u-Kernel Construction (1)

Overview, Motivation, Problems
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[") Background

= L4Ka project (http://l14ka.org)
s State-of-the-art in microkernel construction

= L4Ka::Pistachio
= Microkernel

= IDL4
= Interface compiler

= Virtual machines
= Target application




[_) Purpose of Operating Systems

= Abstract from the hardware
= Interrupts, exceptions
= Provide common services
= Address spaces and protection
= Threads and concurrency control
= Persistency of data
= Bridge semantic gap
= Application demands vs. hardware provides



Purpose
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[_) Operating System Designs

application-specific

u-kernel with object interfaces

ﬁ Standard interface

v"User-defined interfaces

v"Runs subsystems from
different vendors

v Good flexibility

v"Good minimalism

v"Good performance

x Difficult to use

monolithic

(/Ultimate flexibility

v"Ultimate minimalism

v"Ultimate performance

v"Normal programming
paradigm

x Proprietary and
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incompatible solutions

* Different paradigm 7 St e

v"Runs programs from
different vendors

x Compromised
interface

x Poor performance

x Inflexible




[") Monolithic Kernels — Advantages

= Kernel has access to everything, potentially
= All optimizations are possible

= All technigues/mechanisms/concepts can
be implemented

= Kernel extended by adding more code

App || App || App
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I_) Approaches to Tackling Complexity

= Monolithic approaches

= Layered Kernels

= Modular Kernels

= Object Oriented Kernels
= Alternatives

= Extensible Kernels

=« Microkernels



a History

= Monolithic kernels

= 1st-generation p-kernels
= Mach CMU, OSF External Pager
= Chorus inria, chorus
= Amoeba \Vrije Universiteit

= (L3) GMD User-Level Driver
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Monolithic System

u-Kernel Based
Systems

Smaller trusted
computing base
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u-Kernel Based
Systems

3S space

Monolithic System K-Kernel Based
Monolithic System

er trusted
puting base
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u-Kernel Based
Systems

Monolithic System M-Kernel Based Multi-Server System
Monolithic System
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u-Kernel Based
Systems

—

Server

Multi-Server System
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Microkernel Based Systems

Monolithic System M-Kernel Based
Monolithic System

M-Kernel Based
Server Consolidation

Multi-Server System
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Microkernel Based Systems

Monolithic System u-Kernel Based M-Kernel Based
Monolithic System Server Consolidation

Coupling with
Real-Time Systems

Multi-Server System
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Microkernel Based Systems

Monolithic System M-Kernel Based M-Kernel Based Coupling with
Monolithic System Server Consolidation ~ Real-Time Systems

Multi-Server System Coupling with Thin Clients Specialized Systems
Secure Systems
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Microkernel Based Systems:
The Challenge
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= Coexistence of different

- SLOW
= INFLEXIBLE
 LARGE

= Safety IBM WorkPlace OS:
~2,000,000,000 US$
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The 100-us Disaster

25 MHz 386 == 50 MHz 486 == 90 MHz Pentium === 133 MHz Alpha
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IPC Costs (486, 50 MHz)
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|_) Overhead due to IPC
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(7 L4 IPC: '95—00
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[_) L4 IPC Performance

P4 P3
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ltanic1
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[") L4Ka::Pistachio (today)
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D Thesis

A p-kernel does the job if
= properly designed and
= carefully implemented.

¢ Minimality

+ Architectural »

Integration

+ Elegance

+ Efficiency

* Flexibility
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I_) Processor-DRAM Gap (Latency)

—— UProc
60%lyr.

1000 | oo

(14 ) 3}
Moore's Law
S 100 | o A
C
g Processor-Memory
S Performance Gap
5 (grows 50% / year)
o
10 e
DRAM
7%lyr
DRAM
1
—++—+——+—+——+—
O d N M < 1O ©O I 0 0O O 04 AN M < 1 © - 0 oo O
0 0O 0 W W W W W 0O W ©© o o O O O O O o o O
O O OO0 O O O O O O OO o o o o O o o o o O
A d d d d d d =S =—=H A = A A A —Hd «—H «H «=H «=H d «
Time

Slide originally from
Dave Patterson, Parcon 98

28

D © 2009 University of Karlsruhe, System Architecture Group



[") Today’s Situation: Microprocessor

= Microprocessor-DRAM performance gap

= Time of a full cache miss in instructions executed

1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 instr. = 136 instr.
2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 instr. = 320 instr.
3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 instr. = 648 instr.

