
© 2009 System Architecture Group, Universität Karlsruhe
1

µµ--Kernel Construction (10)Kernel Construction (10)

Interrupts, Exceptions, and

CPU virtualization
and some IA-32 hacks

(updated on 2009-07-20)

2
© 2009 System Architecture Group, Universität Karlsruhe

L4 Kernel Paradigm

Everything the kernel needs to handle in a
secure manner will either become invisible
or be hidden behind an abstraction.

� Exceptions not handled by the kernel itself
will be posted to user land

� Page faults

� Hardware interrupts

� Other exceptions

3
© 2009 System Architecture Group, Universität Karlsruhe

Exception Sources

� From current instruction stream

� Page fault

� Numeric

� Unaligned data access

� Debug

� Speculation

� External

� Device interrupts

� Timer interrupt

� Cross-processor interrupt

4
© 2009 System Architecture Group, Universität Karlsruhe

Exception Classes

� Traps

� Sensed after an instruction

� Deal with the cause, then continue

� Faults

� Signaled during execution of current
instruction

� Fix the problem, then retry (or skip)

5
© 2009 System Architecture Group, Universität Karlsruhe

Exception Handling

1. Program executes happily

2. Exception occurs

3. Activate exception handler

� Save current state

� Switch to privileged mode

� Execute exception handler

4. Fix the problem

5. End of exception handling

� Restore state

� Switch to previous mode

� Continue interrupted program

6. Program executes happily again

6
© 2009 System Architecture Group, Universität Karlsruhe

L4 Kernel Paradigm

Everything the kernel needs to handle in a
secure manner will either become invisible
or be hidden behind an abstraction.

� Exceptions not handled by the kernel itself
will be posted to user land

� Page faults

� Hardware interrupts

� Other exceptions

7
© 2009 System Architecture Group, Universität Karlsruhe

Page Fault IPC

PF IPC

res IPC

PagerApplication
map msg

"PF" msg

IP

fault addr

rwx

PF-IPC synthesized by the
kernel, pager’s reply caught
by the kernel (application is
not informed/involved)

8
© 2009 System Architecture Group, Universität Karlsruhe

IPC Map

receive
window

Map item offset

Configured by
receiver

Configured by
receiver

A B

What about page
faults?

What about page
faults?

9
© 2009 System Architecture Group, Universität Karlsruhe

Page Fault Receive Window

A

receive
window

Pager

PF message

Map item offset,
specified by pager

Configured by
kernel

Configured by
kernel

Pager can
overmap entire
address space.

Liedtke: “The
SawMill Framework
for Virtual Memory

Diversity”

Pager can
overmap entire
address space.

Liedtke: “The
SawMill Framework
for Virtual Memory

Diversity”

10
© 2009 System Architecture Group, Universität Karlsruhe

String Copy

A B

copy

IPC string
copy

current

11
© 2009 System Architecture Group, Universität Karlsruhe

String Copy: Sender Page Fault

A B

copy

IPC string
copy

Deliver PF
message to
sender’s

pager from the
sender.

Deliver PF
message to
sender’s

pager from the
sender.

A’s
pager

current

12
© 2009 System Architecture Group, Universität Karlsruhe

String Copy: Receiver Page Fault

A B

copy

IPC string
copy

Deliver PF
message to
receiver’s

pager from the
receiver.

Deliver PF
message to
receiver’s

pager from the
receiver.

B’s
pager

current

13
© 2009 System Architecture Group, Universität Karlsruhe

Invisible Page Faults

� Kernel handles some page faults internally

� Virtual TCB array – map on demand

� Exclusive empty page on write access

� Shared 0-filled page read-only on read access

� Avoid DoS attack on memory used for TCBs

� Map exclusive empty page on later write

0

TCB array
(virtual)

Physical
memory

14
© 2009 System Architecture Group, Universität Karlsruhe

Lazy Kernel Space Building

Primary kernel
page directory A B

current

Kernel memory

Note: The kernel shares page tables, not page directories;
implemented by copying page directory entries.

