
µµ--Kernel Construction (4)Kernel Construction (4)

1© 2009 Universität Karlsruhe, System Architecture Group

IPC Functionality & Interface

IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Two threads
communicate

 No interference from
other threads

© 2009 Universität Karlsruhe, System Architecture Group 2

 Other threads block
until it’s their turn

 Problem
 How to communicate

with a thread
unknown a priori

(e.g., a server’s clients)

IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Receive

 Scenario
 A client thread sends a

message to a server
expecting a response

 The server replies

© 2009 Universität Karlsruhe, System Architecture Group 3

(from any thread) expecting the client
thread to be ready to
receive

 Problem
 The client might be

preempted between the
send tosend to and receive fromreceive from

IPC Primitives

 Send to
(a specified thread)

 Receive from
(a specified thread)

 Receive

 Are other combinations
appropriate?

Atomic operation to ensure

© 2009 Universität Karlsruhe, System Architecture Group 4

(from any thread)

 Call
(send to, receive from specified

thread)

 Send to & Receive
(send to, receive from any thread)

 Send to & Receive from
(send to, receive from specified

different thread)

that server’s (callee’s) reply
cannot arrive before client
(caller) is ready to receive.

Atomic operation for
optimization reasons.
Typically used by servers to
reply and wait for the next
request (from anyone).

Message Types

 Registers
 Short messages, avoid memory during IPC
 Guaranteed to avoid user-level page faults during IPC

 Strings (ti l)

© 2009 Universität Karlsruhe, System Architecture Group 5

 Strings (optional)

 In-memory messages copied from sender to receiver
 May incur user-level page faults during copy operation

 Mappings (optional)

 Messages that map pages from sender to receiver
 Can map other resources too

IPC – API

 Operations
 Send to
 Receive from
 Receive

 Message Types
 Registers
 Strings
 Mappings

© 2009 Universität Karlsruhe, System Architecture Group 6

 Call
 Send to & Receive
 Send to & Receive from

Mappings

Problem

 How to we deal with threads that are
 Uncooperative
 Malfunctioning

M li i ?

© 2009 Universität Karlsruhe, System Architecture Group 7

 Malicious?

 How to prevent an IPC operation from
never completing?

IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout

© 2009 Universität Karlsruhe, System Architecture Group 8

IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout
 snd-pf timeout

 specified by sender

 Attack through
receiver’s pager

Pager

© 2009 Universität Karlsruhe, System Architecture Group 9

PF

IPC – API

 Timeouts (v2, vX.0)

 snd timeout, rcv timeout
 snd-pf / rcv-pf timeout

 specified by receiver

 Attack through
sender’s pager

© 2009 Universität Karlsruhe, System Architecture Group 10

PF

Pager

Timeout Problem

 Worst case IPC transfer time is high
 Potential worst-case is a page fault per memory

access
 IPC time = send timeout + n  page fault timeout

© 2009 Universität Karlsruhe, System Architecture Group 11

 Worst-case for a careless implementation is
unbound
 Pager might respond with null mapping that does not

resolve the fault

IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

time

© 2009 Universität Karlsruhe, System Architecture Group 12

 snd to
 min (xfer to snd, xfer to rcv)
 rcv to
 min (xfer to rcv, xfer to snd)

wait for send send message
(xfer) wait for reply receive message

(xfer)

(specified by the partner thread)

Timeout Issues

 What timeout values
are typical or
necessary?

 How do we encode

 Timeout values
 ∞ (infinite)

 Client waiting for a
(trusted) server

0 ()

© 2009 Universität Karlsruhe, System Architecture Group 13

o do od
timeouts to minimize
space needed to
specify all four
values?

 0 (zero)
 Server responding to

a client
 Polling

 Specific time
 1 us – 610 h (log)

 Timeout values
 ∞ (infinite)

 Client waiting for a
(trusted) server

0 ()

Timeout Issues

 Assume short
timeouts need finer
granularity than long
timeouts

© 2009 Universität Karlsruhe, System Architecture Group 14

 0 (zero)
 Server responding to

a client
 Polling

 Specific timeSpecific time
 1 us 1 us –– 610 h (log)610 h (log)

 Timeouts can always
be combined to
achieve long fine-
grain timeouts

IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

 relative timeout values

© 2009 Universität Karlsruhe, System Architecture Group 15

 0
 infinite
 1 us … 610 h (log) 2em µs

0(16)

0(10)0 1(5)

m(10)0 e(5)

IPC – API

 Timeouts (vX.2, v4)

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

 relative timeout values

© 2009 Universität Karlsruhe, System Architecture Group 16

 0
 infinite
 1 us … 610 h (log) 2em µs

 absolute timeout values m(10)1 e(4) c

clock m(10) 0

e10

clock + 2(e+10) m(10)

0(16)

0(10)0 1(5)

m(10)0 e(5)

=

Clarification of the “c” Bit

 User gives absolute timeouts relative to the current epoch (:= all but the least significant 10+e bits of clock).
 Kernel computes absolute timeout via “(clock’ & (~0ull << (10+e))) | (m << e)”, i.e., “epoch’ | (m << e)”.

