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IPC Functionality & Interface



IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Two threads 
communicate

 No interference from 
other threads
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 Other threads block 
until it’s their turn

 Problem
 How to communicate 

with a thread 
unknown a priori

(e.g., a server’s clients)



IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Receive

 Scenario
 A client thread sends a 

message to a server 
expecting a response

 The server replies 
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(from any thread) expecting the client 
thread to be ready to 
receive

 Problem
 The client might be 

preempted between the 
send tosend to and receive fromreceive from



IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Receive

 Are other combinations 
appropriate?

Atomic operation to ensure 
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(from any thread)

 Call
(send to, receive from specified 

thread)

 Send to & Receive
(send to, receive from any thread)

 Send to & Receive from
(send to, receive from specified 

different thread)

that server’s (callee’s) reply 
cannot arrive before client 
(caller) is ready to receive.

Atomic operation for 
optimization reasons. 
Typically used by servers to 
reply and wait for the next 
request (from anyone).



Message Types

 Registers
 Short messages, avoid memory during IPC
 Guaranteed to avoid user-level page faults during IPC 

 Strings ( ti l)
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 Strings (optional)

 In-memory messages copied from sender to receiver
 May incur user-level page faults during copy operation

 Mappings (optional)

 Messages that map pages from sender to receiver
 Can map other resources too



IPC – API

 Operations
 Send to 
 Receive from 
 Receive 

 Message Types
 Registers
 Strings
 Mappings
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 Call 
 Send to & Receive
 Send to & Receive from

Mappings



Problem

 How to we deal with threads that are
 Uncooperative
 Malfunctioning

M li i ?
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 Malicious?

 How to prevent an IPC operation from 
never completing?



IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout
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IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout
 snd-pf timeout

 specified by sender

 Attack through 
receiver’s pager

Pager
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PF



IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout
 snd-pf / rcv-pf timeout

 specified by receiver

 Attack through 
sender’s pager
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PF

Pager



Timeout Problem

 Worst case IPC transfer time is high
 Potential worst-case is a page fault per memory 

access
 IPC time = send timeout + n  page fault timeout
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 Worst-case for a careless implementation is 
unbound
 Pager might respond with null mapping that does not 

resolve the fault



IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

time
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 snd to
 min (xfer to snd, xfer to rcv)
 rcv to
 min (xfer to rcv, xfer to snd)

wait for send send message
(xfer) wait for reply receive message

(xfer)

(specified by the partner thread)



Timeout Issues

 What timeout values 
are typical or 
necessary?

 How do we encode 

 Timeout values
 ∞ (infinite)

 Client waiting for a 
(trusted) server

0 ( )
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o do od
timeouts to minimize 
space needed to 
specify all four 
values?

 0 (zero)
 Server responding to 

a client
 Polling

 Specific time
 1 us – 610 h (log)



 Timeout values
 ∞ (infinite)

 Client waiting for a 
(trusted) server

0 ( )

Timeout Issues

 Assume short 
timeouts need finer 
granularity than long 
timeouts
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 0 (zero)
 Server responding to 

a client
 Polling

 Specific timeSpecific time
 1 us 1 us –– 610 h (log)610 h (log)

 Timeouts can always 
be combined to 
achieve long fine-
grain timeouts



IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

 relative timeout values
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 0
 infinite
 1 us … 610 h (log)                                      2em µs

0(16)

0(10)0 1(5)

m(10)0 e(5)



IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

 relative timeout values
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 0
 infinite
 1 us … 610 h (log)                                      2em µs

 absolute timeout values m(10)1 e(4) c

clock                       m(10) 0

e10

clock                       + 2(e+10) m(10)

0(16)

0(10)0 1(5)

m(10)0 e(5)

=



Clarification of the “c” Bit

 User gives absolute timeouts relative to the current epoch (:= all but the least significant 10+e bits of clock).
 Kernel computes absolute timeout via “(clock’ & (~0ull << (10+e))) | (m << e)”, i.e., “epoch’ | (m << e)”.

 The clock readings of the client and the kernel are different!

