-Related 
- General Purpose
- Floating-Point
- Index

Implementing Threads

Thread Control Information
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Instruction Pointer (address of next instruction)

Condition Codes    (results of previous instruction, 
e.g. equal bit, overflow bit)

Status Information (execution mode etc.)

• Control and Status Registers



Implementing Threads

Thread Control Information

 Events related to a thread’s execution, e.g. waiting 
for a specific I/O result ( scheduling)

 Priorities
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 Inter-Process Communication (IPC)

 Mapping Information (task-specific)

 Current resource holder (e.g. lock holder)

 Resource ownership and utilization (task-specific)



Implementing Sets of TCB’s 

Implementation techniques

 Contiguous table of TCB’s (thread table)
 Real array

Virtual array

Implementing Threads
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 Virtual array

 Structured list of TCB’s

Hint:
Considering different system constraints, discuss
appropriate data structures for implementing a
structured list of TCBs



Traditional Location of KLT TCBs

Kernel-level land

User-level land

Implementing Threads
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Kernel
µ-Kernel

respectively in a

TCB
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