LU-Kernel Construction (5)

IPC Implementation

IPC Importance

o © 2009 Universitat Karlsruhe, System Architecture Group

General IPC Algorithm

= Validate parameters

= Locate target thread
= Return error if unavailable

= [ransfer message
= Untyped items (short IPC)
= Typed items (long IPC)

= Schedule target thread
= Switch address space as necessary

= Walt for IPC (reply/next request)

IPC Implementation

Short IPC

Short IPC (uniprocessor)

+ System-call pre (disable IRQSs)

» ldentify dest thread and check

Same chief / no IPC redirection?
Ready-to-receive?

« Analyze message and transfer
Short IPC =» no action required

« Switch to dest thread & address space
» System-call post

o © 2009 Universitat Karlsruhe, System Architecture Grou

Short IPC (uniprocessor) “call”

= System-call pre (disable IRQs)

» ldentify dest thread and check

Same chief / no IPC redirection?
Ready-to-receive?

* = Analyze message and transfer
Short IPC =» no action required
= Switch to dest thread & address space é
_ = System-call post

o © 2009 Universitat Karlsruhe, System Architecture Grou

Short IPC (uniprocessor) “send” (eagerly)

= System-call pre (disable IRQs)

» ldentify dest thread and check

Same chief / no IPC redirection?
Ready-to-receive?

* = Analyze message and transfer
Short IPC =» no action required
= Switch to dest thread & address space é
_ = System-call post

o © 2009 Universitat Karlsruhe, System Architecture Grou

Short IPC (uniprocessor) “send” (lazily)

= System-call pre (disable IRQs)

» ldentify dest thread and check

Same chief / no IPC redirection?
Ready-to-receive?

= Analyze message and transfer
Short IPC =» no action required

= Switch to dest thread & address space

» System-call post

o © 2009 Universitat Karlsruhe, System Architecture Group

Kernel Stacks
and TCBs

%ESPO

Kernel
memory

o © 2009 Universitat Karlsruhe, System Architecture Group

IPC

EFLAGS
| —
EIP
CS ES
&8 FS
DS GS

10

o © 2009 Universitat Karlsruhe, System Architecture Group

ESP

EFLAGS

| 0 |
EIP
CS ES
&8 FS
DS GS

11

o © 2009 Universitat Karlsruhe, System Architecture Group

ESP

EFLAGS

| 0 |
EIP
CS ES
&8 FS
DS GS

12

EFLAGS
| —
EIP
CS ES
&8 FS
DS GS

o © 2009 Universitat Karlsruhe, System Architecture Group

IPC

o © 2009 Universitat Karlsruhe, System Architecture Group

EBP
ESP
EFLAGS
‘|
EIP
CS ES
&8 FS
DS GS

14

IPC

o © 2009 Universitat Karlsruhe, System Architecture Group

EFLAGS

EIP

15

IPC via sysenter/sysexit

= Real register use

EAX: dest. TID = sender TID

ECX: timeouts = user IP (sysexit)
EDX: receive TID = user SP (sysexit)
EBX: (scratch) = MR,

EBP: (scratch) = MR,

ESI: MR, [only unchanged register]
EDI: UTCB(sender) = UTCB(receiver)

16

Implementation Goal

= Most frequent kernel op: Short IPC
= Thousands of invocations per second

= Performance Is critical
= Structure IPC for speed
= Structure entire kernel to support fast IPC

= What affects performance?
= Cache line misses
= TLB misses
= Memory references
= Pipe stalls and flushes
= Instruction scheduling

Fast Path

= Optimize for common cases
= Write in assembler

= Non-critical paths written in C++
= But still fast as possible

= Avoid high-level language overhead
= Function call state preservation
= Incompatible code optimizations

= We want every cycle possible!
= At least sometimes ...

D © 2009 Universitat Karlsruhe, System Architecture Group

18

IPC Requirements for Fast Path

= Untyped message

= Single runnable thread after IPC

= Must be valid call-like IPC

= Send phase
Target is already waiting

= Receive phase
Sender is not ready to couple, causing us to block

= Switch threads, originator blocks

= NoO receive timeout
= Send timeout can be ignored: receiver is waiting
= Xfer timeouts do not apply for untyped messages

D © 2009 Universitat Karlsruhe, System Architecture Group

19

Memory Is Forbidden

= Memory references are slow

= Avoid in IPC
=« E.g., use lazy scheduling

= Avoid In common case
« E.g., (Xfer) timeouts

= Microkernel should minimize artifacts
= Cache pollution
= TLB pollution
= Memory bus

20

l stack

thread state
&UTCB

cpu ID
thread ID

o © 2009 Universitat Karlsruhe, System Architecture Group

Optimized Memory

TCB state,
~ grouped by
cache lines

Also hard-wire TLB
entries for kernel code

\ and data.