(a) Timeout 09:50, clock 09:45 => epoch 09:00 => delta := m << e = 50’
 Kernel reached at clock’ 09:48 => epoch’ 09:00 => timeout 09:50 (ok)

(b) Timeout 10:12, clock 09:55 => epoch 09:00 => delta 1:12 (must be able to specify “next epoch”)
(1) Kernel reached at clock’ 09:59 => epoch 09:00 => timeout 10:12 (ok)
(2) Kernel reached at clock’ 10:01 => epoch 10:00 => timeout 11:12 (wrong)

I t d f if i “thi t h” if l t i ifi t bit (LSB) f t t h
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Instead of specifying “this vs. next epoch” specify least significant bit (LSB) of target epoch:

(a) Timeout 09:50, clock 09:45 => epoch 09:00 => c = LSB(09) == 1, delta 50’
 Kernel reached at clock’ 09:48 => epoch’ 09:00 => LSB(09) == 1 == c => epoch’’ 09:00 => timeout 09:50 (ok)

(b) Timeout 10:12, clock 09:55 => epoch 09:00 => c = LSB(10) == 0, delta 12’
(1) Kernel reached at clock’ 09:59 => epoch’ 09:00 => LSB(09) == 1 != c => epoch’’ 10:00 => timeout 10:12 (ok)
(2) Kernel reached at clock’ 10:01 => epoch’ 10:00 => LSB(10) == 0 == c => epoch’’ 10:00 => timeout 10:12 (ok)

Errors occur only if the epoch changes more than once between the client and the kernel reading the clock, i.e., 
if more than one complete epoch ((1<<(10+e)) μs ≈ (1<<e) ms) passed in between.

As can be seen in (b1), using c is different from using more bits for the delta (effectively specifying the LSB of 
the target epoch): epoch’ is 09, having delta include the LSB would decrease this to 08 (LSB forced to 0); 
considering c != LSB(09) increases epoch’ to 10.

Do not waste your time understanding this – informational only!



Timeout Range of Values (seconds) [v4, vX.2]

e m =1 m =1023
0 0,000001 0,001023
1 0,000002 0,002046
3 0,000008 0,008184
5 0,000032 0,032736
7 0,000128 0,130944
9 0,000512 0,523776
11 0 002048 2 095104

1µs – 1023µs with
1µs granularity
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11 0,002048 2,095104
13 0,008192 8,380416
15 0,032768 33,521664
17 0,131072 134,086656
19 0,524288 536,346624
21 2,097152 2145,386496
23 8,388608 8581,545984
25 33,554432 34326,18394
27 134,217728 137304,7357
29 536,870912 549218,943
31 2147,483648 2196875,772

Up to ~610h with
~35min granularity



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



Ideally Encoded in Registers

 Parameters in registers whenever possible
 Make frequent/simple operations simple and fast

Sender RegistersSender Registers Receiver RegistersReceiver Registers

© 2009 Universität Karlsruhe, System Architecture Group 20

EAX

ECX

EDX

EBX

EBP

ESI

EDI



Example: Call-Reply
Thread B

pre

Thread A

IPC call

pre

IPC reply & wait

post
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post

post

pre

IPC reply & wait



Send and Receive Encoding

 00 (Nil ID) is a reserved thread ID
 Define --11 as a wildcard thread ID

Sender RegistersSender Registers Receiver RegistersReceiver Registers
 Nil ID means “no send 

operation”
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ECX

EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX

operation
 Wildcard is not allowed

(no broadcast support)

 Nil ID means “no receive 
operation”
 Wildcard means “receive 

from any thread”



Why use a single call instead of many?

 The implementation of the individual send 
and receive is very similar to the combined 
send and receive
 We can use the same code

We reduce cache footprint of the code
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 We reduce cache footprint of the code
 We make applications more likely to be in cache

 L4 only implements combined “send to A and 
receive from B” syscall
 A may but need not be equal to B
 A or B may be 0 to avoid a send or receive phase

 A == B == 0 is just a costly no-operation



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

IPC syscall
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



Message Transfer

 Assume that 64 extra registers are available
 Name them MR0 … MR63 (message register 0 … 63)

 All message registers are transferred during IPC
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 All message registers are transferred during IPC



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



Message Construction

 Messages are stored in 
registers (MR0  MR63)

 First register (MR0) acts 
as message tag
S b t i t

Number of 
untyped words
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 Subsequent registers 
contain
 Untyped words (u)
 Typed words (t)

(e.g., map item, string item) label flags t uMR0

Message Tag

Various IPC flags

Number of typed 
words

Freely available 
(e.g., request type)



Message Construction

MR8

MR7

MR6

MR5

 Messages are stored in 
registers (MR0  MR63)

 First register (MR0) acts 
as message tag
S b t i t
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label flags t uMR0

Message

5

MR4

5

MR2

MR3

MR1

3

 Subsequent registers 
contain
 Untyped words (u)
 Typed words (t)

(e.g., map item, string item)



Message Construction

 Typed items occupy 
one or more words

 Three currently 
defined items

Map item (2 d )

MR8

MR7

MR6

MR5 Map Item

String Item
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 Map item (2 words)

