u-Kernel Construction (1)

Overview, Motivation, Problems

[Staff

= Lecturer: Raphael Neider
= PhD student

= Meeting Times
= Tue, 14:00-15:30h
= Bldg. 50.34, Room 161

[") Background

= L4Ka project (http://l14ka.org)
s State-of-the-art in microkernel construction

= L4Ka::Pistachio
= Microkernel

= IDL4
= Interface compiler

= Virtual machines
= Target application

[_) Purpose of Operating Systems

= Abstract from the hardware
= Interrupts, exceptions
= Provide common services
= Address spaces and protection
= Threads and concurrency control
= Persistency of data
= Bridge semantic gap
= Application demands vs. hardware provides

Purpose

/
_

HElGWETE

o © 2009 University of Karlsruhe, System Architecture Group

[_) Operating System Designs

application-specific

u-kernel with object interfaces

ﬁ Standard interface

v"User-defined interfaces

v"Runs subsystems from
different vendors

v Good flexibility

v"Good minimalism

v"Good performance

x Difficult to use

monolithic

(/Ultimate flexibility

v"Ultimate minimalism

v"Ultimate performance

v"Normal programming
paradigm

x Proprietary and

D © 2009 University of Karlsruhe, System Architecture Group

incompatible solutions

* Different paradigm 7 St e

v"Runs programs from
different vendors

x Compromised
interface

x Poor performance

x Inflexible

[") Monolithic Kernels — Advantages

= Kernel has access to everything, potentially
= All optimizations are possible

= All technigues/mechanisms/concepts can
be implemented

= Kernel extended by adding more code

App || App || App

TCP/IP EXT2

Linux

Driver Driver

Hardware l

Linux Kernel Evolution (.tar.gz)

70
60
50

40

Size (MB)

30

20 AMAAMA MA MMAMOLBUIMBMENAMMAML A MAMAAAA A AAAA SLASMAMUASMARAMENSIIN ARSI MMM

A

i

10

0
1994-03-13 1996-12-07 1999-09-03 2002-05-30 2005-02-23 2007-11-20

o © 2009 University of Karlsruhe, System Architecture Group

I_) Approaches to Tackling Complexity

= Monolithic approaches

= Layered Kernels

= Modular Kernels

= Object Oriented Kernels
= Alternatives

= Extensible Kernels

=« Microkernels

a History

= Monolithic kernels

= 1st-generation p-kernels
= Mach CMU, OSF External Pager
= Chorus inria, chorus
= Amoeba \Vrije Universiteit

= (L3) GMD User-Level Driver

o © 2009 University of Karlsruhe, System Architecture Group

10

o © 2009 University of Karlsruhe, System Architecture Group

Monolithic System

u-Kernel Based
Systems

Smaller trusted
computing base

11

u-Kernel Based
Systems

3S space

Monolithic System K-Kernel Based
Monolithic System

er trusted
puting base

12

o © 2009 University of Karlsruhe, System Architecture Group

u-Kernel Based
Systems

Monolithic System M-Kernel Based Multi-Server System
Monolithic System

o © 2009 University of Karlsruhe, System Architecture Group

13

HElGWETE

2009 University of Karlsruhe, System

Architecture Group

u-Kernel Based
Systems

—

Server

Multi-Server System

14

Microkernel Based Systems

Monolithic System M-Kernel Based
Monolithic System

M-Kernel Based
Server Consolidation

Multi-Server System

o © 2009 University of Karlsruhe, System Architecture Group

15

Microkernel Based Systems

Monolithic System u-Kernel Based M-Kernel Based
Monolithic System Server Consolidation

Coupling with
Real-Time Systems

Multi-Server System

16

o © 2009 University of Karlsruhe, System Architecture Group

o © 2009 Universi

Microkernel Based Systems

Monolithic System M-Kernel Based M-Kernel Based Coupling with
Monolithic System Server Consolidation ~ Real-Time Systems

Multi-Server System Coupling with Thin Clients Specialized Systems
Secure Systems

17

ity of Karlsruhe, System Architecture Group

Microkernel Based Systems:
The Challenge

18

ﬁh Grea mmlsblsaSter

= Coexistence of different

- SLOW
= INFLEXIBLE
 LARGE

= Safety IBM WorkPlace OS:
~2,000,000,000 US$

19

o © 2009 University of Karlsruhe, System Architecture Group

The 100-us Disaster

25 MHz 386 == 50 MHz 486 == 90 MHz Pentium === 133 MHz Alpha

o © 2009 University of Karlsruhe, System Architecture Group

20

IPC Costs (486, 50 MHz)

el Mach
400 -
300 A
200 -
L4

100

-
raw copy

2000 4000 6000

msg len

21

o © 2009 University of Karlsruhe, System Architecture Group

|_) Overhead due to IPC

50% —

45% +

40% L

35% +

30% +

25% +

20% +

overhead due to IPC

15% +

10% +

5% L.

