HPCaaS - High Performance Computing as a Service

Status and Outlook

Viktor Mauch, Marcel Kunze, Jan Stoess, Marius Hillenbrand

Introduction

What is High Performance Computing (HPC)?
- HPC uses computer clusters to solve advanced computational problems
- Operation Area:
 - Parallel computing (MPI jobs)
 - Data-intensive, distributed application (thousands of nodes, petabytes of data)
 - Strong requirements concerning computing power, storage, and (particularly for parallel computation) communication networks
- Typically, InfiniBand Fabrics are deployed, more than 60% of the Top 100 supercomputers
 - High bandwidth, up to effective 32 Gbit/s (between nodes)
 - Low latency, < 1µs
 - Future-proof development and outlook
 - Supported by most IT vendors: Intel, IBM, Cisco, Oracle, Voltaire, Mellanox, QLogic, ...

Traditional HPC Architecture has restrictions:
- Is characterized by very specific computing clusters designed for one or just a few special applications
- Has pre-defined operating systems and user environments
- Serves a single application at a given time
- Provides restricted user accounts
- Depends on the maintenance of the administrators

What is Cloud Computing?
- Abstracted IT resources and services on demand over the internet
- Dynamically adapted to the needs of the customers
- Settlement depends on usage, only actually used resources / services must be paid
- Combination of virtualized computing infrastructure and management via web-based services
- Fully automated system with a minimum of maintenance and costs
- Illusion of unlimited resources, available anytime
- “Everything” as a Service (aaS) philosophy:
 - laaS: virtual / physical computing resources
 - PaaS: development / execution environment
 - SaaS: Applications, Server Services
 - Host: manpower on demand

Solution: Concept of HPCaaS
- Clustered servers and storage as resource pools
- Fully automated allocation
- Individual cluster configuration on demand
- Flexibility to serve multiple users and applications
- Customers have full administrative rights over the provided infrastructure

Challenge: Provide InfiniBand Support for automated systems to deliver HPC cloud computing services!

Spectrum of Technical Solutions

- Limits of Software-only I/O virtualization:
 - Increased I/O latency: VMM must process and route every data packet and interrupt, leads to higher application response time
 - Scalability limitations: software-based I/O processing consumes CPU cycles, reduces the processing capacity

- Solution 1: PCI Pass-Through
 - VT-d [Intel] / IOMMU [AMD] chipset specification allows to pass-through a PCI Express Adapter to single VM
 - VMM does not have to manage I/O traffic
 - Direct access with native performance

- Solution 2: Single Root - I/O Virtualization
 - Extension to the PCI Express specification suite
 - Physical I/O resources are virtualized within the PCIe card, each card presents multiple virtual I/O interfaces
 - Almost native performance
 - Virtual Functions (VFs):
 - Provide all the functionality which is necessary for communication
 - VMM interfaces directly with a VF without VMM intervention
 - Physical Function (PF):
 - VMM interfaces with PF to configure and manage I/O resource sharing among the multiple VMs

Workaround: Physical Resource Deployment with SINA - https://savannah.nosk.de/projects/sina
- User-friendly web frontend
- Controls the PXE server setup
- Manages computing nodes, user accounts and install routines
- Provides user functionality to allocate nodes, reboot them and deploy specific operating system install routines
- Direct access to hardware may not be available in virtualized environments (e.g., InfiniBand)
- All allocated resources run with native speed

Using InfiniBand in Virtualized Environments

- PCI Pass-Through
 - Direct Access with VT-d / IOMMU

- Single-Root - I/O Virtualization
 - DMA and Device Sharing with Intel® VT-d and SR-IOV

Physical Resource Deployment with SINA

- SINA – Simple Node Allocator
 - User login / registration
 - Account management
 - Add / delete / edit install routines
 - Allocate install routine to specific nodes

- PXE Boot Server

Current Development and Outlook

- Development of an HPCaaS Prototype System
 - PCI Pass-Through and Physical Deployment already work
 - First SR-IOV supported IB Host
 - Channel Adapters (HCAs) are already available by Mellanox Technologies: Model Type: ConnectX® 2
 - SR-IOV supported Drivers for the OFED Software Stack and Firmware are currently in development and will be available end of 2010

Next steps: Create & manage isolated domains within a IB fabric for multi-tenancy
- Using special IB switches with isolation support
- Dynamic configuration of the IB subnet manager
- Enable customers to instantaneously reserve complete HPC computing clusters according to their needs

Steinbuch Centre for Computing (SCC)
http://www.scc.kit.edu/

System Architecture Group
http://os.ibds.kit.edu/

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu