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Optimization for Multi-Threaded 
Applications
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� IPC operations are within same address space
� IPC operations have both blocking send and
receive phases

Introduce special Local IPCIntroduce special Local IPC
� Restrictions

� Same address space
� Must have both blocking send and receive phase

� Can execute entirely at user-level
� LIPC executes in ~20 cycles!~20 cycles!

LIPC
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User-Level Threads?

� Would achieve required speed

� But …
� Not known to the kernel

� Execute in a single thread’s context

� Making them kernel-schedulable does not pay

� Two concepts – inelegant, contradicts minimality

� We want …
� Kernel-level threads

� The speed of user-level threads
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� Assume IPC t1 → t2 , same address space

� Let t1 execute t2-code

� Postpone real switch until the kernel is activated

� Pays if multiple lazy switches occur before first kernel 
activation, e.g.:

� t1 → t2 , work, t2 → t1

� Costs 0 kernel-level IPC

� client → t1 → t2 → client

� Costs 2 kernel-level IPCs

client t1 t2

Basic Idea

t1 t2
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IPC Revisited

A → B: SendAndWaitForReply in user-mode

call IPC function, i.e. push A’s instruction pointer

if B is valid thread id and thread B waits for thread A

then

save A’s stack pointer

set A’s status to “wait for B”

set B’s status to “run”

load B’s stack pointer

current thread := B

return, i.e. pop B’s instruction pointer

else

more complicated IPC handling

endif

Atomicity?

Kernel Data?
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Atomicity

A → B: SendAndWaitForReply in user-mode

call IPC function, i.e. push A’s instruction pointer

save A’s stack pointer

– restart point –

if B is valid thread id and thread B waits for thread A

then

– forward point –

set A’s status to “wait for B”

set B’s status to “run”

load B’s stack pointer

current thread := B

– completion point –

return, i.e. pop B’s instruction pointer

else

more complicated IPC handling

endif
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Atomicity (2)

Interruption between forward point and completion 
point:

if is page fault

then kill thread A

else

set A’s status to “wait for B”

set B’s status to “run”

load B’s stack pointer

current thread := B

set interrupted instruction pointer to completion point

endif



© 2009 Universität Karlsruhe, System Architecture Group 19

Kernel Data

� Stack pointer
� Can be user accessible

� Status
� User-level effects

� Local to A’s task can be ignored

� Indirect effects on other tasks can 
be ignored

� System-level effects
� Must be avoided

� Validate values or

� Maintain twin variable in kernel

A’s TCB:
stack pointer
status

B’s TCB:
stack pointer
status

current thread
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UTCB – KTCB

KTCB
KTCB

thread# ksp

KTCB
KTCB

UTCB
UTCB

twins
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UTCB – KTCB

KTCBUTCB

myself
state

partner
SP

prio
coprc

myself
state
prio
coprc
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Current_thread Inconsistency

if CurrentUTCB is valid UTCB

then

NewKTCB := CurrentUTCB.ktcb

if NewKTCB is valid KTCB and

NewKTCB.space = CurrentKTCB.space and
NewKTCB.utcb = CurrentUTCB

then

update kernel state

CurrentKTCB := NewKTCB

return

endif

endif

kill thread(CurrentKTCB)
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B’s USP
B’s UIP

WAITING RUNNING

Kernel State Fixup – A → B

A esp0

RUNNING

B’s KTCB

WAITING

B’s old 
exception 
frame

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

B’s USP
B’s UIP

copy

!=

A’s new 
exception 
frame
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LIPC Chains
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What About Priorities?

prio=2

prio=3
but kprio=2

kernel

kprio:=3
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Safety & Security

� Threads can only destroy their own
task.

� Possible even without lazy switching.

� Threads can only cheat about their 
identity within their own task.

� Possible even without lazy switching.

� Threads cannot modify their effective 
priority, uid, etc.
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IPC Performance Promise – May 2001
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IPC Performance – Prototype

� LIPC: 23 cycles

� 1/15th of regular IPC (no sysops, no fastpath)

� Overhead on IPC due to LIPC extensions

� 43 cycles intra-AS IPC

� 146 cycles inter-AS IPC

� UTCB synchronization

� Overhead due to kernel fixup

� ???

Too much for real-world 
systems:

P3 inter-AS IPC was only
180 cycles w/o LIPC support!
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Limitations of LIPC

� Intra address space only

� Register-only IPC, no map/grant/string

� Always send and receive phase

� Infinite receive timeout

� Tricky

� Change from Wait_for_X to Wait_for_Any