0%

= = =Mach 486

Mach Alpha
Chorus 486
= = =Spin Alpha
— L4 Pentium

i
Y
h
\
%
A
Y
\‘
b
Y

~140.000
cycles

D © 2009 University of Karlsruhe, System Architecture Group

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800

average cycles between successive IPCs

22

IIIIIII 14 14
(7 L4 IPC: '95—00

0.04 ps (P 11l 500 MHz)
(hopefully)

250

0.47 us (P 11l 500 MHz)

200+

0.36 us (P 11l 500 MHz)

[cycles]

150
140+

120- 0.73 ps (Pentium 166 MHz)

100+ 100-

0.91ps (R4600 100 MHzZ)
80-

50_ 60_
0.10 s (21164 433 MHZ)

40
20

Pentll P3Sysops P3Lipc? "

Pentium R4600 Alpha

23

D © 2009 University of Karlsruhe, System Architecture Group

[_) L4 IPC Performance

P4 P3

D © 2009 University of Karlsruhe, System Architecture Group

ltanic1

Itanic2

[cycles]

140
120
100
80
60
40
20

Pentium

R4600

0.35 ps

0.23 ps
0.21 ps

0.16 ps

0.73 ps

0.91 ps

0.10 ps

(P4 2.800 GHz)

(P 111 800 MHz)
(Itanicl 800 MHz)

(Itanic2 900 MHz)

(Pentium 166 MHz)

(R4600 100 MHz)

(21164 433 MHz)

24

-
[") L4Ka::Pistachio (today)

e |A32 800MHz Inter-AS
[tanium1 800MHz

m— |tanium2 1GHz

— 1A32 800MHz Intra-AS

[us] 0.70

0.60

0.50

0.40+

0.30
0.20 /

0.10

0.00 v

D © 2009 University of Karlsruhe, System Architecture Group

16

1 I

I

20 24 28 32 36 40 44 48 52 56

message length in words

60

25

D Thesis

A p-kernel does the job if
= properly designed and
= carefully implemented.

¢ Minimality

+ Architectural »

Integration

+ Elegance

+ Efficiency

* Flexibility

26

o © 2009 University of Karlsruhe, System Architecture Group

27

-
I_) Processor-DRAM Gap (Latency)

—— UProc
60%lyr.

1000 | oo

(14) 3}
Moore's Law
S 100 | o A
C
g Processor-Memory
S Performance Gap
5 (grows 50% / year)
o
10 e
DRAM
7%lyr
DRAM
1
—++—+——+—+——+—
O d N M < 1O ©O I 0 0O O 04 AN M < 1 © - 0 oo O
0 0O 0 W W W W W 0O W ©© o o O O O O O o o O
O O OO0 O O O O O O OO o o o o O o o o o O
A d d d d d d =S =—=H A = A A A —Hd «—H «H «=H «=H d «
Time

Slide originally from
Dave Patterson, Parcon 98

28

D © 2009 University of Karlsruhe, System Architecture Group

[") Today’s Situation: Microprocessor

= Microprocessor-DRAM performance gap

= Time of a full cache miss in instructions executed

1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 instr. = 136 instr.
2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 instr. = 320 instr.
3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 instr. = 648 instr.

« 1/2X latency x 3X clock rate x 3X instr/clock = =4.5X
= Minimize kernel-induced cache misses!

Slide originally from
Dave Patterson, Parcon 98

D © 2009 University of Karlsruhe, System Architecture Group

29

a Cache Working Sets

98.83%
1.17%

99.85%

o © 2009 University of Karlsruhe, System Architecture Group

L1 cache
= 1024 cache lines (16K + 16K)
= 12 lines used for IPC

L2 cache
= 8192 cache lines (256K)
= 12 lines used for IPC

0.15%

30

[_) Multi-Processor Architectures

= Synchronization

= Bus locks

= Inter-processor interrupts
= NUMA behavior

= AMD Opteron

« Simultaneous multithreading
(HyperThreading)

31

[_) A Perfect Microkernel?

Proving minimality, necessarity and completeness would be
nice but is impossible, since there is no agreed-upon metric
and all is Turing-equivalent.

Jochen Liedtke, On p-Kernel Construction, SOSP ‘95

32

l Software engineering l
l Fault tolerance l

l Security l
l Performance l
l Memory l l Quality of service l

Small Kernel # Small Problem

l Formal verification l
l Devices l l Scheduling l
l Multiprocessor l

l Persistence l
l Portability l

O

33

[_) p-Kernel Design

= A p-kernel does no real work

= M-kernel services are only required to overcome p-kernel
constraints

= Therefore, y-kernels have to be infinitely fast!

Minimality is the key!
~ N

¢ Threads IPC
¢ Address Spaces Mapping

- J

D © 2009 University of Karlsruhe, System Architecture Group

Threads — IPC

= Enable controlled communication across address
space boundaries

o © 2009 University of Karlsruhe, System Architecture Group

35

a User-Level Device Drivers

a Address Spaces — Mapping

= Setup shared memory regions

37

a Address Spaces — Mapping

= Revoke shared memory regions

38

a Address Spaces — Mapping

= Donate memory regions to others
= Frees up virtual memory in the granting space
= Required for file servers, ... (at least useful)

39

o © 2009 University of Karlsruhe, System Architecture Group

res «IPC

a Page Fault Handling

map msg

40

o © 2009 University of Karlsruhe, System Architecture Group

continue msg.~

Kernel modifies register
contents according to reply
message

41

Recursive Address Spaces

Application

Application Application
Application

AN

Inltlal AS
Phy5|cal Memory

Drlver

Drlver

o © 2009 University of Karlsruhe, System Architecture Group

Mach Virtual Memory

Application

/" Jplication Ar ~lication
Ex rna °age b

Physical Memory

Paging Policy

o © 2009 University of Karlsruhe, System Architecture Group

|_) Tolerated Concepts

A concept is tolerated in the p-kernel if ...

competing user-level implementations
would violate system requirements.

44

[") Functional Requirements

= Principle of independence

= Subsystem S provides guarantees
independent of S’

= Principle of integrity

= Other subsystems can rely on
independence guarantees

*——0

O

45

[_) Requirement: Address Spaces

= U-kernel must hide hardware address spaces
= Otherwise violates integrity principle

= But must permit arbitrary protection schemes
[and non-protection]

s Solution: recursive construction of address
spaces outside the kernel

46

[_) Requirement: Threads

= A thread 1 is an activity inside an address
space with

= registers

= instruction pointer
= stack pointer

= State information

= 0(T) := address space of thread t

47

[_) Why Tolerate Threads in p-kernels?

= The decisive reason: o(1)

= Modifications to address spaces
o(t) ;=0
must be controlled by the kernel

= Thus a notion of 1 that represents the above
activity

= Additionally: concurrency

48

[_) Requirement: IPC

IPC = inter-process communication
Inherently required in p-kernel

Classical approach
« Transfer messages between threads

Contractual
= Sender determines what to send
= Receiver agrees to receive the information

49

[") Size Comparison

Linux (all platforms)
5.7 Million lines

Mach 4 (x86)

90,000 line
N> | 4Ka::Pistachio (x86+AMD64)

45,000 lines

I 1 ——

D © 2009 University of Karlsruhe, System Architecture Group

(L) In this course ...

You do learn

How to design a pK
Why L4 is soo000 fast

Reasons why others
failed

Nitty-gritty details about
IA32

Some OS bashing ...
More cool stuff ...

You don’t learn

How to construct a
system on a pK (=>SDI)

Linux dos and don‘ts

Operating system X is
better than Y

51

6 Plan

= Overview, Motivation, Problems

= Threads, System-calls, and Thread Switching
= TCBs and Address Space Layout

= [PC Functionality and Implementation

= Dispatching

= Small Address Spaces - IPC

= Virtual Memory and Mapping Database

= Interrupts, Exceptions and CPU Virtualization
= Security

Isruhe, System Architecture Group

52

