u-Kernel Construction (6)

Dispatching

Dispatching Topics

= Thread switch

= T0 a specific thread

« T0 next thread to be scheduled
To nil
Implicitly, when IPC blocks

= Priorities

= Preemption
= Time slices
= Wakeups, interruptions

= Timeouts and wakeups
= [Ime

D © 2009 Universitét Karlsruhe, System Architecture Group

Switch to () = Smaller stack per thread

= Dispatcher is preemptible
= Clean” model
= Improved interrupt latency

A if dispatching is time
_ consuming
‘ Dispatcher Thread
switch to (dispatcher) >
select next
ready thread,
assume B

A

switch to (B)

Thread B

D © 2009 Universitét Karlsruhe, System Architecture Group

= Dispatcher thread is special

- = No user mode
SWItCh to () = No own AS, hence no AS switch

required

= No ID required

=« Freedom from TCB layout
conventions

= Almost stateless (see priorities)

save live registers and IP on stack ;
tcb[A].sp := SP ;

SP := dispatcher stack bottom ;
“return” to dispatcher .

A
_ = No need to preserve internal
‘ Dispatcher Thread state between invocations
switch to (dispatcher) ‘ : External state must be
g consistent
select next
ready thread,
assume B = costs (A — B)
« ~ costs (A — disp — B)
switch to (B) » costs (select next)
= costs (A — disp — A) are low
Thread B
if B# A then
switch from AS(A) to AS(B)
fi;
SP := tcb[B].sp ;

\ 1/4 B .
_ return” to 4

D © 2009 Universitét Karlsruhe, System Architecture Group

Example: Simple Dispatch

= Enter the kernel, save some user state in HW

= Save remaining user state

= Optionally do some work

Nave live registers (required when resuming) and return address
=\ ShESP in TCB

L '~ 'atcher stack

= Jump te dispa de

= Select\we read™td

sp

n

eip| live reg}‘ Ioca eip eax..ebp X eip cs flgesp ss

o © 2009 Universitat Karlsruhe, System Architecture Group

Example: Simple Dispatch (cont'd)

= Dispatcher selected next thread to run (B)
= Switch to B’s stack
sp ~“Return” to B

turn address from stack
“REStALE ' 2 registers

Swjtch ’e aud '~:
Load\user ragister contents
Drop eXxception™epde X

w: ” \

et Pop ainihgh\data

eip Iive%klocal ity eip eax ... ebp [x eip cs flgesp ss

AN
eip | live regs Ioca%@ eip eax..ebp X eip cs flgesp ss

o © 2009 Universitat Karlsruhe, System Architecture Group

Example: Simple Dispatch (cont'd)

= Stack layout depends on cause of prior thread switch
= Timer vs. device IRQ, IPC send vs. recv, yield(), ...

eip | live regs |local state Sl o e ilsf= oS

eip eax ...ebp X eip cs flgesp ss

live regs [ole:|BS = I(cHMl €ip eax ... ebp | X eip cs flgesp ss

[RRIVEREs[SRlole= IS :s) eip eax ... ebp | X eip cs flgesp ss

ip | live regs |local state s i=EY G =ls] ol [T o o HR i (s NI 0 TS

local state

o © 2009 Universitat Karlsruhe, System Architecture Group

Example: Dispatch with " Tick’

= Dispatcher interrupted by timer IRQ

= Detect and resume
Data structures (ready queues) might have changed!

Arow~away dispatcher state and restart

Iive%ge\local Jrels] eip eax ... ebp [X eip cs flgesp ss

L\ N\ - ~N
eip \l'Q/e regs Iocaﬁa@ eip eax..ebp X eip cs flgesp ss

[ole:|BS =10 eip eax ... ebp [X |eip cs flgesp ss local state ~

Example: Dispatch

= Determine handler

Throws away dispa

with Device IRQ

= Dispatcher interrupted by device IRQ

thread (B)

Switch to B (assuming high priority)

tcher state

live %ge\

[ole=1MS=1(c] eip eax ... ebp X |eip cs flgesp ss

N

'\l'Q/e regs

Iocaﬁa@ eip eax..ebp X eip cs flgesp ss

(o=l eip eax ... ebp [X

eip cs flgesp ss local state

Switch to () = Dispatcher thread is also
Idle thread

A

Dispatcher Thread

‘ switch to (dispatcher)

[
»

select next
ready thread,
assume B

A

switch to (B)

Thread B

° © 2009 Universitat Karlsruhe, System Architecture Group 1 0

Priorities

= 0 (lowest) ... 255
= Hard priorities
= Dynamically changeable
= Round robin per priority
do
p:=255;
do

until p<0od;
idle
od .

if current,; = nil then
B := currenty, ;
return

fi;

p-=1

D © 2009 Universitét Karlsruhe, System Architecture Group

= Ready TCB list per
priority
= Current TCB' per list

11

Priorities

= Optimizations
= Remember highest active priority
= Bitmask

do
it current;ygnest active p # Nil then
B:= Current[highest active p] /
return
elif highest active p > 0 then
highest active p -=1
else
idle
fi
od .

[N
_

12

o © 2009 Universitat Karlsruhe, System Architecture Group

Optimization: Priorities

= Bitmap
= Set bit on insertion
= Clear when group empty

s [A-32: BSR
= Bl T SCAN REVERSE

= 2 cycles

13

Priorities, Preemption

highest active p :=
max (new p, highest active p) .

<:D p=110

intr/wakeup

do
|f Current[highest active p] * n|| then Prio 110

B:= Current[highest active p] /
return

elif highest active p > 0 then
highest active p -=

else
idle

fi

od .

Prio 100

[N
_

14

o © 2009 Universitat Karlsruhe, System Architecture Group

Priorities, Preemption

= What happens when a priority falls empty?

do

if currentygnest active py = Nil then
round robin if necessary ;
B:= Current[highest active p] 7
return

elif highest active p > 0 then
highest active p -=

else Prio 110
Id Ie Remaining
. e i
fl ‘ tln;eos_.l)ce ‘
Od | L)

round robin if necessary:
if currenty,; . ,;.rem ts = 0 then
currenty, ;. p-rem ts 1= new ts ;
currenty, ,c o7 1= currenty o pj-Next ;
fi .

[N
_

15

o © 2009 Universitat Karlsruhe, System Architecture Group

Priorities, Preemption

= What happens when a priority falls empty?

do

if Current[highest active p] # nil then
round robin if necessary ;
B:= c:urrem:[highest active p]
return

elif highest active p > 0 then
highest active p -= ‘

e|Se Prio 110
idle

) Remaining
fI Prio 100

time slice
od .

y

round robin if necessary:
if currenty,; . ,;.rem ts = 0 then
currenty, ;. p-rem ts 1= new ts ;

currenty, ,c o7 1= currenty o pj-Next ;
fi .

[N
_

o © 2009 Universitat Karlsruhe, System Architecture Group 1 6

Preemption

= Preemption, time slice exhausted

° © 2009 Universitat Karlsruhe, System Architecture Group

Preemption

= Preemption, time slice exhausted

° © 2009 Universitat Karlsruhe, System Architecture Group

Lazy Dispatching

Thread state toggles frequently (per IPC)

n ready < waiting
= Delete/insert ready list is expensive
= Therefore: delete /azily from ready list

19

Lazy Dispatching

Thread state toggles frequently (per IPC)

n ready < waiting
= Delete/insert ready list is expensive
= Therefore: delete /azily from ready list

ready » waiting| »| ready

itdt Karlsruhe, System Architecture Group 20

Lazy Dispatching

Thread state toggles frequently (per IPC)

n ready < waiting
= Delete/insert ready list is expensive
= Therefore: delete /azily from ready list

ready » waiting| » ready

itdt Karlsruhe, System Architecture Group 2 1

Lazy Dispatching

Thread state toggles frequently (per IPC)

n ready < waiting
= Delete/insert ready list is expensive
= Therefore: delete /azily from ready list

ready » waiting| » ready

itat Karlsruhe, System Architecture Grou 2 2

Lazy Dispatching

Thread state toggles frequently (per IPC)

n ready < waiting
= Delete/insert ready list is expensive
= Therefore: delete /azily from ready list

= Whenever reaching a non-ready thread
= Delete it from list
= Proceed with next

Prio 100

Prio 50

o © 2009 Universitat Karlsruhe, System Architecture Group 23

do

round robin if necessary ;

it current;gnect active p # Nil then
B 1= currentygnest active py ; FELUIN (pe IPC)

elif highest active p > 0 then
highest active p -=1

else .

