u-Kernel Construction (9)

Local IPC

Optimization for Multi-Threaded
Applications

Synchronization
via IPC

Thread A Monitor Thread B

Synchronization
via IPC

Thread A Monitor Thread B

In Précti .
T ce;
[90 expensiye
]

By
o
—

Synchronization Load Distribution
via IPC via IPC

. Server
Thread A Monitor Thread B : ClientA ClientB Distributor W; W,

In Précti .
T ce;
[5 Expensive

-
-
™

Synchronization Load Distribution
via IPC via IPC

- Server
Thread A Monitor Thread B : ClientA ClientB Distributor W; W,

[

Synchronization Load Distribution
via IPC via IPC

Client A Client B

— — .
-
-

:‘—_—

-
=
-

D © 2009 Univers

b
- e »
. L »
e
B e

£ e
i e
e

= TPC operatlon are wi

itdt Karlsruhe, System Architecture Group

. 2
o BF

e
o
s »
e

1dress space

e o

User-Level Threads?

= Would achieve required speed
s But ...

= Not known to the kernel

= Execute in a single thread’s context

= Making them kernel-schedulable does not pay

= Two concepts — inelegant, contradicts minimality

= We want ...

= Kernel-level threads
= The speed of user-level threads

Basic Idea

= Assume IPCt; - t,, same address space
s Lett, execute t,-code
= Postpone real switch until the kernel is activated

= Pays if multiple lazy switches occur before first kernel
activation, e.g.:

u tl - tz, WOrk, tz - tl

client

= Costs 0 kernel-level IPC
« Client - t; - t, - client

= Costs 2 kernel-level IPCs

o © 2009 Universitat Karlsruhe, System Architecture Group

Strict Switching

10

Lazy Switching

active
thread

11

Lazy Switching

active
thread

12

Lazy Switching

active
thread

13

Lazy Switching

active
thread

14

Lazy Switching

<>/—\ code

thread# espO

active
thread

15

IPC Revisited

A - B: SendAndWaitForReply in user-mode
call IPC function, i.e. push A’s instruction pointer
if B is valid thread id and thread B waits for thread A

set A’s status to “wait for B”
set B’s status to “run” \
load B’s stack pointer K I D t
current thread := B e rne a a ?
return, i.e. pop B's instruction pointer

else
more complicated IPC handling

endif

then
save A's stack pointer\ Ato m iCity?

o © 2009 Universitat Karlsruhe, System Architecture Group

16

Atomicity

A - B: SendAndWaitForReply in user-mode
call IPC function, i.e. push A’s instruction pointer
save A’s stack pointer
— restart point —
if B is valid thread id and thread B waits for thread A
then
— forward point —
set A’s status to “wait for B”
set B's status to “run”
load B’s stack pointer
current thread := B
— completion point —
return, i.e. pop B's instruction pointer
else
more complicated IPC handling
endif

o © 2009 Universitat Karlsruhe, System Architecture Group

>

17

Atomicity (2)

Interruption between forward point and completion
point:
if is page fault
then kill thread A
else
set A’s status to “wait for B”
set B’s status to “run”
load B’s stack pointer
current thread := B
set interrupted instruction pointer to completion point
endif

D © 2009 Universitét Karlsruhe, System Architecture Group

18

D Kernel Data

A's TCB:
stack pointer
status

B's TCB:
stack pointer
status

current thread

= Stack pointer
= Can be user accessible

n Status

= User-level effects
= Local to A’s task can be ignored
= Indirect effects on other tasks can
be ignored
= System-level effects
=« Must be avoided
= Validate values or
=« Maintain twin variable in kernel

19

UTCB — KTCB

UTCB

thread#

KTCB
KTCB
KTCB

20

UTCB — KTCB

partner
SP

21

Current_thread Inconsistency

if CurrentUTCB is valid UTCB

then
NewKTCB := CurrentUTCB.ktcb
if NewKTCB is valid KTCB and

NewKTCB.space = CurrentKTCB.space and
NewKTCB.utcb = CurrentUTCB

then
update kernel state
CurrentKTCB := NewKTCB
return
endif
endif
kill thread(CurrentKTCB)

D © 2009 Universitét Karlsruhe, System Architecture Group

22

K
T
C
B

Kernel State Fixup—A - B

A’s USP

wait for B

current thread

B’s KTCB

A’'s new
exception
frame

|

o esp0 |- 3

23

LIPC Chains

WO -AC

current thread

O -ARXR

RUNNING

WAITING WAITING

WAITING

.
.
.....
...........

o © 2009 Universitat Karlsruhe, System Architecture Group

.................................... espo

24

What About Priorities?

prio=3
but kprio=2

prio=2

kprio:=3

25

[Safety & Security

= Threads can only destroy their own
task.

Possible even without lazy switching.

= Threads can only cheat about their
identity within their own task.

Possible even without lazy switching.

= Threads cannot modify their effective
priority, uid, etc.

26

2004

1501

100+

50-

Pentlll P3 Sysops

D © 2009 Universitat Karlsruhe, System Architecture Group

[12 |
P3 Lipc

[cycles]

140+
1201
100+

80

60

Pentium

R4600

IPC Performance Promise — May 2001

0.02 pus (P IIT 500 MHz)

0.47 ps (P Il 500 MHz)

0.36 pus (P III 500 MHz)

0.73 us (Pentium 166 MHz)

0.91 ps (R4600 100 MHz)

0.10 ps (21164 433 MHz)

27

IPC Performance — Prototype

s LIPC: 23 cycles
= 1/15% of regular IPC (no sysops, no fastpath)

s Overhead on IPC due to LIPC extensions
= 43 cycles intra-AS IPC
= 146 cycles inter-AS IPC

= UTCB synchronization P3 inter-AS IPC was only
180 cycles w/o LIPC support!

= Overhead due to kernel fixup
. 777

Too much for real-world
systems:

28

D Limitations of LIPC

= Intra address space only

= Register-only IPC, no map/grant/string
= Always send and receive phase

= Infinite receive timeout

M TFICky
= Change from Wait_for_X to Wait_for_Any

29