 Grant item (2 words)

 String item (2+ words)

 Typed items can have 
arbitrary order

label flags t uMR0

Message

MR2

MR3

MR1

3

5

MR4

5

Map Item



Map and Grant Items

 Two words
 Send base
 Fpage

 Lower bits of send base

send base

send fpage

0 100C
Map Item

MRi

MRi+1
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 Lower bits of send base
indicates map or grant 
item send base

send fpage

0 101C
Grant Item

location size 0wrx

Fpage

MRi

MRi+1



String Items

 Up to 4 MB (per string)

 Compound strings 
supported
 Allows scatter-gather
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 Incorporates 
cacheability hints
 Reduce cache pollution 

for long copy operations string length

string pointer

String Item

c 0 0hhC MRi

MRi+1

“hh” indicates cacheability 
hints for the string

E.g., only use L2 cache,
or do not use cache at all



String Items

string length

string pointer

0 0 0hhC MRi+j+1

MRi+j+2

string pointer

k - 1

MRi+j+3string pointer

MRi+j+1+k

k - 1
Different size compound

New string specifier
may of course contain 

substrings 
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string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

1 j - 1

string pointer

j - 1

MRi+2string pointer

MRi+j

1
All substrings are of

same size

Different size compound 
strings require a new 

string specifier

“hh” indicates cacheability 
hints for the string



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



String Reception

 Assume that 34 extra registers are available
 Name them BR0 … BR33 (buffer register 0 … 33)

 Buffer registers specify
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 Buffer registers specify
 Receive strings
 Receive window for mappings



Receiving Messages

 Receiver buffers are 
specified in registers 
(BR0 … BR33)

 First BR (BR0) contains
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First BR (BR0) contains 
“Acceptor”
 May specify receive 

window (if not nil-fpage)
 May indicate presence of 

receive strings/buffers
(if s-bit set)

Acceptor

receive window 000s BR0



Receiving Messages

string pointer

BR5string pointer

BR3+j

A receive buffer can of course
be a compound string

If C-bit in string item is cleared,
it indicates that no more

receive buffers are present
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Acceptor

receive window 000s BR0

string length

string pointer

0 0 0hhC BR1

BR2

0001

The s-bit set indicates presence 
of string items acting as receive 

buffers

string length

string pointer

0 0 0hhC BR3

BR4

0hh1

If C-bit in string item is set, it
indicates presence of more

receive buffers

j - 1 0hh0



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



Timeouts

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Send and receive timeouts are the important ones
 Xfer timeouts only needed during string transfer
 Store xfer timeouts in predefined memory location
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EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX
 Timeout values are only 

16 bits
 Store send and receive 

timeout in single register

snd/rcv timeoutsECX



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



IPC Result

 Error conditions
are exceptional
 Not common case
 No need to optimize for error handling

label flags t uMR0

Message Tag

Error bit
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p g

 Bit in received message tag indicates error
 Fast check

 Exact error code store in predefined memory 
location



IPC Result

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 IPC errors flagged in MR0

 Sender’s thread ID stored in register
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EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX

snd/rcv timeoutsECX

from



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



IPC Redirection

 Redirection/deceiting IPC
flagged by bit in the
message tag
 Fast check

label flags t uMR0

Message Tag

Redirector 
bit
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 When redirection bit set
 Thread ID to deceit as and intended receiver ID 

stored in predefined memory locations



IPC Parameters
 Send to 
 Receive from 
 Receive 
 Call 
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout
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 Source thread ID
 Send registers 
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC



Virtual Registers

 What about message and buffer 
registers?
 Most architectures do not have 64+34 

spare registers
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spare registers

 What about predefined memory 
locations?
 Must be thread local



Virtual Registers

 What about message and buffer 
registers?
 Most architectures do not have 64+34 

spare registers
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spare registers

 What about predefined memory 
locations?
 Must be thread local



What are Virtual Registers?

 Virtual registers are 
backed by either
 Physical registers, or
 Non-pageable memory

UTCB
Preserved by

switching UTCB
on context switch

MR63

MR62

MR61

Virtual Registers

MR63

MR62
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Preserved by 
kernel during
context switch

 UTCBs hold the memory 
backed registers
 UTCBs are thread local
 UTCBs cannot be paged

 No page faults
 Registers always 

accessible 

EBX

ESI

EBP

Physical Registers

MR4

MR3

MR61

MR4

MR3

MR2

MR1

MR0



Switching UTCBs (IA-32)

 Locating UTCB must 
be fast

(avoid using system call)