15
© 2009 System Architecture Group, Universität Karlsruhe

L4 Kernel Paradigm

Everything the kernel needs to handle in a
secure manner will either become invisible
or be hidden behind an abstraction.

� Exceptions not handled by the kernel itself
will be posted to user land

� Page faults

� Hardware interrupts

� Other exceptions

16
© 2009 System Architecture Group, Universität Karlsruhe

Hardware Interrupts

� Kernel hides first-level interrupt logic
� No user messing with interrupt hardware

� Deliver interrupts via IPC

� More portable software

� Kernel interrupt handler
� Translates interrupt into IPC

� Sender: interrupt thread ID
� Represents interrupt request line

� Receiver: attached thread (user interrupt handler)

� Message contents: Protocol ID

� Message destination
� A thread needs to “attach to an interrupt”

17
© 2009 System Architecture Group, Universität Karlsruhe

Interrupt Handling

PIC
0

7x
x
x

x
x
x
x

x

a
t
t
a
c
h
_
i
r
q
(
5
)

Kernel

IRQ owner

Device driver Device

wait(5)

request

5

call

Handle IRQ

call(5)

unmask_irq(5)mask_irq(5)

18
© 2009 System Architecture Group, Universität Karlsruhe

Hardware Interrupts

� Kernel uses some interrupts for itself

� Timer tick – triggers scheduler

� Timer device and interrupt line not available to user

� Inter-processor interrupts (SMP)

� Kernel hides IPI hardware

� Cross-CPU user communication via IPC

� Kernel debugger may use interrupts

� Performance counters – profiling

� NMI – last resort debug aid

19
© 2009 System Architecture Group, Universität Karlsruhe

L4 Kernel Paradigm

Everything the kernel needs to handle in a
secure manner will either become invisible
or be hidden behind an abstraction.

� Exceptions not handled by the kernel itself
will be posted to user land

� Page faults

� Hardware interrupts

� Other exceptions
CPU
L4

20
© 2009 System Architecture Group, Universität Karlsruhe

Old Exception Handling Model

� Model

� Create exception frame on user stack

� Restart thread at a predefined exception handler

� Return from exception handler using special
instruction

� Problems

� Very x86-ish, inconsistent

� Requires a valid user stack

� Poor performance for virtualization (too many kernel
entries)

� Recursive exception handling?

� Safety?

21
© 2009 System Architecture Group, Universität Karlsruhe

EAX
SP
IP

…

EAX
SP
IP

…

Exception
Handler

Application
continue msg

exception msg

Kernel modifies register
contents according to reply

message

New Exception Handling Model

Except.-IPC synthesized by the
kernel, handler’s reply caught
by the kernel (application is
not informed/involved).

22
© 2009 System Architecture Group, Universität Karlsruhe

Invisible Exceptions

� Kernel handles some exceptions internally

� Coprocessor/FPU virtualization

� Transparent small space extension

� TLB misses in software-loaded TLBs

� Kernel debugger handles some exceptions

� Breakpoints

� Single-stepping

� Branch tracing

23
© 2009 System Architecture Group, Universität Karlsruhe

Review: Processor Multiplexing

� Hardware model
� One thread
� One address space
� Exclusive access to resources (such as FPU)

� Microkernel exports
� Multiple threads
� Multiple address spaces
� Maintain threads’ view of the world

� Threads have exclusive access to resources

� Multiplex abstractions onto existing hardware
� Switch register file contents at thread switch
� Potentially switch MMU state at thread switch
� Switch FPU content etc. at thread switch

24
© 2009 System Architecture Group, Universität Karlsruhe

FPU Virtualization

� Strict switching
Thread switch:

Store current thread’s FPU state

Load new thread’s FPU state

� Extremely expensive

� IA-32’s full SSE2 state is 512 Bytes

� IA-64’s floating point state is ~1.5KB

� May not even be required

� Threads do not always use FPU

25
© 2009 System Architecture Group, Universität Karlsruhe

Lazy FPU Switching

� Lock FPU on thread switch

� Unlock at first use – exception
handled by kernel

Unlock FPU

If fpu_owner != current

Save current state to fpu_owner

Load new state from current

fpu_owner := current

FPU

finit
fld

fcos
fst

finit
fld

Kernel

current fpu_owner

locked

pacman()

