u-Kernel Construction (3)

TCBs and Address-Space Layouts

Thread Control Blocks (TCBs)

Fundamental Abstractions

|
= Thread
m Address space

= What is a thread?
= How to implement it?

Construction Conclusion

= Thread state must be saved/restored on thread
switch

= We need a Thread Control Block (TCB) per thread

= The currently executing thread’s TCB
(per processor)

TCB Structure

Myseh%
State

Resources —_—
KernelStackPtr

Scheduling
ReadyList
TimesliceLength
RemainingTimeslice
TotalQuantum
Priority
Wakeulest

Space
PDirCache

Stack[]

o © 2009 Universitat Karlsruhe, System Architecture Group

Construction Conclusion

m Thread state must be saved/restored on thread
switch
m We need a Thread Control Block (T
n TC&SﬂwﬁtMaMmﬂ@MMﬁmjs
TCBs implement threads
m We need to find
. Any thread s TCB usmg |ts gIobaI ID

""""""""
] l Bud

CB’

per thread

o © 2009 Universitat Karlsruhe, System Architecture Group

Thread ID

= Thread number
To find the TCB

= | hread version number

To make thread IDs “unique” in time

Thread No Version

Thread ID > TCB

Indirect via Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread no, %eax

movl thread_table(, %eax, 4), %eax

cmpl Off TCB_Myself(%eax), %ebx
jnz invalid_thread id

Thread Table

Off_TCB_Myself(%oeay) [Version | \ Thread No

If different, Thread ID
is outdated

o © 2009 Universitat Karlsruhe, System Architecture Group

Thread ID - TCB
Direct Address

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread no, %eax
addl offset, %eax

cmpl Off TCB_Myself(%eax), %ebx
jnz invalid_thread id

If different, Thread ID
is outdated

o © 2009 Universitat Karlsruhe, System Architecture Group

TCB area

Thread ID - TCB
Direct Address

movl thread id, %eax
movl %eax, %ebx

andl mask_version, %eax
shrl threadno_shift, %eax
addl offset, %eax

%%eax TCB pointer

= Mask out lower bits
= Bitshift
= Add offset

o © 2009 Universitat Karlsruhe, System Architecture Group

offset <

TCB area

10

Examples:
h I _ =4 kB pages, 4 kB TCBs
= 1 TCB per TLB entry
Thread ID Translation | || = 178 pernis enty
=» 8 TCBs per TLB entry

= Via Table =\ Via Computation
= No MMU required = Requires MMU
= Table access per TCB =\ No table access
= Many TCBs per TLB entry = Few TCBs per TLB entry
(TCBs on superpages) (sparsely populated area)

= TLB entry for table

= [CB pointer array = Virtual TCB array
requires 1M virtual may require > 256M
memory for 256k virtual memory for
potential threads 256k potential TCBs

n m p g r

S

0-Mapping Trick
Indirect Addressing

TCB Pointer Array (virtual memory)

\

S

0

Physical Memory

Frames containing pointers
to/virtual addresses of TCBs.

= [CB pointer array
requires 1M virtual
memory for 256k
potential threads

D © 2009 Universitét Karlsruhe, System Architecture Group

F

.

cmpl Off_TCB_Myself(%eax), %ebx
jnz invalid_thread_id

= Allocate physical parts of
table on demand
= Dependent on the max.
number of allocated TCBs
= Map unused parts to a
O-filled read-only (r/o) page
= Any access to unused
threads will result in a
NULL pointer
= Requires extra check a la
cmpl %eax, 0; jnz invalid
= Or: Map unused parts to a
r/o page filled with pointers
to a O-filled r/o page
= Any access to unused
threads will result in an
“invalid thread ID” (0)
= Avoids additional check

12

0-Mapping Trick
Direct Addressing

= Allocate physical memory for
TCBs on demand
= Dependent on the max.
number of allocated TCBs
= Map all remaining TCBs to a
O-filled read-only page
= Any access to unused
threads will result in
“invalid thread ID" (0)
= Avoids additional check

TCB Array (virtual memory)
n m p g r S

: ‘

Physical Memory

Frames containing TCBs. IJ

= Virtual TCB array
may require = 256M
virtual memory for
256k potential TCBs

13

[B) Current State (IA-32)

= Virtual TCB array

= 18 bit TIDs, 14 bit version number
= Max. 256k concurrent threads

= 2 kB per TCB

= Includes kernel stack
= Only ~256 B for the TCB proper

= 512 MB virtual memory
= 50% of the kernel address space

14

Basic Address-Space Layout

15

Address-Space Layout

32 bit, Virtual TCB Array

s User regions ("« Other kernel tables
= Physical memory

= Shared system < | Kernel code
regions _= TCBs

= Per-space system
regions

- 17 [71
]
onysmen i

o © 2009 Universitat Karlsruhe, System Architecture Group 1 6

Shared Region Synchronization

= We have
= Regions shared among all address spaces

= Separate page table per address space _
= Updates occur in dynamic region T
= May lead to inconsistencies _

= We need
= Some form of synchronization within _:
dynamic region N
= Make sure valid virtual memory mappings _

are synchronized T T T

. J \L J

Y - Y -
Dynamic Static
region region

17

o © 2009 Universitat Karlsruhe, System Architecture Group

TCB Area Synchronization
Basic Algorithm

= Dedicate one table as master

= Synchronize with master table on
page faults

= Page fault algorithm:

if (master entry valid) {
copy entry from master
}else {
create new entry in master
copy entry from master

