
µµ--Kernel Construction (5)Kernel Construction (5)

1© 2009 Universität Karlsruhe, System Architecture Group

IPC Implementation

IPC Importance

2© 2009 Universität Karlsruhe, System Architecture Group

General IPC Algorithm

 Validate parameters
 Locate target thread

 Return error if unavailable

 Transfer message

3© 2009 Universität Karlsruhe, System Architecture Group

 Transfer message
 Untyped items (short IPC)
 Typed items (long IPC)

 Schedule target thread
 Switch address space as necessary

 Wait for IPC (reply/next request)

IPC Implementation

4© 2009 Universität Karlsruhe, System Architecture Group

Short IPC

Short IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f

5© 2009 Universität Karlsruhe, System Architecture Group

 Analyze message and transfer
 Short IPC no action required

 Switch to dest thread & address space
 System-call post

The critical path

Short IPC (uniprocessor) “call”“call”

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii

6© 2009 Universität Karlsruhe, System Architecture Group

 Analyze message and transfer
 Short IPC no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningwait to receive

Short IPC (uniprocessor) “send” “send” (eagerly)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii

7© 2009 Universität Karlsruhe, System Architecture Group

 Analyze message and transfer
 Short IPC no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningrunning

Short IPC (uniprocessor) “send” “send” (lazily)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

A l d t f it t ii

8© 2009 Universität Karlsruhe, System Architecture Group

 Analyze message and transfer
 Short IPC no action required

 Switch to dest thread & address space
 System-call post

wait to receiverunning

runningrunning

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC
Kernel Stacks

and TCBs

%ESP0

Kernel
memory

9© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

10© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

11© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

12© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

13© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

14© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

15© 2009 Universität Karlsruhe, System Architecture Group

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

IPC via sysenter/sysexit

 Real register use
 EAX: dest. TID sender TID
 ECX: timeouts user IP (sysexit)

EDX i TID SP (it)

16© 2009 Universität Karlsruhe, System Architecture Group

 EDX: receive TID user SP (sysexit)
 EBX: (scratch) MR1

 EBP: (scratch) MR2

 ESI: MR0 [only unchanged register]
 EDI: UTCB(sender) UTCB(receiver)

Implementation Goal

 Most frequent kernel op: Short IPC
 Thousands of invocations per second

 Performance is critical
 Structure IPC for speed

17© 2009 Universität Karlsruhe, System Architecture Group

 Structure entire kernel to support fast IPC
 What affects performance?

 Cache line misses
 TLB misses
 Memory references
 Pipe stalls and flushes
 Instruction scheduling

Fast Path

 Optimize for common cases
 Write in assembler
 Non-critical paths written in C++

 But still fast as possible

18© 2009 Universität Karlsruhe, System Architecture Group

 Avoid high-level language overhead
 Function call state preservation
 Incompatible code optimizations

 We want every cycle possible!
 At least sometimes …

IPC Requirements for Fast Path

 Untyped message
 Single runnable thread after IPC

 Must be valid call-like IPC
 Send phase

19© 2009 Universität Karlsruhe, System Architecture Group

p
 Target is already waiting

 Receive phase
 Sender is not ready to couple, causing us to block

 Switch threads, originator blocks

 No receive timeout
 Send timeout can be ignored: receiver is waiting
 Xfer timeouts do not apply for untyped messages

Memory is Forbidden

 Memory references are slow
 Avoid in IPC

 E.g., use lazy scheduling

 Avoid in common case

20© 2009 Universität Karlsruhe, System Architecture Group

 E.g., (xfer) timeouts

 Microkernel should minimize artifacts
 Cache pollution
 TLB pollution
 Memory bus

Optimized Memory

stack

Also hard-wire TLB
entries for kernel code

and data.

21© 2009 Universität Karlsruhe, System Architecture Group

thread ID
cpu ID
&UTCB

thread state
TCB state,
grouped by
cache lines

Single TLB entry

TLB Problem with Eager Scheduling

stack stack stack stack

Walking/modifying
a linked list has
a TLB footprint.