« 1/2X latency x 3X clock rate x 3X instr/clock = =4.5X
= Minimize kernel-induced cache misses!

Slide originally from
Dave Patterson, Parcon 98
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a Cache Working Sets

98.83%
1.17%

99.85%
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L1 cache
= 1024 cache lines (16K + 16K)
= 12 lines used for IPC

L2 cache
= 8192 cache lines (256K)
= 12 lines used for IPC

0.15%
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[_) Multi-Processor Architectures

= Synchronization

= Bus locks

= Inter-processor interrupts
= NUMA behavior

= AMD Opteron

« Simultaneous multithreading
(HyperThreading)
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[_) A Perfect Microkernel?

Proving minimality, necessarity and completeness would be
nice but is impossible, since there is no agreed-upon metric
and all is Turing-equivalent.

Jochen Liedtke, On p-Kernel Construction, SOSP ‘95
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l Software engineering l
l Fault tolerance l

l Security l
l Performance l
l Memory l l Quality of service l

Small Kernel # Small Problem

l Formal verification l
l Devices l l Scheduling l
l Multiprocessor l

l Persistence l
l Portability l

O

33



[_) p-Kernel Design

= A p-kernel does no real work

= M-kernel services are only required to overcome p-kernel
constraints

= Therefore, y-kernels have to be infinitely fast!

Minimality is the key!
~ N

¢ Threads IPC
¢ Address Spaces Mapping

- J
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Threads — IPC

= Enable controlled communication across address
space boundaries
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a User-Level Device Drivers




a Address Spaces — Mapping

= Setup shared memory regions
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a Address Spaces — Mapping

= Revoke shared memory regions
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a Address Spaces — Mapping

= Donate memory regions to others
= Frees up virtual memory in the granting space
= Required for file servers, ... (at least useful)
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res «IPC

a Page Fault Handling

map msg
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continue msg.~

Kernel modifies register
contents according to reply
message
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Recursive Address Spaces

Application

Application Application
Application

AN

Inltlal AS
Phy5|cal Memory

Drlver

Drlver
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Mach Virtual Memory

Application

/" Jplication Ar ~lication
Ex rna °age b

Physical Memory

Paging Policy
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|_) Tolerated Concepts

A concept is tolerated in the p-kernel if ...

competing user-level implementations
would violate system requirements.

44



[") Functional Requirements

= Principle of independence

= Subsystem S provides guarantees
independent of S’

= Principle of integrity

= Other subsystems can rely on
independence guarantees

*——0

O
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[_) Requirement: Address Spaces

= U-kernel must hide hardware address spaces
= Otherwise violates integrity principle

= But must permit arbitrary protection schemes
[and non-protection]

s Solution: recursive construction of address
spaces outside the kernel
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[_) Requirement: Threads

= A thread 1 is an activity inside an address
space with

= registers

= instruction pointer
= stack pointer

= State information

= 0(T) := address space of thread t
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[_) Why Tolerate Threads in p-kernels?

= The decisive reason: o(1)

= Modifications to address spaces
o(t) ;=0
must be controlled by the kernel

= Thus a notion of 1 that represents the above
activity

= Additionally: concurrency
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[_) Requirement: IPC

IPC = inter-process communication
Inherently required in p-kernel

Classical approach
« Transfer messages between threads

Contractual
= Sender determines what to send
= Receiver agrees to receive the information
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[") Size Comparison

Linux (all platforms)
5.7 Million lines

Mach 4 (x86)

90,000 line
N> | 4Ka::Pistachio (x86+AMD64)

45,000 lines

I 1 ——
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(L) In this course ...

You do learn

How to design a pK
Why L4 is soo000 fast

Reasons why others
failed

Nitty-gritty details about
IA32

Some OS bashing ...
More cool stuff ...

You don’t learn

How to construct a
system on a pK (=>SDI)

Linux dos and don‘ts

Operating system X is
better than Y
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6 Plan

= Overview, Motivation, Problems

= Threads, System-calls, and Thread Switching
= TCBs and Address Space Layout

= [PC Functionality and Implementation

= Dispatching

= Small Address Spaces - IPC

= Virtual Memory and Mapping Database

= Interrupts, Exceptions and CPU Virtualization
= Security
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