26
© 2009 System Architecture Group, Universität Karlsruhe

Small Spaces

� Access beyond small segment limit

� Exception #GP or #SF

� Kernel enlarges small space

� Thread continues

� Next segment violation will be fatal

27
© 2009 System Architecture Group, Universität Karlsruhe

Privileged IA-32 Instructions

� Privileged instructions

� lidt – Load interrupt descriptor table

� rdmsr , wrmsr – Access model-specific registers

� wbinvd – Write back and invalidate caches

� lgdt , lldt , ltr , …

� IOPL-sensitive

� cli /sti – Disable/enable interrupts

� in , out , ins , outs – Access I/O address space

–– Skipped in 2009 Skipped in 2009 ––

28
© 2009 System Architecture Group, Universität Karlsruhe

LIDT Emulation (Old Exc. Model)

� Threads use lidt instruction to install their
own exception handlers
� Privileged instruction – exception #GP

� Analyze faulting instruction

� Kernel emulates lidt – stores IDT pointer

� Thread continues after lidt instruction

� Per-thread IDT pointer

� Unhandled exceptions are routed via IDT
� Create exception frame on user stack

� Continue thread on address in IDT

� Thread returns using iret instruction

–– Skipped in 2009 Skipped in 2009 ––

29
© 2009 System Architecture Group, Universität Karlsruhe

I/O Privilege Levels

� IOPL lives in EFLAGS register

� But user mode cannot modify IOPL

� IOPL sensitive instructions

� CPL=0
� Kernel mode, no restrictions

� CPL=3, IOPL = 3
� User mode, almost no restrictions

� CPL=3, IOPL < 3
� cli /sti cause #GP

� in /out controlled by I/O permission bitmap

–– Skipped in 2009 Skipped in 2009 ––

30
© 2009 System Architecture Group, Universität Karlsruhe

I/O Port Access Control
� I/O permission bitmap (IOPBM)

� One bit per I/O port (64 kbit)
� 0 – Access allowed
� 1 – Exception #GP

� Part of IA-32 task state segment
� Task-local

� Switch IOPBM with page tables

� Kernel translates #GP into IPC
� Analyze faulting instruction
� I/O port fault message sent to pager

� Port address, access size

� Pager maps I/O fpage
� Kernel resets bits in IOPBM

� Use existing mechanisms – map and unmap

–– Skipped in 2009 Skipped in 2009 ––

31
© 2009 System Architecture Group, Universität Karlsruhe

Virtualizing the Interrupt Flag

� Interrupt enable flag in EFLAGS
� User cannot modify IF

� cli /sti cause exception #GP

� Analyze faulting instruction
� Flip user’s IF
� Per-thread IF

� But … expensive
� Unusable for implementing critical sections

–– Skipped in 2009 Skipped in 2009 ––

32
© 2009 System Architecture Group, Universität Karlsruhe

Protected Mode Virtual Interrupts

� Hardware support
� Allows enforcing maximum interrupt latency
� Two new flags in EFLAGS register (VIF, VIP)

� cli /sti in user mode updates Virtual IF
� Less costly – no exception

� Hardware interrupts still subject to real IF
� Deliver interrupts immediately or
� Postpone delivery

� Kernel can set VIP flag
� Indicates pending interrupt
� Next sti will cause #GP

� Kernel can deliver pending interrupts

–– Skipped in 2009 Skipped in 2009 ––

33
© 2009 System Architecture Group, Universität Karlsruhe

Delayed Preemptions

� Thread can ask for extension of time slice

� Kernel can delay preemption

� Unless thread with higher prio wakes up

� Up to a maximum delay
� Set by thread’s scheduler

� Preemption-pending bit in TCR

� If kernel preempts thread …

� Notification IPC to exception handler

