
© 2009 University of Karlsruhe, System Architecture Group

µµ--Kernel Construction (1)Kernel Construction (1)

Overview, Motivation, Problems

2
© 2009 University of Karlsruhe, System Architecture Group

Staff

� Lecturer: Raphael Neider

� PhD student

� Meeting Times

� Tue, 14:00-15:30h

� Bldg. 50.34, Room 161

3
© 2009 University of Karlsruhe, System Architecture Group

Background

� L4Ka project (http://l4ka.org)

� State-of-the-art in microkernel construction

� L4Ka::Pistachio

� Microkernel

� IDL4

� Interface compiler

� Virtual machines

� Target application

4
© 2009 University of Karlsruhe, System Architecture Group

Purpose of Operating Systems

� Abstract from the hardware

� Interrupts, exceptions

� Provide common services

� Address spaces and protection

� Threads and concurrency control

� Persistency of data

� Bridge semantic gap

� Application demands vs. hardware provides

5
© 2009 University of Karlsruhe, System Architecture Group

Purpose

HardwareHardware

Operating
System

Operating
System

AppApp AppAppAppApp

ApplicationApplicationApplication

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

HardwareHardwareHardware
bit

wordregister
byte

instruction

Operating SystemOperating SystemOperating Systemfile

address space

socket

semaphore

IPC

process

monitor

event
segment

mutex

priority

ACL
thread

pipepagetask

schedule

6
© 2009 University of Karlsruhe, System Architecture Group

Operating System Designs

application-specific monolithic

µ-kernel with object interfaces

�Ultimate flexibility
�Ultimate minimalism
�Ultimate performance
�Normal programming

paradigm
� Proprietary and

incompatible solutions

�Standard interface
�Runs programs from

different vendors
� Compromised

interface
� Poor performance
� Inflexible

�Standard interface
�User-defined interfaces
�Runs subsystems from

different vendors
�Good flexibility
�Good minimalism
�Good performance
� Difficult to use
� Different paradigm

7
© 2009 University of Karlsruhe, System Architecture Group

Monolithic Kernels – Advantages

� Kernel has access to everything, potentially

� All optimizations are possible

� All techniques/mechanisms/concepts can
be implemented

� Kernel extended by adding more code

AppApp AppAppAppApp

HardwareHardware

LinuxLinux

Driver Driver

TCP/IP EXT2

8
© 2009 University of Karlsruhe, System Architecture Group

0

10

20

30

40

50

60

70

1994-03-13 1996-12-07 1999-09-03 2002-05-30 2005-02-23 2007-11-20

S
iz

e
(M

B
)

<=2.0 2.1 2.2 2.3 2.4 2.5 2.6.16 2.6

Linux Kernel Evolution (.tar.gz)

Linux 2.6.25:Linux 2.6.25:

5.7M lines of code5.7M lines of code
(using “sloccount”)

9
© 2009 University of Karlsruhe, System Architecture Group

Approaches to Tackling Complexity

� Monolithic approaches

� Layered Kernels

� Modular Kernels

� Object Oriented Kernels

� Alternatives

� Extensible Kernels

� Microkernels

10
© 2009 University of Karlsruhe, System Architecture Group

History

� Monolithic kernels

� 1st-generation µ-kernels

� Mach

� Chorus

� Amoeba

� (L3)

� 2nd-generation µ-kernels

� (Spin)

� Exokernel

� L4

CMU, OSF

Inria, Chorus

Vrije Universiteit

GMD

U Washington

MIT

GMD / IBM / UKa Recursive Address SpacesRecursive Address Spaces

External PagerExternal Pager

UserUser --Level DriverLevel Driver

11
© 2009 University of Karlsruhe, System Architecture Group

µ-Kernel Based
Systems

HardwareHardware

LinuxLinux

HardwareHardware

L4 µ-kernelL4 µ-kernel

L4LinuxL4Linux

AppApp AppAppAppApp AppApp AppAppAppApp

Monolithic System µ-Kernel Based
Monolithic System Smaller trusted

computing base

12
© 2009 University of Karlsruhe, System Architecture Group

Smaller trusted
computing base

µ-Kernel Based
Systems

HardwareHardware

LinuxLinux

HardwareHardware

L4 µ-kernelL4 µ-kernel

L4LinuxL4Linux

AppApp AppAppAppApp AppApp AppAppAppApp

Monolithic System µ-Kernel Based
Monolithic System

What if address spaceWhat if address space

switches were for free?switches were for free?

13
© 2009 University of Karlsruhe, System Architecture Group

µ-Kernel Based
Systems

AppApp AppAppAppApp

HardwareHardware

LinuxLinux

Driver Driver

TCP/IP EXT2

HardwareHardware

L4 µ-kernelL4 µ-kernel

AppApp AppAppAppApp

L4LinuxL4Linux

Driver Driver

TCP/IP EXT2

Monolithic System µ-Kernel Based
Monolithic System

Multi-Server System

Net DrvNet Drv IDE DrvIDE Drv

TCP/IPTCP/IP EXT2EXT2

HardwareHardware

L4 µ-kernelL4 µ-kernel

AppApp AppAppAppApp

14
© 2009 University of Karlsruhe, System Architecture Group

µ-Kernel Based
Systems

Net DrvNet Drv IDE DrvIDE Drv

TCP/IPTCP/IP EXT2EXT2

HardwareHardware

LinuxLinux

HardwareHardware

L4 µ-kernelL4 µ-kernel

L4LinuxL4Linux

AppApp AppAppAppApp AppApp AppAppAppApp

Driver Driver

TCP/IP EXT2

Driver Driver

TCP/IP EXT2

Monolithic System µ-Kernel Based
Monolithic System

HardwareHardware

L4 µ-kernelL4 µ-kernel

Multi-Server System

AppApp AppAppAppApp

HardwareHardwareHardware
bit

wordregister
byte

instruction

ApplicationApplicationApplication

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

µµµ---KernelKernelKernel
address space

thread

ServerServerServerPage
ServerServerServerMutex ServerServerServerSocket ServerServerServer