U t

%gs
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 Use separate 
segment for UTCB 
pointer

movl %gs:0, %edi

 Switch pointer on 
context switches

A%cs, %ds B



Switching UTCBs (IA-32)

 Locating UTCB must 
be fast

(avoid using system call)

U t

%gs
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 Use separate 
segment for UTCB 
pointer

movl %gs:0, %edi

 Switch pointer on 
context switches

A B



Message Registers and UTCB

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Some MRs are mapped to physical registers
 Kernel will need UTCB pointer anyway – pass it
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EDI

receive specifier

destinationEAX

EDX

snd/rcv timeoutsECX

from

MR1

MR2

MR0

EBX

EBP

ESI

MR1

MR2

MR0

UTCBEDI UTCB



Free Up Registers for Temporary Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Kernel needs registers for temporary values
 MR1 and MR2 are the only values that the kernel may 

not need
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destination
snd/rcv timeouts
receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB



Free Up Registers for Temporary Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Sysexit instruction requires
 ECX = user IP
 EDX = user SP
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destination
snd/rcv timeouts
receive specifier

~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB



IPC Register Encoding

 Parameters in registers whenever possible
 Make frequent/simple operations simple and fast

Sender RegistersSender Registers Receiver RegistersReceiver Registers
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destination
snd/rcv timeouts
receive specifier

~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from
~
~

MR1

MR2

MR0

UTCBEDI UTCB



Case study: IA-64
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IPC Register Usage



Register Encoding on IA-64

063

0gr0

gr1

gr2

General Registers

fr0

fr1
fr2

81 0

+0.0
+1.0

Floating-point Registers

1pr0

pr1
pr2

Predicates
063

br0

br1

br2

b

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21
togr14

gr9 from

ar.k6 UTCB
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gr127 fr127

pr63

br7
FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

gr15

gr16

timeouts

FromSpecifier

MR0gr32

gr33

gr34

MR1

MR2

gr35 MR3

gr36 MR4

gr37 MR5

gr38 MR6

gr39 MR7

All other registersAll other registers
are undefinedare undefined



Register Stack Engine

Proc c

gr32

Proc d

Proc c

gr127

Proc cProc c

Proc d
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Proc a

gr32

Proc a

Proc b
gr32

gr32

Proc b

Proc a

Proc b

Proc a
gr32
gr31

gr0

Register Stack Physical registers

Proc aProc a

gr32

Proc b

Proc a

Proc b

gr31



Register Stack Engine

gr127

Proc c

Proc d Proc d

Proc e

gr32

Proc c

Dirty partition
(must be saved before use)
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gr31

gr0

Register Stack Physical registers

Proc a

Proc b

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31

Clean partition
(can be used directly)



Register Stack Engine

gr127

Proc c

Proc d Proc d

Proc e

gr32

Proc c
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gr31

gr0

Register Stack Physical registers

Proc a

Proc b

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31



Register Stack Engine

Proc c

gr32

Invalid partition
(can be used directly)

gr127

Proc c

Proc d Proc dProc d Proc d
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Register Stack Physical registers

Proc a

Proc b

Backing storage

Proc a

Proc b

gr31

(can be used directly)

gr31

gr0

Proc a

Proc b

gr32



Proc c

Register Stack Engine

gr127

Proc c
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Register Stack Physical registers

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31 gr31

gr0

Proc a

Proc b

gr32

Proc a

Proc b



Proc c

Register Stack Engine

gr127

Proc cProc c Proc c
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Register Stack Physical registers

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31 gr31

gr0

Proc a

Proc b

gr32



Register Stack Engine

gr127
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Register Stack Physical registers

Proc a

Proc b
gr32

Backing storage

Proc agr31 gr31

gr0

Proc a

Proc b

gr32



Register Stack Engine

gr127
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Register Stack Physical registers

Proc a

gr32

Backing storage

Proc agr31 gr31

gr0

Proc a
gr32

Proc a



Register Stack Engine

gr127
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Register Stack Physical registers

Proc a

gr32

Backing storage

gr31 gr31

gr0

Proc a
gr32



Backing Store Switch for System Calls

bspstore
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Register stackUser backing store Kernel backing store

bspstore



Backing Store Switch for System Calls
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Register stackUser backing store Kernel backing store

bspstore



Backing Store Switch for System Calls

b
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Register stackUser backing store Kernel backing store

bspstore

bspstore



Register Stack During IPC

bspstore

Msg

bspstore

gr32

gr39
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Register stackBacking store A Backing store B



Register Stack During IPC

Msg
gr32

gr39

First 8 message registers
(64 bytes) are not saved and 
restored to/from memory
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Register stackBacking store A Backing store B

bspstore


