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IPC Implementation



IPC Importance
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General IPC Algorithm

 Validate parameters
 Locate target thread

 Return error if unavailable

 Transfer message
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 Transfer message
 Untyped items (short IPC)
 Typed items (long IPC)

 Schedule target thread
 Switch address space as necessary

 Wait for IPC (reply/next request)



IPC Implementation
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Short IPC



Short IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f
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 Analyze message and transfer
 Short IPC  no action required

 Switch to dest thread & address space
 System-call post

The critical path



Short IPC (uniprocessor)  “call”“call”

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii
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 Analyze message and transfer
 Short IPC  no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningwait to receive



Short IPC (uniprocessor)  “send” “send” (eagerly)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii

7© 2009 Universität Karlsruhe, System Architecture Group

 Analyze message and transfer
 Short IPC  no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningrunning



Short IPC (uniprocessor)  “send” “send” (lazily)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii
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 Analyze message and transfer
 Short IPC  no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningrunning
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IPC via sysenter/sysexit

 Real register use
 EAX: dest. TID  sender TID
 ECX: timeouts  user IP (sysexit)

EDX i TID  SP ( it)

16© 2009 Universität Karlsruhe, System Architecture Group

 EDX: receive TID  user SP (sysexit)
 EBX: (scratch)  MR1

 EBP: (scratch)  MR2

 ESI: MR0 [only unchanged register]
 EDI: UTCB(sender)  UTCB(receiver)



Implementation Goal

 Most frequent kernel op: Short IPC
 Thousands of invocations per second

 Performance is critical
 Structure IPC for speed
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 Structure entire kernel to support fast IPC
 What affects performance?

 Cache line misses
 TLB misses
 Memory references
 Pipe stalls and flushes
 Instruction scheduling



Fast Path

 Optimize for common cases
 Write in assembler
 Non-critical paths written in C++

 But still fast as possible

18© 2009 Universität Karlsruhe, System Architecture Group

 Avoid high-level language overhead
 Function call state preservation
 Incompatible code optimizations

 We want every cycle possible!
 At least sometimes …



IPC Requirements for Fast Path

 Untyped message
 Single runnable thread after IPC

 Must be valid call-like IPC
 Send phase
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p
 Target is already waiting

 Receive phase
 Sender is not ready to couple, causing us to block

 Switch threads, originator blocks

 No receive timeout
 Send timeout can be ignored: receiver is waiting
 Xfer timeouts do not apply for untyped messages



Memory is Forbidden

 Memory references are slow
 Avoid in IPC

 E.g., use lazy scheduling

 Avoid in common case
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 E.g., (xfer) timeouts

 Microkernel should minimize artifacts
 Cache pollution
 TLB pollution 
 Memory bus



Optimized Memory

stack

Also hard-wire TLB 
entries for kernel code 

and data.

21© 2009 Universität Karlsruhe, System Architecture Group

thread ID
cpu ID
&UTCB

thread state
TCB state, 
grouped by 
cache lines

Single TLB entry



TLB Problem with Eager Scheduling

stack stack stack stack

Walking/modifying
a linked list has
a TLB footprint.
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virtual TCB 
area

virtual
addresses



Lazy Scheduling

 Do not update the scheduling lists
 Blocked sender remains in ready list

 Check real thread state when dispatching
 May be released before being scheduled

23© 2009 Universität Karlsruhe, System Architecture Group

 May be released before being scheduled
 avoids list manipulations

 Unblocked receiver not added to ready list
 Appended to ready list at end of timeslice
 May block before
 avoids list manipulations



Avoid Table Lookups

thread nothread ID version

virtual TCB area
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TCB = TCB_area + 
((thread_no >> x) &
TCB_size_mask)



Validate Thread ID

thread nothread ID version

virtual TCB area
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Are the thread IDs equal?



Branch Elimination

slow = ~receiver->thread_state |
((timeouts ^ 0x400) & 0xffff) |
sender->resources |
receiver->resources;

Common case:
-1 (waiting)

Required (common) case:
0x0400

(infinite recv timeout)
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if (0 != slow)
enter_slow_path()

Common case:
0 (no resources in use)

 Reduces branch prediction foot print
 Avoids mispredictions, stalls, and flushes
 Slightly increases latency for slow path



TCB Resources

 One bit per resource
 Fast path checks entire word

 If not 0, jump to resource 
handlers1 1

Resources bitfield
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Debug registers

Copy area



Slow and Fast

user mode

IPC wait via
slow path

user mode

IPC send via
fast path
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IPC wait via
fast path

user mode

user mode

IPC send via
fast path



Consistent State

 Cooperative thread scheduling in kernel
 TCB in consistent state for IPC wait

 IPC restores user mode context
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Problem?

 Avoids cycles for restoring kernel context
 Fast path can activate slow path TCB

Can’t use fast path for kernel threads.

How often do kernel threads use IPC?