22© 2009 Universität Karlsruhe, System Architecture Group

virtual TCB
area

virtual
addresses

Lazy Scheduling

 Do not update the scheduling lists
 Blocked sender remains in ready list

 Check real thread state when dispatching
 May be released before being scheduled

23© 2009 Universität Karlsruhe, System Architecture Group

 May be released before being scheduled
 avoids list manipulations

 Unblocked receiver not added to ready list
 Appended to ready list at end of timeslice
 May block before
 avoids list manipulations

Avoid Table Lookups

thread nothread ID version

virtual TCB area

24© 2009 Universität Karlsruhe, System Architecture Group

TCB = TCB_area +
((thread_no >> x) &
TCB_size_mask)

Validate Thread ID

thread nothread ID version

virtual TCB area

25© 2009 Universität Karlsruhe, System Architecture Group

Are the thread IDs equal?

Branch Elimination

slow = ~receiver->thread_state |
((timeouts ^ 0x400) & 0xffff) |
sender->resources |
receiver->resources;

Common case:
-1 (waiting)

Required (common) case:
0x0400

(infinite recv timeout)

26© 2009 Universität Karlsruhe, System Architecture Group

if (0 != slow)
enter_slow_path()

Common case:
0 (no resources in use)

 Reduces branch prediction foot print
 Avoids mispredictions, stalls, and flushes
 Slightly increases latency for slow path

TCB Resources

 One bit per resource
 Fast path checks entire word

 If not 0, jump to resource
handlers1 1

Resources bitfield

27© 2009 Universität Karlsruhe, System Architecture Group

Debug registers

Copy area

Slow and Fast

user mode

IPC wait via
slow path

user mode

IPC send via
fast path

28© 2009 Universität Karlsruhe, System Architecture Group

IPC wait via
fast path

user mode

user mode

IPC send via
fast path

Consistent State

 Cooperative thread scheduling in kernel
 TCB in consistent state for IPC wait

 IPC restores user mode context

29© 2009 Universität Karlsruhe, System Architecture Group

Problem?

 Avoids cycles for restoring kernel context
 Fast path can activate slow path TCB

Can’t use fast path for kernel threads.

How often do kernel threads use IPC?

How to efficiently detect kernel threads?

 Use resource bit!

Short IPC Performance (1)

IBM PowerPC 750,
500 MHz,
32 registers

30© 2009 Universität Karlsruhe, System Architecture Group

up to 10
physical
registers

virtual register
copy loop

Many cycles
wasted on pipe
flushes for
privileged
instructions.

Short IPC Performance (2)

AMD Opteron 242,

1.6 GHz

31© 2009 Universität Karlsruhe, System Architecture Group

IPC Implementation

32© 2009 Universität Karlsruhe, System Architecture Group

Long IPC

Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

33© 2009 Universität Karlsruhe, System Architecture Group

 – transfer message –

 Switch to dest thread & address space
 System-call post

Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

34© 2009 Universität Karlsruhe, System Architecture Group

 Lock both partners

 – transfer message –

 Unlock both partners
 Switch to dest thread & address space
 System-call post

Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

35© 2009 Universität Karlsruhe, System Architecture Group

 Lock both partners
 Enable IRQs
 – transfer message –
 Disable IRQs
 Unlock both partners

 Switch to dest thread & address space
 System-call post

Long IPC (uniprocessor)

 System-call pre (disable IRQs)
 Identify dest thread and check

 Same chief / no IPC redirection?
 Ready-to-receive?

 Analyze message and transfer

 Long/map:

waitrunning

36© 2009 Universität Karlsruhe, System Architecture Group

 Lock both partners
 Enable IRQs
 – transfer message –
 Disable IRQs
 Unlock both partners

 Switch to dest thread & address space
 System-call post

runningwait to receive

lockedlocked waitlockedlocked running

String IPC / memcpy

 Why?
 Trust
 Granularity
 Synchronous

(“atomic”) transfer

37© 2009 Universität Karlsruhe, System Architecture Group

()

Copy In – Copy Out

 Copy into kernel buffer

38© 2009 Universität Karlsruhe, System Architecture Group

Copy In – Copy Out

 Copy into kernel buffer
 Switch spaces

39© 2009 Universität Karlsruhe, System Architecture Group

Copy In – Copy Out

 Copy into kernel buffer
 Switch spaces
 Copy out of kernel buffer

40© 2009 Universität Karlsruhe, System Architecture Group

 Costs for n words

 22n r/w operations

 3n/8 cache lines
 1n/8 cache misses (small n)