 The clock readings of the client and the kernel are different!

(a) Timeout 09:50, clock 09:45 => epoch 09:00 => delta := m << e = 50’
 Kernel reached at clock’ 09:48 => epoch’ 09:00 => timeout 09:50 (ok)

(b) Timeout 10:12, clock 09:55 => epoch 09:00 => delta 1:12 (must be able to specify “next epoch”)
(1) Kernel reached at clock’ 09:59 => epoch 09:00 => timeout 10:12 (ok)
(2) Kernel reached at clock’ 10:01 => epoch 10:00 => timeout 11:12 (wrong)

I t d f if i “thi t h” if l t i ifi t bit (LSB) f t t h

© 2009 Universität Karlsruhe, System Architecture Group 17

Instead of specifying “this vs. next epoch” specify least significant bit (LSB) of target epoch:

(a) Timeout 09:50, clock 09:45 => epoch 09:00 => c = LSB(09) == 1, delta 50’
 Kernel reached at clock’ 09:48 => epoch’ 09:00 => LSB(09) == 1 == c => epoch’’ 09:00 => timeout 09:50 (ok)

(b) Timeout 10:12, clock 09:55 => epoch 09:00 => c = LSB(10) == 0, delta 12’
(1) Kernel reached at clock’ 09:59 => epoch’ 09:00 => LSB(09) == 1 != c => epoch’’ 10:00 => timeout 10:12 (ok)
(2) Kernel reached at clock’ 10:01 => epoch’ 10:00 => LSB(10) == 0 == c => epoch’’ 10:00 => timeout 10:12 (ok)

Errors occur only if the epoch changes more than once between the client and the kernel reading the clock, i.e.,
if more than one complete epoch ((1<<(10+e)) μs ≈ (1<<e) ms) passed in between.

As can be seen in (b1), using c is different from using more bits for the delta (effectively specifying the LSB of
the target epoch): epoch’ is 09, having delta include the LSB would decrease this to 08 (LSB forced to 0);
considering c != LSB(09) increases epoch’ to 10.

Do not waste your time understanding this – informational only!

Timeout Range of Values (seconds) [v4, vX.2]

e m =1 m =1023
0 0,000001 0,001023
1 0,000002 0,002046
3 0,000008 0,008184
5 0,000032 0,032736
7 0,000128 0,130944
9 0,000512 0,523776
11 0 002048 2 095104

1µs – 1023µs with
1µs granularity

© 2009 Universität Karlsruhe, System Architecture Group 18

11 0,002048 2,095104
13 0,008192 8,380416
15 0,032768 33,521664
17 0,131072 134,086656
19 0,524288 536,346624
21 2,097152 2145,386496
23 8,388608 8581,545984
25 33,554432 34326,18394
27 134,217728 137304,7357
29 536,870912 549218,943
31 2147,483648 2196875,772

Up to ~610h with
~35min granularity

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 19

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

Ideally Encoded in Registers

 Parameters in registers whenever possible
 Make frequent/simple operations simple and fast

Sender RegistersSender Registers Receiver RegistersReceiver Registers

© 2009 Universität Karlsruhe, System Architecture Group 20

EAX

ECX

EDX

EBX

EBP

ESI

EDI

Example: Call-Reply
Thread B

pre

Thread A

IPC call

pre

IPC reply & wait

post

© 2009 Universität Karlsruhe, System Architecture Group 21

post

post

pre

IPC reply & wait

Send and Receive Encoding

 00 (Nil ID) is a reserved thread ID
 Define --11 as a wildcard thread ID

Sender RegistersSender Registers Receiver RegistersReceiver Registers
 Nil ID means “no send

operation”

© 2009 Universität Karlsruhe, System Architecture Group 22

ECX

EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX

operation
 Wildcard is not allowed

(no broadcast support)

 Nil ID means “no receive
operation”
 Wildcard means “receive

from any thread”

Why use a single call instead of many?