Sive

idle _

fi ady list

od . / thread

round robin if necessary:

while currenty,; . ;,; # nil do
next := Current[hi act p]-neXt ’ /__

if currenty, .. pj-State # ready then

delete from list (currenty,; ¢t ;) ready " ready
elif currenty; . ,;.rem ts = 0 then
currentyy o pj-rem ts 1= new ts
else
return
fi; >
currenty o o) 1= Next

od . I

D © 2009 Universitat Karlsruhe, System Architecture Group

Timeouts & Wakeups

= Operations

—u Insert timeout
= Ralse timeout
» Find next timeout
« Delete timeout __

\ 4 \ 4 hy >
timeout set completion, timeout expired t
no timeout

» Raised-timeout costs are uncritical
(occur only after timeout exp time).

s Most timeouts are never raised!

o © 2009 Universitat Karlsruhe, System Architecture Group

25

Timeouts & Wakeups

too expensive

s Idea 1: unsorted list

s Insert timeout costs

= Prepend entry 20..100 cycles

s Find next timeout costs

= Parse entire list n x 10..50 cycles
s Raise timeout costs

« Delete timeout costs
= Delete known entry 20..100 cycles

26

Timeouts & Wakeups

s Idea 2: sorted list

s Insert timeout costs

=« Search + insert

s Find next timeout costs
=« Check head

s Ralse timeout costs
s Delete timeout costs

= Delete known entry

too expensive

nf2 x 10..50 + 20..100 cycles

10 cycles

20..100 cycles

27

Timeouts & Wakeups

too expensive
too complicated

= Idea 3: sorted tre

s Insert timeout costs
= Search + insert log 7 x 10..50 + 20..100 cycles

» Find next timeout costs
= Find min node / root log n7x 10..50 / 10 cycles

s Raise timeout costs

s Delete timeout costs

« Delete known node log nx 10..50 + 20..100/
log nx 20..100

28

Wakeup Classes

Nnow

insert timeout (now + A)

late > |

soon

= % |

list

o © 2009 Universitat Karlsruhe, System Architecture Group 29

Nnow

soon

Wakeup Classes

late

soon
list

late
list

o © 2009 Universitat Karlsruhe, System Architecture Group

v

30

Nnow

soon

Wakeup Classes

late >

late
list

o © 2009 Universitat Karlsruhe, System Architecture Group

/ate list contains soon entries
= late correction phase required

v

31

Wakeup Classes

NOowW

b =
o 1Aarg
dio 1o

late
list

o © 2009 Universitat Karlsruhe, System Architecture Group

/ate late list contains soon and /ate entries
= late late correction phase required

= Also move /ate late entries to /ate list
= Postpone further late late correction phases

v

32

Nnow

ﬁOOn

Wakeup Classes

late >

A 4

]» = S := max #entries (length of soon list)

late
list

o © 2009 Universitat Karlsruhe, System Architecture Group

= S > #timeouts to be raised in 1., + new soon timeouts

—> s issmallif 1, is short enough

[
>

Timeouts & Wakeups

= Idea 4: unsorted wakeup classes

s Insert timeout costs

= Select class + prepend

s Find next timeout costs

« Search soon class

s Ralse timeout costs
s Delete timeout costs

= Delete known entry

Raised-timeout costs are uncritical
(occur only after timeout exp time).

Most timeouts are never raised!

D © 2009 un

iversitat Karlsruhe, System Architecture Group

10 + 20..100 cycles

S

s x 10..50 cycles

20..100 cycles

still
too expensive

34

Lazy Timeouts

insert (t,)

late

o © 2009 Universitat Karlsruhe, System Architecture Group

v

35

Lazy Timeouts

delete timeout

late

o © 2009 Universitat Karlsruhe, System Architecture Group

v

36

Lazy Timeouts

insert (t,)

late

o © 2009 Universitat Karlsruhe, System Architecture Group

37

