µ-Kernel Construction (9)

Local IPC Optimization for Multi-Threaded Applications

Thread A Monitor Thread B

Load Distribution via IPC

Server Client A Client B Distributor W₁ W₂

Load Distribution via IPC

- Would achieve required speed
- But ...
 - Not known to the kernel
 - Execute in a single thread's context
 - Making them kernel-schedulable does not pay
 - Two concepts inelegant, contradicts minimality
- We want ...
 - Kernel-level threads
 - The speed of user-level threads

- Assume IPC $t_1^{} \rightarrow t_2^{}$, same address space
- Let t₁ execute t₂-code
- Postpone real switch **until the kernel is activated**
- Pays if multiple lazy switches occur before first kernel activation, e.g.:
 - $t_1 \rightarrow t_2$, work, $t_2 \rightarrow t_1$
 - Costs 0 kernel-level IPC
 - client \rightarrow t₁ \rightarrow t₂ \rightarrow client
 - Costs 2 kernel-level IPCs

 t_2

t₁

Strict Switching

 $A \rightarrow B$: SendAndWaitForReply in user-mode call IPC function, i.e. push A's instruction pointer if B is valid thread id **and** thread B waits for thread A then

> save A's stack pointer set A's status to "wait for B" set B's status to "run" load B's stack pointer current thread := B return, i.e. pop B's instruction pointer

Atomicity? Kernel Data?

else

more complicated IPC handling endif

Atomicity

$A \rightarrow B$: SendAndWaitForReply in user-mode call IPC function, i.e. push A's instruction pointer save A's stack pointer

- restart point -

if B is valid thread id **and** thread B waits for thread A **then**

- forward point -

set A's status to "wait for B"
set B's status to "run"
load B's stack pointer
current thread := B
- completion point return, i.e. pop B's instruction pointer

else

more complicated IPC handling

endif

Interruption between forward point and completion point:

if is page fault **then** kill thread A

else

set A's status to "wait for B"
set B's status to "run"
load B's stack pointer
current thread := B
set interrupted instruction pointer to completion point
endif

A's TCB: stack pointer status

B's TCB: stack pointer status

current thread

Stack pointer

Can be user accessible

Status

- User-level effects
 - Local to A's task can be ignored
 - Indirect effects on other tasks can be ignored
- System-level effects
 - Must be avoided
 - Validate values or
 - Maintain twin variable in kernel

Current_thread Inconsistency

if CurrentUTCB is valid UTCB then

NewKTCB := CurrentUTCB.ktcb

if NewKTCB is valid KTCB and NewKTCB.space = CurrentKTCB.space and NewKTCB.utcb = CurrentUTCB

then

update kernel state

CurrentKTCB := NewKTCB

return

endif

endif

kill thread(CurrentKTCB)

IPC Performance – Prototype

LIPC: 23 cycles

1/15th of regular IPC (no sysops, no fastpath)

Overhead on IPC due to LIPC extensions

- 43 cycles intra-AS IPC
- 146 cycles inter-AS IPC
 - UTCB synchronization

Too much for real-world systems: P3 inter-AS IPC was only 180 cycles w/o LIPC support!

Overhead due to kernel fixup
 ???

- Register-only IPC, no map/grant/string
- Always send and receive phase
- Infinite receive timeout

Tricky

Change from Wait_for_X to Wait_for_Any