 4n/8 cache misses (large n)

Temporary Mapping

41© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 Select dest area (2x4 MB)

42© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)

43© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)
 Copy data

44© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 Select dest area (2x4 MB)
 Map into source AS (kernel)
 Copy data
 Switch to dest space

45© 2009 Universität Karlsruhe, System Architecture Group

 Switch to dest space

Temporary Mapping

 Copy page directory entry
(PDE) from dest
 Addresses in temporary

mapping area are resolved
using dest’s page table

46© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 Problems
 Multiple threads per AS
 Mappings might change while

message is copied
 How long to keep PTE?

What about TLB?

47© 2009 Universität Karlsruhe, System Architecture Group

current AS

 What about TLB?

Temporary Mapping

 When switching threads
during IPC

48© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

 When switching threads
during IPC
 Invalidate PTE
 Flush TLB

49© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

 When returning to a thread
during IPC
 Raises pagefault on copy area
 (Re)copy PDE from receiver

50© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

Reestablishing temp mapping
requires storing

partner id and dest area address
in the sender’s TCB.

Note: Receiver’s page mappings
might have changed!

51© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

Leave thread:
if mytcb.waddr nil then

myPDE.TMarea := nil ;
if dest AS = my AS then

flush TLB ;
fi

Start temp mapping:
mytcb.partner := partner ;
mytcb.waddr := dest 8M area base ;
myPDE.TMarea := destPDE.destarea .

52© 2009 Universität Karlsruhe, System Architecture Group

why?

current AS

fi
fi .

Close temp mapping:
mytcb.waddr := nil ;
myPDE.TMarea := nil .Optimization only:

Avoids second TLB flush if subsequent
thread switch would flush the

TLB anyway.

Temporary Mapping

Leave thread:
if mytcb.waddr nil then

myPDE.TMarea := nil ;
flush TLB ;
TLB flushed := true

fi .

 Alternative method:

Requires separation of
TLB flush

and

53© 2009 Universität Karlsruhe, System Architecture Group

current AS

fi .

Thread switch :
…
if TLB just flushed

then TLB flushed := false
else flush TLB

fi ;
PT root := ...

and
load PT root

!

Does therefore not work
reasonably on x86.

Load PT root implicitly
includes TLB flush on x86.

Temporary Mapping

 Page Fault
Resolution:

54© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

 Page Fault
Resolution:

55© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping

 Page Fault
Resolution:

56© 2009 Universität Karlsruhe, System Architecture Group

current AS

Temporary Mapping
TM area PF:

if myPDE.TMarea = destPDE.destarea then
tunnel to (partner) ;
access dest area ;
tunnel to (my)

fi ;

 Page Fault
Resolution:

57© 2009 Universität Karlsruhe, System Architecture Group

current AS

myPDE.TMarea := destPDE.destarea .

Temporary Mapping

 SMP
CPU1

58© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 SMP
 TM area per processor CPU1

CPU2

59© 2009 Universität Karlsruhe, System Architecture Group

Temporary Mapping

 SMP
 TM area per processor
 Page table per processor

CPU1
CPU2

60© 2009 Universität Karlsruhe, System Architecture Group

P1 ASCPU1 AS
CPU2 AS

Cost Estimates for Copying n Words

R/W operations

Cache lines

Copy in - copy out Temporary mapping

2 2n 2n

3 n/8 2 n/8

61© 2009 Universität Karlsruhe, System Architecture Group

(assuming 8 words/cache line)

Small n overhead cache misses

Large n cache misses

Overhead TLB misses

Startup instructions

n/8 0

5 n/8 3 n/8

2 n / (words per page)

0 50

486 IPC Cost

 Mach: Copy in/out

 L4: Temp. mapping 300

400

Mach[µs]

62© 2009 Universität Karlsruhe, System Architecture Group

0

100

200

0 2000 4000 6000
msg len

L4 + cache flush

L4

raw copy

