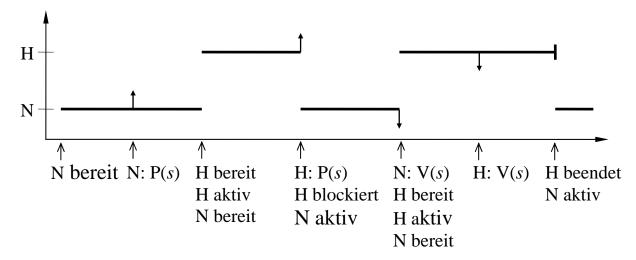
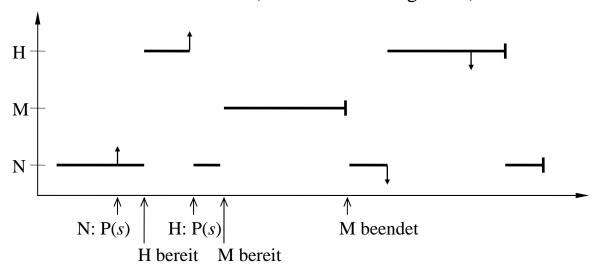
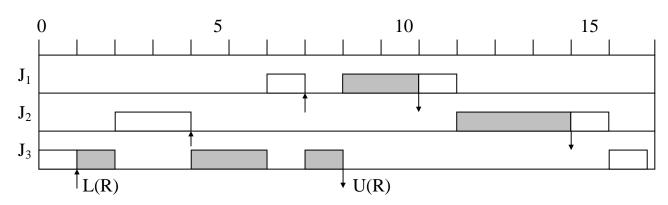

9. Konkurrierender Betriebsmittelzugriff

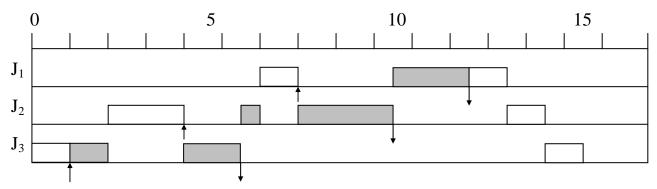
9.1. Probleme


• Prioritätsumkehr (priority inversion)

Annahme: Tasks besitzen Deadlines (sind aber nicht notwendig periodisch), und es bestehen Abhängigkeiten (kritische Abschnitte, KA). Prozessor ist entziehbar durch Tasks höherer Priorität.


- Prioritätsumkehr bei aktivem Warten


- Prioritätsinversion bei Verwendung von Semaphoren


M: Task mittlerer Priorität (ohne Verwendung von s)

• Zeitanomalie

Verkürzung der BM-Nutzungszeit von J₃ auf 2,5:

• Verklemmungen

9.2. Annahmen und Bezeichnungen

 1 Prozessor, entziehbar, keine Selbstunterbrechung Scheduling prioritätsbasiert Tasks nicht notwendig periodisch.

 $-R_1,...,R_r$ Betriebsmittel (BM); nicht entziehbar, exklusiv

- $L(R_k)$, $U(R_k)$ Anfordern/Freigeben von R_k ; Freigabe nach LIFO $\uparrow R_k \downarrow R_k$

 $-J_1,...,J_n$ Jobs;

 J_h, J_l Job hoher/niedriger Priorität

 p_1, \dots, p_n Prioritäten (höchste Priorität: 1), "fest" zugeordnet

o.B.d.A. J_i geordnet gemäß Prioritäten

 $p_i(t)$ aktuelle Priorität von J_i

- Jobs in Konflikt

benötigen dasselbe BM

Jobs konkurrieren um ein BM

einer der Jobs hat das BM, das ein anderer Job momentan braucht

Job blockiert

kann angefordertes BM nicht erhalten

- Prioritätsumkehr

 J_l wird ausgeführt, während J_h blockiert ist

9.3. Prioritätsvererbung

für preemptives prioritätsbasiertes Scheduling SHA et al., 1990

• Basic priority-inheritance protocol

(1) Scheduling-Regel

 J_i erhält Prozessor gemäß aktueller Priorität $p_i(t)$;

Freigabezeit: $p_i(t) := p_i$.

(2) Zuteilungsregel

 J_i fordere R_k zur Zeit t.

(a) R_k belegt: Anforderung verweigert, J_i blockiert.