 The implementation of the individual send
and receive is very similar to the combined
send and receive
 We can use the same code

We reduce cache footprint of the code

© 2009 Universität Karlsruhe, System Architecture Group 23

 We reduce cache footprint of the code
 We make applications more likely to be in cache

 L4 only implements combined “send to A and
receive from B” syscall
 A may but need not be equal to B
 A or B may be 0 to avoid a send or receive phase

 A == B == 0 is just a costly no-operation

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

IPC syscall

© 2009 Universität Karlsruhe, System Architecture Group 24

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

Message Transfer

 Assume that 64 extra registers are available
 Name them MR0 … MR63 (message register 0 … 63)

 All message registers are transferred during IPC

© 2009 Universität Karlsruhe, System Architecture Group 25

 All message registers are transferred during IPC

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 26

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

Message Construction

 Messages are stored in
registers (MR0  MR63)

 First register (MR0) acts
as message tag
S b t i t

Number of
untyped words

© 2009 Universität Karlsruhe, System Architecture Group 27

 Subsequent registers
contain
 Untyped words (u)
 Typed words (t)

(e.g., map item, string item) label flags t uMR0

Message Tag

Various IPC flags

Number of typed
words

Freely available
(e.g., request type)

Message Construction

MR8

MR7

MR6

MR5

 Messages are stored in
registers (MR0  MR63)

 First register (MR0) acts
as message tag
S b t i t

© 2009 Universität Karlsruhe, System Architecture Group 28

label flags t uMR0

Message

5

MR4

5

MR2

MR3

MR1

3

 Subsequent registers
contain
 Untyped words (u)
 Typed words (t)

(e.g., map item, string item)

Message Construction

 Typed items occupy
one or more words

 Three currently
defined items

Map item (2 d)

MR8

MR7

MR6

MR5 Map Item

String Item

© 2009 Universität Karlsruhe, System Architecture Group 29

 Map item (2 words)

 Grant item (2 words)

 String item (2+ words)

 Typed items can have
arbitrary order

label flags t uMR0

Message

MR2

MR3

MR1

3

5

MR4

5

Map Item

Map and Grant Items

 Two words
 Send base
 Fpage

 Lower bits of send base

send base

send fpage

0 100C
Map Item

MRi

MRi+1

© 2009 Universität Karlsruhe, System Architecture Group 30

 Lower bits of send base
indicates map or grant
item send base

send fpage

0 101C
Grant Item

location size 0wrx

Fpage

MRi

MRi+1

String Items

 Up to 4 MB (per string)

 Compound strings
supported
 Allows scatter-gather

© 2009 Universität Karlsruhe, System Architecture Group 31

 Incorporates
cacheability hints
 Reduce cache pollution

for long copy operations string length

string pointer

String Item

c 0 0hhC MRi

MRi+1

“hh” indicates cacheability
hints for the string

E.g., only use L2 cache,
or do not use cache at all

String Items

string length

string pointer

0 0 0hhC MRi+j+1

MRi+j+2

string pointer

k - 1

MRi+j+3string pointer

MRi+j+1+k

k - 1
Different size compound

New string specifier
may of course contain

substrings

© 2009 Universität Karlsruhe, System Architecture Group 32

string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

1 j - 1

string pointer

j - 1

MRi+2string pointer

MRi+j

1
All substrings are of

same size

Different size compound
strings require a new

string specifier

“hh” indicates cacheability
hints for the string

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 33

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

String Reception

 Assume that 34 extra registers are available
 Name them BR0 … BR33 (buffer register 0 … 33)

 Buffer registers specify

© 2009 Universität Karlsruhe, System Architecture Group 34

 Buffer registers specify
 Receive strings
 Receive window for mappings

Receiving Messages

 Receiver buffers are
specified in registers
(BR0 … BR33)

 First BR (BR0) contains

© 2009 Universität Karlsruhe, System Architecture Group 35

First BR (BR0) contains
“Acceptor”
 May specify receive

window (if not nil-fpage)
 May indicate presence of

receive strings/buffers
(if s-bit set)

Acceptor

receive window 000s BR0

Receiving Messages

string pointer

BR5string pointer

BR3+j

A receive buffer can of course
be a compound string

If C-bit in string item is cleared,
it indicates that no more

receive buffers are present

© 2009 Universität Karlsruhe, System Architecture Group 36

Acceptor

receive window 000s BR0

string length

string pointer

0 0 0hhC BR1

BR2

0001

The s-bit set indicates presence
of string items acting as receive

buffers

string length

string pointer

0 0 0hhC BR3

BR4

0hh1

If C-bit in string item is set, it
indicates presence of more

receive buffers

j - 1 0hh0

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 37

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

Timeouts

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Send and receive timeouts are the important ones
 Xfer timeouts only needed during string transfer
 Store xfer timeouts in predefined memory location