> Single TLB entry

21

lstack

7

lstack

|

lstack

_

lstack

7

TLB Problem with Eager Scheduling

virtual TCB
area

virtual
addresses

22

[B) Lazy Scheduling

= Do not update the scheduling lists

= Blocked sender remains in ready list
= Check real thread state when dispatching

« May be released before being scheduled
= avoids list manipulations

= Unblocked receiver not added to ready list
=« Appended to ready list at end of timeslice

= May block before
= avoids list manipulations

© 2009 Universitat Karlsruhe, System Architecture Group

23

Avoid Table Lookups

thread ID

TCB= TCB_area +
((thread_no >>x) &
TCB_size_mask)

o © 2009 Universitat Karlsruhe, System Architecture Group

virtual TCB area

24

o © 2009 Universitat Karlsruhe, System Architecture Grou

Validate Thread ID

thread ID

Are the thread IDs equal?

virtual TCB area

25

Branch Elimination

slow = ~receiver->thread_stat |
((timeouts ™ 0x400) & Oxffff)
sender->resource |
receiver->resources;

if (O !'= slow)
enter_slow_path()

= Reduces branch prediction foot print
= Avoids mispredictions, stalls, and flushes
= Slightly increases latency for slow path

o © 2009 Universitat Karlsruhe, System Architecture Group

26

TCB Resources

Resources bitfield

o © 2009 Universitat Karlsruhe, System Architecture Group

Debug registers

One bit per resource

Fast path checks entire word

= If not O, jump to resource
handlers

27

Slow and Fast

IPC wait via ‘ IPC send via

slow path fast path

v v

IPC send via ' IPC wait via

fast path

fast path

o © 2009 Universitat Karlsruhe, System Architecture Group

28

Consistent State

= Cooperative thread scheduling in kernel

s 1CB In consistent state for IPC wait

= |PC restores user mode context
= Avoids cycles for restoring kernel context
« Fast path can activate slow path TCB

29

caa

cea

c4a

cza

f=ys s

iza

168

14a

128

laa

Short IPC Performance (1)

inter—address space IFC

up to 10
physical
registers

virtual register
copy loop

T
cyczles per IFC —— |
instructions per IFC

5]

16

o © 2009 Universitat Karlsruhe, System Architecture Group

za 2 40

message registers copied

SA

=15

IBM PowerPC 750,
500 MHz,
32 registers

30

Short IPC Performance (2)

450 .
inter C path ——
inter fast path ——
intra C path —%—
intra fast path —&—

488 -

358

3ea

cycles

258

288 - -

158 r .

1BB 1 1 1 1 1
a 18 28 38 48 58 68

nunber of nessage registers

o © 2009 Universitat Karlsruhe, System Architecture Group

AMD Opteron 242,
1.6 GHz

31

IPC Implementation

Long IPC

32

Long IPC (uniprocessor)

= System-call pre (disable IRQs)

= ldentify dest thread and check
Same chief / no IPC redirection?
Ready-to-receive?

= Analyze message and transfer

Long/map:

« — lransfer message —

= Switch to dest thread & address space
= System-call post

o © 2009 Universitat Karlsruhe, System Architecture Group

33

Long IPC (uniprocessor)

= System-call pre (disable IRQs)

= ldentify dest thread and check
Same chief / no IPC redirection?
Ready-to-receive?

= Analyze message and transfer
Long/map:
= Lock both partner

« — lransfer message —

= Unlock both partners
= Switch to dest thread & address space
= System-call post

o © 2009 Universitat Karlsruhe, System Architecture Group

Long IPC (uniprocessor)

= System-call pre (disable IRQs)

= ldentify dest thread and check
Same chief / no IPC redirection?
Ready-to-receive?

= Analyze message and transfer
Long/map:
= Lock both partner
= Enable IRQs
« — lransfer message —
= Disable IRQs

= Unlock both partners
= Switch to dest thread & address space
= System-call post

o © 2009 Universitat Karlsruhe, System Architecture Group

LOng IPC (uniprocessor)

= System-call pre (disable IRQs)

» ldentify dest thread and check
Same chief / no IPC redirection?
Ready-to-receive?

» Analyze message and transfer

Long/map:
= Lock both partners
= Enable IRQs
« — lransfer message —
= Disable IRQs

— = Unlock both partners
= Switch to dest thread & address space

wait

locked wait

running

= System-call post

o © 2009 Universitat Karlsruhe, System Architecture Group

M)

36

o © 2009 Universitat Karlsruhe, System Architecture Grou

String IPC / memcpy

= [rust
= Granularity

= Synchronous
(“atomic”) transfer

37

e
=
@)
>
@
@
@)
_
c
>
@
o
@)

= Copy into kernel buffer

38

o © 2009 Universitat Karlsruhe, System Architecture Group

.
.
.
.
.
.
.
.
A\
.
\J
.
.
.

e
=
@)
>
Q.
@
@)
_
-
>
@
@
@)

