
Are Virtual-Machine Monitors Microkernels Done Right?

Gernot Heiser
National ICT Australia∗ and University of New South Wales

Sydney, Australia
gernot@nicta.com.au

Volkmar Uhlig
IBM T.J. Watson Research Center, Yorktown Heights, NY

vuhlig@us.ibm.com

Joshua LeVasseur
University of Karlsruhe, Germany

jtl@ira.uka.de

Abstract

A paper by Hand et al. at the recent HotOS work-
shop re-examined microkernels and contrasted
them to virtual-machine monitors (VMMs). It
found that the two kinds of systems share archi-
tectural commonalities but also have a number of
technical differences which the paper examined. It
concluded that VMMs are a special case of micro-
kernels, “microkernels done right”.

A closer examination of that paper shows that it
contains a number of statements which are poorly
justified or even refuted by the literature. While
we believe that it is indeed timely to reexamine the
merits and issues of microkernels, such an exami-
nation needs to be based on facts.

1 Introduction

At the HotOS workshop in June this year, Hand
and coauthors presented a paper [HWF+05] titled
“Are virtual machine monitors microkernels done
right?” The paper compares and contrasts micro-
kernels and virtual-machine monitors (VMMs) as
platforms for systems design and implementation.
While identifying architectural similarities, it ex-

∗National ICT Australia is funded by the Australian Gov-
ernment’s Department of Communications, Information Tech-
nology, and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research
Centre of Excellence programs.

amines the difference in the approaches, and con-
cludes that VMMs are one specific point in the mi-
crokernel design space, the “right” one. Unstated
but implied is the assertion that VMMs such as
Xen [BDF+03] are the (to date) only “right” ap-
proach to building microkernels.

Taking a closer look at the main assertions made
by Hand et al, we find that they are hard to justify,
or even squarely at odds with the literature. While
we think that reexamining the merits and failures
of microkernels is a potentially valuable exercise,
we strongly believe that such a discussion must be
performed in accordance with established scientific
principles, and most of all, be grounded in facts. As
a contribution to an informed discussion, we exam-
ine the assertions made by Hand et al in the light of
the public record.

2 Background

Before addressing the specific assertions made in
Hand et al’s paper, we provide some (we hope) use-
ful background for the discussion.

2.1 History Revisited

Microkernels and virtual machine monitors both
have a long history, dating back to the early 1970’s
[BH70, Gol74]. Given that there are significant
similarities, it is useful to look at a somewhat nar-
row definition of both.

NICTA Technical Report PA005103 September 2005 Page 1 of 5



Goldberg [Gol74] defines a virtual machine
monitor as “[...] software which transforms the
single machine interface into the illusion of many.
Each of these interfaces (virtual machines) is an
efficient replica of the original computer system,
complete with all of the processor instructions
[...]”.

Liedtke [Lie96] describes the microkernel ap-
proach as “... to minimize the kernel and to im-
plement whatever possible outside of the kernel”.

Both definitions appear sufficiently distinct to
raise the question of how much commonality there
can be. Examining the goals of the two approaches
shows that there is more similarity than is evi-
dent from the definitions: Goldberg lists software
reliability, data security, alternative system APIs,
and improved and new mechanisms as benefits;
Liedtke lists flexibility and extensibility, fault isola-
tion, maintainability, and restricted interdependen-
cies.

It seems that while VMMs and microkernels
share a common set of goals, they take a differ-
ent approach towards the solution. Yet both ap-
proaches consider minimality important. While for
microkernels it is a key objective, Goldberg reports
it as a result of the system structure: “A key princi-
ple in the analysis of software reliability is that the
VMM is likely to be correct—i.e., the probability of
failure is near zero. This assumption is reasonable
because the VMM is likely to be a very small pro-
gram [...]”.

2.2 Core primitives

In the effort to minimise kernel functionality, mi-
crokernels offer a minimal set of abstractions with
a central primitive for extensibility: inter-process
communication (IPC). In a microkernel, IPC serves
three primary purposes:

1. IPC is the mechanism for kernel-controlled
change of execution flow between protection
domains;

2. IPC is the mechanism for kernel-controlled
data transfer between protection domains;

3. IPC is the mechanism for resource delegation
between protection domains that requires mu-
tual agreement between multiple (potentially
distrusting) parties.