© 2009 Universität Karlsruhe, System Architecture Group 38

EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX
 Timeout values are only

16 bits
 Store send and receive

timeout in single register

snd/rcv timeoutsECX

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 39

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

IPC Result

 Error conditions
are exceptional
 Not common case
 No need to optimize for error handling

label flags t uMR0

Message Tag

Error bit

© 2009 Universität Karlsruhe, System Architecture Group 40

p g

 Bit in received message tag indicates error
 Fast check

 Exact error code store in predefined memory
location

IPC Result

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 IPC errors flagged in MR0

 Sender’s thread ID stored in register

© 2009 Universität Karlsruhe, System Architecture Group 41

EBX

EBP

ESI

EDI

receive specifier

destinationEAX

EDX

snd/rcv timeoutsECX

from

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 42

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

IPC Redirection

 Redirection/deceiting IPC
flagged by bit in the
message tag
 Fast check

label flags t uMR0

Message Tag

Redirector
bit

© 2009 Universität Karlsruhe, System Architecture Group 43

 When redirection bit set
 Thread ID to deceit as and intended receiver ID

stored in predefined memory locations

IPC Parameters
 Send to
 Receive from
 Receive
 Call
 Send to & Receive
 Send to & Receive from
 Destination thread ID
 Source thread ID

 Receive window for mappings
 Number of receive strings
 Receive string start for each string
 Receive string size for each string
 Send timeout
 Receive timeout
 Send xfer timeout
 Receive xfer timeout

© 2009 Universität Karlsruhe, System Architecture Group 44

 Source thread ID
 Send registers
 Receive registers
 Number of map pages
 Page range for each map page
 Number of send strings
 Send string start for each string
 Send string size for each string

 Receive xfer timeout
 IPC result code
 Sender thread ID
 Specify deceiting IPC
 Thread ID to deceit as
 Intended receiver of deceited IPC

Virtual Registers

 What about message and buffer
registers?
 Most architectures do not have 64+34

spare registers

© 2009 Universität Karlsruhe, System Architecture Group 45

spare registers

 What about predefined memory
locations?
 Must be thread local

Virtual Registers

 What about message and buffer
registers?
 Most architectures do not have 64+34

spare registers

© 2009 Universität Karlsruhe, System Architecture Group 46

spare registers

 What about predefined memory
locations?
 Must be thread local

What are Virtual Registers?

 Virtual registers are
backed by either
 Physical registers, or
 Non-pageable memory

UTCB
Preserved by

switching UTCB
on context switch

MR63

MR62

MR61

Virtual Registers

MR63

MR62

© 2009 Universität Karlsruhe, System Architecture Group 47

Preserved by
kernel during
context switch

 UTCBs hold the memory
backed registers
 UTCBs are thread local
 UTCBs cannot be paged

 No page faults
 Registers always

accessible

EBX

ESI

EBP

Physical Registers

MR4

MR3

MR61

MR4

MR3

MR2

MR1

MR0

Switching UTCBs (IA-32)

 Locating UTCB must
be fast

(avoid using system call)

U t

%gs

© 2009 Universität Karlsruhe, System Architecture Group 48

 Use separate
segment for UTCB
pointer

movl %gs:0, %edi

 Switch pointer on
context switches

A%cs, %ds B

Switching UTCBs (IA-32)

 Locating UTCB must
be fast

(avoid using system call)

U t

%gs

© 2009 Universität Karlsruhe, System Architecture Group 49

 Use separate
segment for UTCB
pointer

movl %gs:0, %edi

 Switch pointer on
context switches

A B

Message Registers and UTCB

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Some MRs are mapped to physical registers
 Kernel will need UTCB pointer anyway – pass it

© 2009 Universität Karlsruhe, System Architecture Group 50

EDI

receive specifier

destinationEAX

EDX

snd/rcv timeoutsECX

from

MR1

MR2

MR0

EBX

EBP

ESI

MR1

MR2

MR0

UTCBEDI UTCB

Free Up Registers for Temporary Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Kernel needs registers for temporary values
 MR1 and MR2 are the only values that the kernel may

not need

© 2009 Universität Karlsruhe, System Architecture Group 51

destination
snd/rcv timeouts
receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

Free Up Registers for Temporary Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

 Sysexit instruction requires
 ECX = user IP
 EDX = user SP

© 2009 Universität Karlsruhe, System Architecture Group 52

destination
snd/rcv timeouts
receive specifier

~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

IPC Register Encoding

 Parameters in registers whenever possible
 Make frequent/simple operations simple and fast