= Copy into kernel buffer

= Switch spaces

39

tat Karlsruhe, System Architecture Group

iversi

) © 2009 un

Copy In — Copy Out

= Copy into kernel buffer
= Switch spaces
= Copy out of kernel buffer

= Costs for n words

= 2x21n r/w operations

=« 3xn/8 cache lines
1xn/8 cache misses (small)
4xn/8 cache misses (large n)

D © 2009 Universitat Karlsruhe, System Architecture Group

40

Temporary Mapping

41

Temporary Mapping

= Select dest area (2x4 MB)

o © 2009 Universitat Karlsruhe, System Architecture Group

42

Temporary Mapping

= Select dest area (2x4 MB)
= Map into source AS (kernel)

o © 2009 Universitat Karlsruhe, System Architecture Group

L

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
b
i
i
i

43

Temporary Mapping

= Select dest area (2x4 MB)
= Map into source AS (kernel)
= Copy data

o © 2009 Universitat Karlsruhe, System Architecture Group

44

Temporary Mapping

Select dest area (2x4 MB)

Map into source AS (kernel)
Copy data
Switch to dest space

L

HEE
e
i

o © 2009 Universitat Karlsruhe, System Architecture Group

Temporary Mapping

= Copy page directory entry
(PDE) from dest
= Addresses in temporary

mapping area are resolved
using dest’s page fable

o © 2009 Universitat Karlsruhe, System Architecture Group

46

Temporary Mapping

= Problems
= Multiple threads per AS

= Mappings might change while
message Is copied

ng to keep PTE?
bout TLB?

current AS

o © 2009 Universitat Karlsruhe, System Architecture Group

Temporary Mapping

= When switching threads
during IPC

48

Temporary Mapping

= When switching threads
during IPC
= Invalidate PTE
= Flush TLB

o © 2009 Universitat Karlsruhe, System Architecture Group 49

o © 2009 Universitat Karlsruhe, System Architecture Grou

Temporary Mapping

= When returning to a thread
during IPC
= Raises pagefault on copy area
= (Re)copy PDE from receiver

current AS

50

Temporary Mapping

\
Reestablishing temp mapping

requires storing Note: Receiver’'s page mappings
partner id and dest area address might have changed!
in the sender’s TCB.
4

AN

o © 2009 Universitat Karlsruhe, System Architecture Group

current AS

51

Temporary Mapping

rt temp mapping: Leave thread:
mytcb.partner := partner ; if mytcb.waddr = n// then
mytcb.waddr := dest 8M area base ;

myPDE.TMarea := destPDE.destarea . 5= my AS then
flush TLB ;

Optimization only:
Avoids second TLB flush if subsequent
thread switch would flush the
TLB anyway.

D © 2009 Universitat Karlsruhe, System Architecture Group

» Alternative method:

Temporary Mapping

Leave thread:
If mytcb.waddr # n/ then

Requires separation of
TLB flush
and

load PT root
!

Does therefore not work
reasonably on x86.

Load PT root implicitly
includes TLB flush on x86.

myPDE.TMarea := n//;

flush TLB ;

TLB flushed := true
fi.

] Thread switch :

If TLB just flushed

5 then TLB flushed := false
else flush TLB

fi;

PT root := ...

N

current AS

D © 2009 Universitat Karlsruhe, System Architecture Group

53

Temporary Mapping

= Page Fault
Resolution:

—
R

current AS

o © 2009 Universitat Karlsruhe, System Architecture Group

54

o © 2009 Universitat Karlsruhe, System Architecture Grou

Temporary Mapping

Page Fault
Resolution:

—

R

current AS

55

Temporary Mapping

= Page Fault
Resolution:

\?

\-

o © 2009 Universitat Karlsruhe, System Architecture Group

56

AN

o © 2009 Universitat Karlsruhe, System Architecture Group

Temporary Mapping

= Page Fault TM area PF:
Resolution: if myPDE.TMarea = destPDE.destarea then

tunnel to (partner) ;
access dest area ;
tunnel to (my)
fi;
DE.TMarea := destPDE.destarea .

current AS

57

Temporary Mapping

= SMP

o © 2009 Universitat Karlsruhe, System Architecture Group

CPU1

58

o © 2009 Universitat Karlsruhe, System Architecture Grou

Temporary Mapping

= SMP
= TM area per processor

CPU2

CPU1

59

Temporary Mapping

= SMP

= Page table per processor gz

=z

CPUL1 AS

o © 2009 Universitat Karlsruhe, System Architecture Group

60

Cost Estimates for Copying 77 Words

Copy in - copy out Temporary mapping

R/W operations

cache lines

Small n overhead cache misses

Large n cache misses 3 x nl8

Overhead TLB misses n/ (words per page)

Startup instructions 50

(assuming 8 words/cache line)

D © 2009 Universitat Karlsruhe, System Architecture Group

486 IPC Cost

[us] Mach

400 +

= Mach: Copy in/out
= L4: Temp. mapping >

200 + L4 + cache flush

L4
100

_ raw copy

0 2000 4000 6000

msg len

o © 2009 Universitat Karlsruhe, System Architecture Group 62