Combining these three orthogonal operations
into a single primitive reduces the number of se-
curity mechanisms, reduces the code complexity,
and reduces the code size. A smaller code base re-
duces the number of errors in the privileged kernel,
as well as reducing the cache footprint. An obvious
key requirement for any microkernel is thus a low-
overhead IPC primitive. All other operations that
require a combination of the three mechanisms can
be implemented via the single IPC primitive.

VMMs in comparison, closely resemble proces-
sor hardware and offer a rich variety of primitives.
Each primitive requires a dedicated set of security
mechanisms, resources, and kernel code. A com-
prehensive list is beyond the scope of this paper,
thus we only list the common subset of primitives
that can be found in most VMMs:

1. synchronous switch of protection domain
from guest user to guest kernel;

2. synchronous switch of protection domain
from guest kernel to guest user;

3. asynchronous communication channels across
domains (virtual machine (VM) to virtual ma-
chine);

4. resource allocation per VM via VMM hyper-
call interface;

5. resource allocation within the VM (e.g., via
hardware page-table virtualisation);

6. resource re-allocation (e.g., via page flipping);

7. page-fault and exception handling via excep-
tion virtualisation;

8. asynchronous event notification across do-
mains via virtual-interrupt signalling mecha-
nism;

9. hardware interrupt notification via virtualized
interrupt controller;

10. a set of common devices, such as NIC and
disk.

The interfaces provided by the VMM have an
intriguing benefit for an important class of highly
complex software: existing operating systems.
Available operating systems already program to

NICTA Technical Report PA005103 September 2005 Page 2 of 5



the interface provided by the hardware and resem-
bled by the VMM. Thus existing operating sys-
tems require no or only minimal changes to run
on a VMM, whereas adaptation to the microker-
nel primitives often requires significant modifica-
tions. However, this benefit is being eroded by the
increasing divergence of VMMs from pure virtu-
alisation (faithful representation of the underlying
hardware) to paravirtualisation (representation of
modified hardware that lends itself better to effi-
cient support of legacy OSen).

The diversity of interfaces also leads to struc-
tural compromises, such as centralized super-VMs
that combine and colocate significant critical sys-
tem functionality. Such a structure potentially de-
creases overall reliability and poses the risk of a
single point of failure. This problem becomes even
more inherent if this super-VM runs a legacy oper-
ating system and thus re-introduces a large number
of software bugs [CYC+01].

For extensions that are not an existing operat-
ing system, the VMM’s interfaces significantly in-
crease the complexity of software design. As, per
definition, a VMM presents an interface that is
close to the underlying architecture, software de-
veloped for one VMM is inherently unportable
across architectures. In contrast, a microkernel
abstracts and hides the peculiarities of the hard-
ware platform behind its common set of abstrac-
tions. For example, software that is written for an
L4 microkernel [Lie95] naturally runs on nine dif-
ferent processor platforms, from embedded devices
such as ARM, to desktop and small servers such as
x86, up to large multiprocessor PowerPC and Ita-
nium machines. Hence, it is possible to leverage
and reuse system components across a wide variety
of hardware platforms, thereby minimising porting
and maintenance overhead.

3 Architectural Lessons

Now we reexamine the architectural lessons pre-
sented by Hand et al in detail, following the head-
ings of their paper, and clarify the role of microker-
nels.

3.1 Avoid Liability Inversion

The paper states that moving system services out
of the kernel relaxes the dependability boundaries
within the system. Applications and even the ker-
nel depend on user-level code. This situation
is called liability inversion and an example from
Mach [YTR+87] is used to argue that “inelegant”
mechanisms are required to ensure correct system
operation as a consequence of the “kernel abdicat-
ing its liability”. It is further argued that one of the
principal design guidelines of Xen were to avoid
liability inversion.