Sender RegistersSender Registers Receiver RegistersReceiver Registers

© 2009 Universität Karlsruhe, System Architecture Group 53

destination
snd/rcv timeouts
receive specifier

~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from
~
~

MR1

MR2

MR0

UTCBEDI UTCB

Case study: IA-64

54© 2009 Universität Karlsruhe, System Architecture Group

IPC Register Usage

Register Encoding on IA-64

063

0gr0

gr1

gr2

General Registers

fr0

fr1
fr2

81 0

+0.0
+1.0

Floating-point Registers

1pr0

pr1
pr2

Predicates
063

br0

br1

br2

b

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21
togr14

gr9 from

ar.k6 UTCB

© 2009 Universität Karlsruhe, System Architecture Group 55

gr127 fr127

pr63

br7
FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

gr15

gr16

timeouts

FromSpecifier

MR0gr32

gr33

gr34

MR1

MR2

gr35 MR3

gr36 MR4

gr37 MR5

gr38 MR6

gr39 MR7

All other registersAll other registers
are undefinedare undefined

Register Stack Engine

Proc c

gr32

Proc d

Proc c

gr127

Proc cProc c

Proc d

© 2009 Universität Karlsruhe, System Architecture Group 56

Proc a

gr32

Proc a

Proc b
gr32

gr32

Proc b

Proc a

Proc b

Proc a
gr32
gr31

gr0

Register Stack Physical registers

Proc aProc a

gr32

Proc b

Proc a

Proc b

gr31

Register Stack Engine

gr127

Proc c

Proc d Proc d

Proc e

gr32

Proc c

Dirty partition
(must be saved before use)

© 2009 Universität Karlsruhe, System Architecture Group 57

gr31

gr0

Register Stack Physical registers

Proc a

Proc b

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31

Clean partition
(can be used directly)

Register Stack Engine

gr127

Proc c

Proc d Proc d

Proc e

gr32

Proc c

© 2009 Universität Karlsruhe, System Architecture Group 58

gr31

gr0

Register Stack Physical registers

Proc a

Proc b

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31

Register Stack Engine

Proc c

gr32

Invalid partition
(can be used directly)

gr127

Proc c

Proc d Proc dProc d Proc d

© 2009 Universität Karlsruhe, System Architecture Group 59

Register Stack Physical registers

Proc a

Proc b

Backing storage

Proc a

Proc b

gr31

(can be used directly)

gr31

gr0

Proc a

Proc b

gr32

Proc c

Register Stack Engine

gr127

Proc c

© 2009 Universität Karlsruhe, System Architecture Group 60

Register Stack Physical registers

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31 gr31

gr0

Proc a

Proc b

gr32

Proc a

Proc b

Proc c

Register Stack Engine

gr127

Proc cProc c Proc c

© 2009 Universität Karlsruhe, System Architecture Group 61

Register Stack Physical registers

Proc a

Proc b

gr32

Backing storage

Proc a

Proc b

gr31 gr31

gr0

Proc a

Proc b

gr32

Register Stack Engine

gr127

© 2009 Universität Karlsruhe, System Architecture Group 62

Register Stack Physical registers

Proc a

Proc b
gr32

Backing storage

Proc agr31 gr31

gr0

Proc a

Proc b

gr32

Register Stack Engine

gr127

© 2009 Universität Karlsruhe, System Architecture Group 63

Register Stack Physical registers

Proc a

gr32

Backing storage

Proc agr31 gr31

gr0

Proc a
gr32

Proc a

Register Stack Engine

gr127

© 2009 Universität Karlsruhe, System Architecture Group 64

Register Stack Physical registers

Proc a

gr32

Backing storage

gr31 gr31

gr0

Proc a
gr32

Backing Store Switch for System Calls

bspstore

© 2009 Universität Karlsruhe, System Architecture Group 65

Register stackUser backing store Kernel backing store

bspstore

Backing Store Switch for System Calls

© 2009 Universität Karlsruhe, System Architecture Group 66

Register stackUser backing store Kernel backing store

bspstore

Backing Store Switch for System Calls

b

© 2009 Universität Karlsruhe, System Architecture Group 67

Register stackUser backing store Kernel backing store

bspstore

bspstore

Register Stack During IPC

bspstore

Msg

bspstore

gr32

gr39

© 2009 Universität Karlsruhe, System Architecture Group 68

Register stackBacking store A Backing store B

Register Stack During IPC

Msg
gr32

gr39

First 8 message registers
(64 bytes) are not saved and
restored to/from memory

© 2009 Universität Karlsruhe, System Architecture Group 69

Register stackBacking store A Backing store B

bspstore