How to efficiently detect kernel threads?

 Use resource bit!



Short IPC Performance (1)

IBM PowerPC 750,
500 MHz,
32 registers
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up to 10
physical
registers

virtual register
copy loop

Many cycles 
wasted on pipe 
flushes for 
privileged 
instructions.



Short IPC Performance (2)

AMD Opteron 242,

1.6 GHz
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IPC Implementation
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Long IPC



Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map: 

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)
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 – transfer message –

 Switch to dest thread & address space
 System-call post



Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map: 

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)
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 Lock both partners

 – transfer message –

 Unlock both partners
 Switch to dest thread & address space
 System-call post



Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map: 

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)
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 Lock both partners
 Enable IRQs
 – transfer message –
 Disable IRQs
 Unlock both partners

 Switch to dest thread & address space
 System-call post



Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map:

waitrunning
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 Lock both partners
 Enable IRQs
 – transfer message –
 Disable IRQs
 Unlock both partners

 Switch to dest thread & address space
 System-call post

runningwait to receive

lockedlocked waitlockedlocked running



String IPC / memcpy

 Why?
 Trust
 Granularity
 Synchronous 

(“atomic”) transfer
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( )



Copy In – Copy Out

 Copy into kernel buffer
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Copy In – Copy Out

 Copy into kernel buffer
 Switch spaces
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Copy In – Copy Out

 Copy into kernel buffer
 Switch spaces
 Copy out of kernel buffer
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 Costs for n words

 22n r/w operations

 3n/8  cache lines
 1n/8 cache misses (small n)

 4n/8 cache misses (large n)



Temporary Mapping
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Temporary Mapping

 Select dest area (2x4 MB)
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Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)
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Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)
 Copy data
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Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)
 Copy data
 Switch to dest space
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 Switch to dest space



Temporary Mapping

 Copy page directory entry 
(PDE) from dest
 Addresses in temporary 

mapping area are resolved 
using dest’s page table
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Temporary Mapping

 Problems
 Multiple threads per AS
 Mappings might change while 

message is copied
 How long to keep PTE?

What about TLB?
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current AS

 What about TLB?



Temporary Mapping

 When switching threads 
during IPC
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current AS



Temporary Mapping

 When switching threads 
during IPC
 Invalidate PTE
 Flush TLB
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current AS



Temporary Mapping

 When returning to a thread 
during IPC
 Raises pagefault on copy area
 (Re)copy PDE from receiver
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current AS



Temporary Mapping

Reestablishing temp mapping
requires storing

partner id and dest area address
in the sender’s TCB.

Note: Receiver’s page mappings
might have changed!
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current AS



Temporary Mapping

Leave thread:
if mytcb.waddr  nil then

myPDE.TMarea := nil ;
if dest AS = my AS then

flush TLB ;
fi

Start temp mapping:
mytcb.partner := partner ;
mytcb.waddr := dest 8M area base ;
myPDE.TMarea  := destPDE.destarea .
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why?

current AS

fi
fi .

Close temp mapping:
mytcb.waddr := nil ;
myPDE.TMarea := nil .Optimization only:

Avoids second TLB flush if subsequent
thread switch would flush the

TLB anyway.



Temporary Mapping

Leave thread:
if mytcb.waddr  nil then

myPDE.TMarea := nil ;
flush TLB ;
TLB flushed := true

fi .

 Alternative method:

Requires separation of
TLB flush

and
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current AS

fi .

Thread switch :
…
if TLB just flushed

then TLB flushed := false
else flush TLB

fi ;
PT root := ...

and
load PT root

!

Does therefore not work
reasonably on x86.

Load PT root implicitly
includes TLB flush on x86.



Temporary Mapping

 Page Fault 
Resolution:
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current AS



Temporary Mapping

 Page Fault 
Resolution:
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current AS



Temporary Mapping

 Page Fault 
Resolution:
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current AS



Temporary Mapping
TM area PF:

if myPDE.TMarea = destPDE.destarea then
tunnel to (partner) ;
access dest area ;
tunnel to (my)

fi ;

 Page Fault 
Resolution:
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current AS

myPDE.TMarea := destPDE.destarea .



Temporary Mapping

 SMP
CPU1
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Temporary Mapping

 SMP
 TM area per processor CPU1

CPU2
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Temporary Mapping

 SMP
 TM area per processor
 Page table per processor

CPU1
CPU2
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P1 ASCPU1 AS
CPU2 AS



Cost Estimates for Copying n Words

R/W operations

Cache lines

Copy in - copy out Temporary mapping

2  2n 2n

3  n/8 2  n/8
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(assuming 8 words/cache line)

Small n overhead cache misses

Large n cache misses

Overhead TLB misses

Startup instructions

n/8 0

5  n/8 3  n/8

2 n / (words per page)

0 50



486 IPC Cost

 Mach: Copy in/out

 L4: Temp. mapping 300

400

Mach[µs]
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