At the workshop, Butler Lampson was quick to
point out that this liability inversion is in fact an
issue in Xen as well. An example for this is actu-
ally given in another paper at the same workshop
by some of the same authors: the Parallax storage
system [WRF+05] essentially uses external pagers
to provide file service. While that paper argues
that the design avoids liability inversion, Parallax
is “providing a critical system service for a set of
VMMs”. This is exactly what a user-level server
does in a microkernel-based system. The argument
is made that a failure of the Parallax server only af-
fects its clients — exactly the same situation as if a
server fails in an L4-based system. Hence, we fail
to see the difference between a VMM and a micro-
kernel in this respect.

Possibly this apparent conflict is a result of a
lack of understanding of microkernels (even though
this has been thoroughly explained in the litera-
ture [Lie96]). The confusion might in fact be the
result of an invalid generalisation of a specific ex-
ample (a particular design fault of Mach) onto a
whole class of systems (microkernels).

3.2 Make IPC performance irrelevant

Here Hand et al. argue that, while microkernel
designers have spent considerable effort on opti-
mising inter-process communication (IPC) mecha-
nisms, this is irrelevant as it is “not a critical design
concern in the construction of high-performance
VMMs.”

They further argue that IPC between virtual ma-
chines is much less frequent and thus not per-
formance critical, as a consequence of the VMM
scheduling and protecting complete operating sys-
tems.

NICTA Technical Report PA005103 September 2005 Page 3 of 5



This is an interesting line of argument, as it is
at odds with the reality of Xen-based systems in at
least two respects:

• Xen uses a separate virtual machine (called
Dom0) to encapsulate legacy device drivers
[FHN+04]. Hence, any I/O operation im-
plies at least one round-trip communication
between the guest VM and Dom0. The au-
thors call this a “simple asynchronous unidi-
rectional event mechanism” — it is nothing
else than a form of asynchronous IPC.

And performance-critical it is indeed. A re-
cent paper [CG05] examines the CPU over-
head of Dom0 drivers under high load, and
finds that the CPU load generated by Dom0

accounts for almost all of the CPU load of
the system under test! They also find that the
Dom0 CPU time is proportional to the num-
ber of Xen’s page-flipping operations, that is,
message transfers, irrespective of the message
size. The clear implication of this data is that
IPC costs dominate the driver overhead in Xen
systems under high I/O load.

• While it is true that Xen schedules complete
operating systems, this does not mean that
there is no other interaction with the VMM.
In fact, each guest-application exception and
system call causes a trap into the VMM, which
then invokes corresponding functionality in
the guest OS. This is nothing but an IPC op-
eration between the guest application and the
guest OS.

Xen provides a shortcut based on x86’s trap
gates that avoids invoking the VMM on guest
systemcalls. However, this shortcut is specif-
ically targeted and limited to Linux’s int

0x80 system-call variant and restricts the use
of segments. Protection can only be preserved
if all active segment configurations explicitly
exclude the VMM kernel. Since x86’s trap
mechanism only reloads two of the six seg-
ment selectors, the solution is limited; Linux’s
latest glibc violates the assumption and ren-
ders the shortcut useless.

A Xen-based system performs essentially the
same number of IPC operations as a compara-

ble microkernel-based system (such as L4Linux
[HHL+97]).

3.3 Treat the OS as a component

Under this heading, Hand et al. argue that a benefit
of VMMs is that they are designed to run complete
legacy systems, with familiar programming and de-
velopment environments, and lending themselves
to extensions such as Parallax. The (unstated) im-
plication of such statements has to be that micro-
kernels are somehow not suitable for such use.

This is a really surprising notion, as L4 has
demonstrated many years ago that it is per-
fectly suitable as a VMM supporting a par-
avirtualised Linux system with excellent perfor-
mance [HHL+97], and the Dresden DROPS sys-
tem [HBB+98] is built specifically on extending a
paravirtualised Linux system running on a micro-
kernel with real-time services and is in industrial
use.

Again, we fail to see the claimed “significant dif-
ference” between VMMs and microkernels.