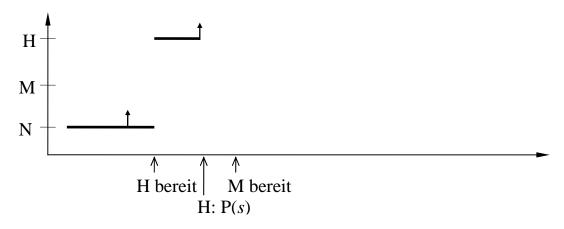
(b) R_k frei: R_k wird J_i zugeteilt.

(3) Prioritätsvererbungs-Regel

Wird J_i blockiert durch J_l , so erbt J_l die aktuelle Priorität von J_i , d.h.

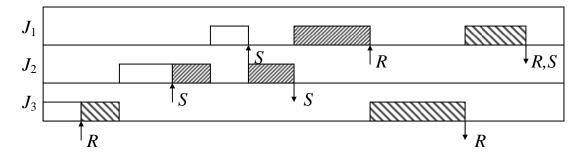
$$p_l(t) := p_i(t).$$

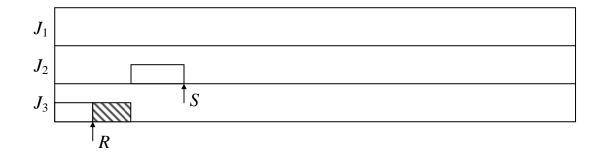
 J_l wird mit dieser Priorität bearbeitet.


Zur Freigabezeit \tilde{t} von R_k wird Priorität zurückgesetzt:

 $p_l(\tilde{t}) := p_l(t')$ t': Zuteilungszeitpunkt von R_k an J_l .

• Beispiel 9.1.


2 Tasks: keine Auswirkung!


3 Tasks:

• Eigenschaften

- Prioritätsvererbung ist transitiv.
- Keine unbegrenzte unkontrollierte Prioritätsumkehr.
- Prioritätsvererbung führt nicht notwendig zu minimaler Blockierungszeit.

- Prioritätsvererbung verhindert keine Deadlocks.

9.4. Prioritätsschranken Basic Priority-Ceiling Protocol

SHA/RAJKUMAR/LEHOCZKY, 1990

• Voraussetzungen und Begriffe

- 1 Prozessor, preemptives prioritätsbasiertes Scheduling, keine Selbstunterbrechung.
- Zugeordnete Prioritäten p_i sind fest. Prioritäten: natürliche Zahlen, 1 höchste Prior.; Ω niedrigste Priorität.
- BM-Anforderungen aller Jobs a priori bekannt.
- $P(R_k)$ Prioritätsschranke (priority ceiling) von R_k höchste Priorität aller Jobs, die R_k anfordern.
- $-\hat{P}(t)$ Prioritätsschranke des Systems zur Zeit t höchste Prioritätsschranke aller derjenigen BM, die zur Zeit t belegt sind.

• Prioritätsschranken-Protokoll

(1) Scheduling-Regel

Zur Freigabezeit t^{rel} von J_i ist $p_i(t^{rel}) = p_i$.

(2) Zuteilungsregel

 J_i fordere R_k zur Zeit t.

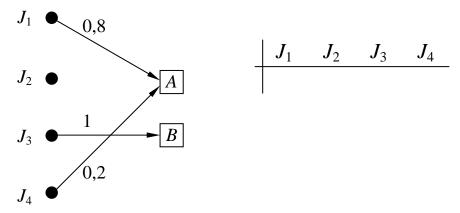
- (a) R_k belegt: Anforderung verweigert, J_i blockiert ("an R_k ").
- (b) R_k frei:
 - (a) $p_i(t) > \hat{P}(t)$: R_k wird J_i zugeteilt.
 - (β) sonst: R_k wird J_i genau dann zugeteilt, wenn J_i derjenige Job ist, der die BM R besitzt mit $P(R) = \hat{P}(t)$.

Andernfalls Verweigerung und Blockierung.

(3) Prioritätsvererbungsregel

Wird J_i durch J_l blockiert, so erbt J_l die aktuelle Priorität $p_i(t)$ von J_i . J_l wird mit dieser Priorität (preemptiv) bearbeitet bis zur Freigabe aller BM, deren Prioritätsschranke mindestens $p_i(t)$ ist. Danach fällt J_l auf die Priorität $p_l(t')$ zurück (t': Zuteilungszeitpunkt von R_k an J_l).

• Beispiel 9.2.



• Eigenschaften

- Unterschied zu Prioritätsvererbung: drei Blockierungsformen

- Deadlocks sind ausgeschlossen.
- Ein Job kann höchstens für die Dauer eines BM-Zugriffs blockiert sein.
 Berechnung der Blockierungsdauer Beispiel:

frei!