}

Master Table
\\ v : J \ ~— J

Dynamic Static

region region

o © 2009 Universitat Karlsruhe, System Architecture Group 1 8

TCB Area Synchronization
Algorithm with 0-Mappings

= Use 0-mappings for invalid TCBs

= Thread creation requires TCB
modification
= Create 0-mappings on read faults
= Create TCB mappings on write faults

if (master entry not valid) {
if (read fault) {
create 0-mapping in master
} else {
create TCB entry in master

}
¥

copy entry from master Master Table

o © 2009 Universitat Karlsruhe, System Architecture Group

1
I N
| 1
L

i | B

. J \L J

Y - Y -
Dynamic Static
region region

TCB Area Synchronization
Modifying Mappings

Operation
incorrectly
fails

= Removing or modifying mappings can
not be handled lazily
= Must be handled brute force
= Avoid removing mappings
(i.e., do not remove TCB mappings)
= Potential problem
= Create 0-Mappings (invalid TCBs)
= Create a real TCB mapping |
= 0-Mappings must now be updated I

Master Table

i

\ v : J _ ~ : J
Dynamic Static
region region

20

o © 2009 Universitat Karlsruhe, System Architecture Group

TCB Area Synchronization
Modifying Mappings

= Page tables have multiple levels
= JA-32: page directories and page tables

= We only synchronize top level (page directory)
= Modifications in lower levels

visible in all spaces o [T () WU
ptab |1 I
b I 0 W]
Conclusion: |
= Synchronization of pdirs solves pdir) I

the modification problem pdir

Processor-Specific Memory

= Certain objects and = Solution: per-CPU
variables should be memory regions
processor local = Same virtual address
= Ready queues, CPU ID, = Different backing store
etc. = Avoids indirection table
= Prevents cache conflicts (i.e., no extra memory access)
= Will require frequent
access

22

o © 2009 Universitat Karlsruhe, System Architecture Group

Processor-Specific Memory

= One page table per CPU

= Most content identical
= Requires synchronization
(eagerly or lazily)
= Synchronization at page
directory level
= Small memory region is
CPU specific

Physical Memory

AN

23

Limitations
32 bit, Virtual TCBs

= L4Ka::Pistachio/IA-32
= 1CB area size = 256k threads

= 256 MB physical memory window
= Accessible at virtual address = physical address + offset

= Remaining physical memory not directly kernel-
accessible

= Available for users and paged kernel data (e.g., TCBs)

ZRTSV R OZVIEY R2568VIB

Physical Memory Window

= Used by the kernel for
= Page tables/-
= Kernel memory -
=« Kernel debugger\

= Only when kernel accesses
physical addresses

« Limit valid physical range to
remap size (256 MB)

= Or ...

25

Physical-to-Virtual Pagetable

Remap kernel-used pages

= Obtain virtual from physical address
= Walk physical-to-virtual ptab in software

= Access physical memory via virtual address

= Costs?
« Cache, TLB, runtime

26

Kernel Debugger (not performance critical)

= Might want/need to access memory
(maybe in different address space)

= Walk page table in software
= Remap on demand 4 mB)
= Optimization: check if already mapped

27

o © 2009 Universitat Karlsruhe, System Architecture Group

Booting

28

[} OS Booting

O © 2009 Universitét Karlsruhe, System Architecture Group

29

L4

o © 2009 Universitét Karlsruhe, System Architecture Group

“ -

Microkernel Booting

Microkernel
initialization

oS

L4 tables

30

Microkernel Booting

= Boot loader (e.g., Grub)

= Microkernel initializatio

= Basic memory

= Basic VM |
Exception handling
Processor (+ coprocessor)
Hardware interrupts
TCBs
Dispatching

\

N
N
AN
N\,
AN
N,
AN

I

= Create o, & root task
= Release memory of init code
= Start 5, & root

o © 2009 Universitat Karlsruhe, System Architecture Group

Case study: IA-64

Address Space Layout and
Memory Management

32

IA-64 Address Space Layout

61 60 Virtual Address

T

Unimplemented bits

Region Registers = Selects various region
Mo settings
1 = Region ID

= Address Space
Identifier (asip)

7 = Avoids TLB flushing

o © 2009 Universitat Karlsruhe, System Architecture Group

IA-64 Address Space Layout

61 60 Virtual Address

Region Registers

ry

User memory (task B)

Copy area (later lecture)

rry

Uncacheable phys. memory

g
¥ TCB memory

Kernel/physical memory

o © 2009 Universitat Karlsruhe, System Architecture Group

[A-64 Address Translation

61 60 Virtual Address

vaddr
Region Registers

ry

RID

B

RID vaddr paddr

size rights attrib

No need to
flush TLB

rry

Translation Lookaside Buffer

A 4

63 Physical Address

o © 2009 Universitat Karlsruhe, System Architecture Group

35

61 60

Region Registers

ry

rry

o © 2009 Universitat Karlsruhe, System Architecture Group

IA-64 TLB Pinning

Virtual Address 0

Translation Lookaside Buffer
RID vaddr paddr size rights attrib

No TLB faults on
kernel memory

trg
try

tr,,

36

IA-64 Kernel Region

Distance may be too far

64

LI
gl

n fixed “idempotent” mappings Fixed mapping for
CPU-local memory

paddr = vaddr — 7x261

o © 2009 Universitat Karlsruhe, System Architecture Group

37

IA-64 Kernel Region

May overlap with
existing mapping

7x261 l

64

H,

——
n fixed “idempotent” mappings

o © 2009 Universitat Karlsruhe, System Architecture Group

38

IA-64 Kernel Region

64

Syscall page
7X261 l
[[#,
|\ N—
Y ~"
offset n fixed “idempotent” mappings

o © 2009 Universitat Karlsruhe, System Architecture Group

paddr = vaddr — 7x261 — offset

39