4 Conclusions

In summary, the “important differences” between
microkernels and VMMs identified by Hand et al.
do not seem to hold up to scrutiny. As a conse-
quence, their conclusion “that VMMs are micro-
kernels done right” cannot be inferred from the ar-
guments they presented. Yet, the observation, also
made by others [HPHS04], that VMMs and micro-
kernels are closely related, deserves further atten-
tion. We believe that a systematic and objective
examination of the similarities and differences of
microkernels and VMMs is still outstanding, and
would make a valuable contribution to OS theory
and practice.

References

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualiza-
tion. In Proceedings of the 19th ACM Sym-
posium on OS Principles, pages 164–177,
Bolton Landing, NY, USA, October 2003.

NICTA Technical Report PA005103 September 2005 Page 4 of 5



[BH70] Per Brinch Hansen. The nucleus of a mul-
tiprogramming operating system. Commu-
nications of the ACM, 13:238–250, 1970.

[CG05] Ludmila Cherkasova and Rob Gardner.
Measuring CPU overhead ofr I/O process-
ing in the Xen virtual machine monitor.
In Proceedings of the 2005 USENIX Tech-
nical Conference, pages 387–390, Anna-
heim, CA, USA, April 2005.

[CYC+01] Andy Chou, Jun-Feng Yang, Benjamin
Chelf, Seth Hallem, and Dawson Engler.
An empirical study of operating systems
errors. In Proceedings of the 18th ACM
Symposium on OS Principles, pages 73–88,
Lake Louise, Alta, Canada, October 2001.

[FHN+04] Keir Fraser, Steven Hand, Rolf Neuge-
bauer, Ian Pratt, Andrew Warfield, and
Mark Williamson. Reconstructing I/O.
Technical Report UCAM-CL-TR-596,
University of Cambridge, August 2004.

[Gol74] Robert P. Goldberg. Survey of virtual ma-
chine research. IEEE Computer, 7(6):34–
45, June 1974.

[HBB+98] Hermann Härtig, Robert Baumgartl, Mar-
tin Borriss, Claude-Joachim Hamann,
Michael Hohmuth, Frank Mehnert, Lars
Reuther, Sebastian Schnberg, and Jean
Wolter. Drops — OS support for dis-
tributed multimedia applications. In Pro-
ceedings of the 8th SIGOPS European
Workshop, Sintra, Portugal, September
1998.

[HHL+97] Hermann Härtig, Michael Hohmuth,
Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. The performance of µ-kernel-
based systems. In Proceedings of the 16th
ACM Symposium on OS Principles, pages
66–77, St. Malo, France, October 1997.

[HPHS04] Michael Hohmuth, Michael Peter, Her-
mann Härtig, and Jonathan S. Shapiro. Re-
ducing TCB size by using untrusted com-
ponents — small kernels versus virtual-
machine monitors. In Proceedings of the
11th SIGOPS European Workshop, Leu-
ven, Belgium, September 2004.

[HWF+05] Steven Hand, Andrew Warfield, Keir
Fraser, Evangelos Kottsovinos, and Dan
Magenheimer. Are virtual machine mon-
itors microkernels done right? In Proceed-
ings of the 10th Workshop on Hot Topics in
Operating Systems, Sante Fe, NM, USA,
June 2005. USENIX.

[Lie95] Jochen Liedtke. Improved address-space
switching on Pentium processors by trans-
parently multiplexing user address spaces.
Technical Report 933, GMD SET-RS,
Schloß Birlinghoven, 53754 Sankt Au-
gustin, Germany, November 1995.

[Lie96] Jochen Liedtke. Towards real micro-
kernels. Communications of the ACM,
39(9):70–77, September 1996.

[WRF+05] Andrew Warfield, Russ Ross, Keir Fraser,
Christian Limpach, and Steven Hand. Par-
allax: Managing storage for a million ma-
chines. In Proceedings of the 10th Work-
shop on Hot Topics in Operating Systems,
Santa Fe, NM, USA, June 2005. USENIX.

[YTR+87] Michael Young, Avadis Tevanian, Richard
Rashid, David Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David
Black, and Robert Baron. The duality
of memory and communication in the im-
plementation of a multiprocessor operating
system. In Proceedings of the 11th ACM
Symposium on OS Principles, pages 63–76,
1987.

NICTA Technical Report PA005103 September 2005 Page 5 of 5