- Blockieren ist "anti-transitiv" (keine mehrfache Prioritätsinversion).

9.5. Kellerbasiertes Prioritätsschranken-Protokoll Stack-Based Priority-Ceiling Protocol

• Weitere Voraussetzungen

- Gemeinsamer Laufzeit-Stack für alle Jobs
- Stack eines aktiven Jobs stets "ganz oben" (Verdrängung!)
- Stack wird bei Ende eines Jobs freigegeben

Protokoll

(1) $\hat{P}(t) = \Omega$, falls alle BM R_k frei.

Aktualisierung von $\hat{P}(t)$ bei jeder Belegung oder Freigabe von R_k .

2) Scheduling-Regel

Nach seiner Freigabe ist ein Job J_i blockiert, bis $p_i(t) \succ \hat{P}(t)$ gilt. Bereite Jobs werden gemäß ihrer zugeordneten Priorität ausgeführt.

(3) Zuteilungsregel

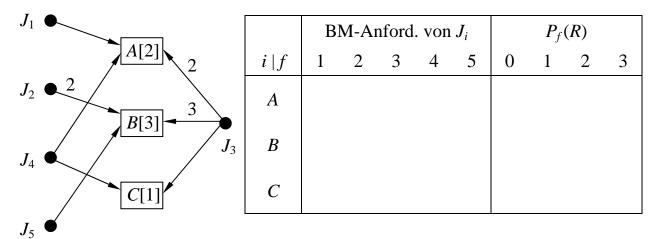
Wenn ein Job ein BM anfordert, wird es ihm zugeteilt.

• Beispiel.

• Eigenschaften

- Bei Beginn der Ausführung eines Jobs sind alle BM, die der Job anfordert, frei.
- Beide Protokolle führen zu derselben maximalen Blockierungszeit eines Jobs.
- Deadlocks und mehrfache Prioritätsinversion sind ausgeschlossen.

9.6. Mehrexemplar-Betriebsmittel

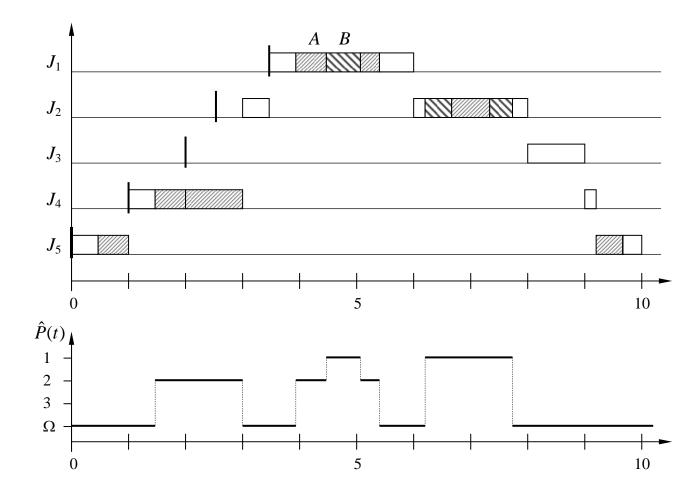

 r_k : Anzahl der Exemplare von BM R_k

f: Anzahl der freien Exemplare eines BM

• Prioritätsschranke $P_f(R_k)$

höchste Priorität aller Jobs, die (momentan) mehr als f Exemplare anfordern; sonst Ω .

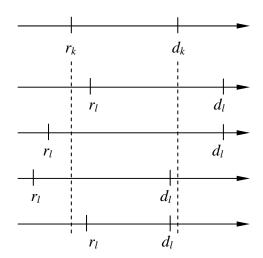
• Beispiel 9.3.



• Protokoll und Eigenschaften

analog (bis auf Vererbung bei Prioritätsschranken-Protokoll).

• Beispiel 9.4.

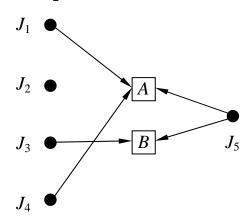

	В	M-Aı	nford	. von	J_i	$P_f(R)$					
$i \mid f$	1	2	3	4	5	0	1	2	3	4	5
A[5]	2	4	0	1	1						
B[1]	1	1	0	0	1						

9.7. Verdrängungsstufen (preemption levels)

• Eigenschaften von EDF

- Werden periodische Tasks mittels EDF ausgewählt, so sind die Prioritäten auf *Jobebene* statisch.
- Ein Job J_k mit einer kürzeren Deadline kann nie durch einen Job J_l mit einer längeren (oder gleichlangen) Deadline unterbrochen werden.

• Verdrängungstufe π_J eines Jobs J


- Eigenschaft

Ein Job höherer Verdrängungsstufe kann nicht durch einen Job niedrigerer Verdrängungsstufe unterbrochen werden.

- Bedingung für Zuordnung

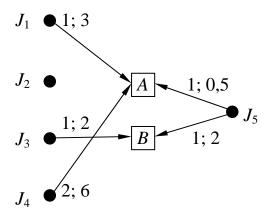
Hat J eine höhere Priorität als J', aber eine spätere Freigabezeit, so muß J eine höhere Verdrängungsstufe als J' erhalten.

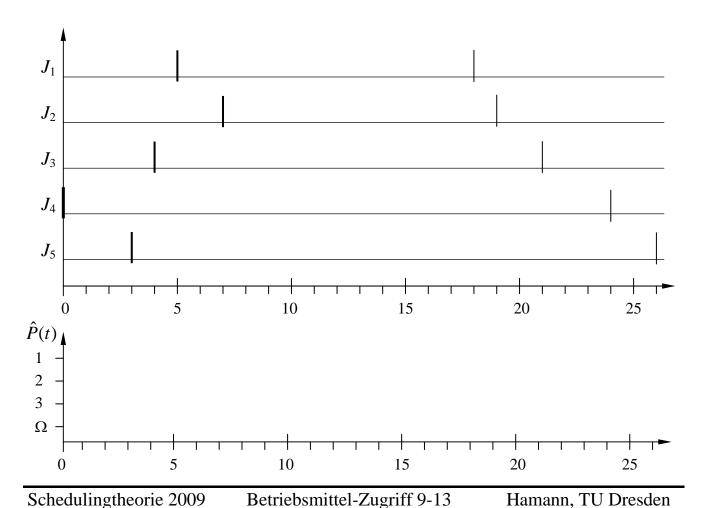
- Beispiel 9.5.

Job s	p_i	r_i	d_i	e_i	π_i	$\pi_i{'}$
J_1	1	5	13	5		
J_2	2	7	12	3		
J_3	3	4	17	4		
J_4	4	0	24	9		
J_5	5	3	23	4		

Verdrängungstufe (preemption ceiling) von BM und System analog Prioritätsschranken

• Folgerung.


Für periodische Taskmengen gilt: Alle Jobs einer Task haben dieselbe Verdrängungsstufe, wenn die Tasks nach Länge der Deadline geordnet werden.


Dies ermöglicht die Definition von modifizierten Protokollen ([stack-based] preemption-ceiling protocol), die zu einer besseren Leistung führen (insbes. bei EDF).

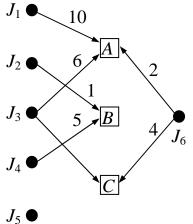
• Beispiel 9.6.

Kellerbasiertes Verdrängungsstufen-Protokoll für Bsp. 9.5 bei EDF.

Kantenbeschriftung: Beginn und Dauer der BM-Nutzung

Aufgabe 9.1.

5 Jobs J_i ; $p_i = i$, r_i Freigabezeitpunkt, e_i Bearbeitungszeit 2 BM A, B; a_i Beginn der BM-Nutzung (relativ zu r_i) b_i Nutzungsdauer


i	r_i	e_i	$A: a_i$	b_i	B : a_i	b_i
1	7	3	1	1	-	_
2	5	3	-	-	1	1
3	4	2	-	-	-	-
4	2	6	1	4	3	1,5
5	0	6	_	-	1	4

Gesucht: Ablaufpläne und Blockierungszeiten bei Einplanung

- a) ohne Prioritätsvererbung
- b) mit Prioritätsvererbung
- c) gemäß Prioritätsschranken-Protokoll
- d) gemäß kellerbasiertem Prioritätsschranken-Protokoll sowie Verlauf von $\hat{P}(t)$ bei c) und d).

• Aufgabe 9.2.

Bestimmen Sie die Blockierungszeiten (unterschieden nach der Ursache der Blockierung) für das nachstehend angegebene Jobnetz!

	direkt					PrVererbung				PrSchranken					
	J_2	J_3	J_4	J_5	J_6	J_2	J_3	J_4	J_5	J_6	J_2	J_3	J_4	J_5	J_6
J_1															
J_2															
J_3															
J_4															
J_5															