File

15
© 2009 University of Karlsruhe, System Architecture Group

Microkernel Based Systems

HardwareHardware

L4 µ-kernelL4 µ-kernel

L4LinuxL4Linux

AppApp AppAppAppApp

µ-Kernel Based
Server Consolidation

L4LinuxL4Linux L4LinuxL4Linux

Driver Driver

TCP/IP EXT2

Hardware

Linux

App AppApp

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 µ-kernel

L4Linux

App AppApp

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 µ-kernel

Multi-Server System

App AppApp

16
© 2009 University of Karlsruhe, System Architecture Group

Microkernel Based Systems

HardwareHardware

L4 µ-kernelL4 µ-kernel

AppApp AppAppAppApp

Coupling with
Real-Time Systems

L4LinuxL4Linux RT
System

RT
System

Driver Driver

TCP/IP EXT2

Hardware

Linux

App AppApp

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 µ-kernel

L4Linux

App AppApp

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 µ-kernel

Multi-Server System

App AppApp

Hardware

L4 µ-kernel

Linux

App AppApp

µ-Kernel Based
Server Consolidation

Linux Linux

17
© 2009 University of Karlsruhe, System Architecture Group

Microkernel Based Systems

Driver Driver

TCP/IP EXT2

Hardware

Linux

App AppApp

Monolithic System

Driver Driver

TCP/IP EXT2

Hardware

L4 µ-kernel

L4Linux

App AppApp

µ-Kernel Based
Monolithic System

Net Drv IDE Drv

TCP/IP EXT2

Hardware

L4 µ-kernel

Multi-Server System

App AppApp

Hardware

L4 µ-kernel

Linux

App AppApp

µ-Kernel Based
Server Consolidation

Linux Linux

Hardware

L4 µ-kernel

App AppApp

Coupling with
Real-Time Systems

L4Linux
RT

System

Hardware

L4 µ-kernel

App AppApp

Thin Clients

Native
Java

Embd.
Java
App

Hardware

L4 µ-kernel

Specialized Systems

Specialized
Component

Hardware

L4 µ-kernel

App AppApp

Coupling with
Secure Systems

L4Linux
Secure
System

18
© 2009 University of Karlsruhe, System Architecture Group

Microkernel Based Systems:
The Challenge

HardwareHardware

L4 µ-kernelL4 µ-kernel

Net DrvNet Drv IDE DrvIDE Drv

TCP/IPTCP/IP

Exec ServExec Serv

SCSI DrvSCSI Drv KBD DrvKBD Drv

EXT2 FSEXT2 FS MM ServMM Serv

Proc ServProc ServGFX ServGFX Serv Swap ServSwap Serv

shshgccgcclesslessemacsemacs twmtwm

Regu
lar O

S ope
ration

s

Regu
lar O

S ope
ration

s

requi
re lot

s of c
omm

unica
tion

requi
re lot

s of c
omm

unica
tion

19
© 2009 University of Karlsruhe, System Architecture Group

The Great Promise

� Coexistence of different

� APIs

� File systems

� OS personalities

� Flexibility

� Extensibility

� Simplicity

� Maintainability

� Security

� Safety IBM IBM WorkPlaceWorkPlace OS: OS:

~2,000,000,000 US$~2,000,000,000 US$

� SLOW

� INFLEXIBLE

� LARGE

The Big Disaster

20
© 2009 University of Karlsruhe, System Architecture Group

25 MHz 386 50 MHz 486 90 MHz Pentium 133 MHz Alpha

The 100The 100--µµs Disasters Disaster

21
© 2009 University of Karlsruhe, System Architecture Group

0

50

100

0 50 100 150

msg len

[µs]

Mach

L4

IPC Costs (486, 50 MHz)

0

100

200

300

400

0 2000 4000 6000

msg len

Mach

raw copy

[µs]

L4

22
© 2009 University of Karlsruhe, System Architecture Group

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800

Mach 486

Mach Alpha

Chorus 486

Spin Alpha

L4 Pentium

average cycles between successive IPCs

ov
er

he
ad

 d
ue

 to
 IP

C

Overhead due to IPC

~2.400 cycles

~140.000
cycles

23
© 2009 University of Karlsruhe, System Architecture Group

L4 IPC: ’95—’00

82

16

23

36

55

7

38

0

20

40

60

80

100

120

140

Pentium R4600 Alpha

0.73 µs (Pentium 166 MHz)

0.91 µs (R4600 100 MHz)

0.10 µs (21164 433 MHz)

[cycles]

236

180

20
0

50

100

150

200

250

Pent III P3 Sysops P3 Lipc ?

0.47 µs (P III 500 MHz)

0.36 µs (P III 500 MHz)

0.04 µs (P III 500 MHz)

(hopefully)

24
© 2009 University of Karlsruhe, System Architecture Group

82

16

23

36

55

7

38

0

20

40

60

80

100

120

140

Pentium R4600 Alpha

0.73 µs (Pentium 166 MHz)

0.91 µs (R4600 100 MHz)

0.10 µs (21164 433 MHz)

[cycles]

L4 IPC Performance

984

180
169

148

0

20

40

60

80

100

120

140

160

180

200

220

P4 P3 Itanic1 Itanic2

0.23 µs (P III 800 MHz)

0.16 µs (Itanic2 900 MHz)

0.21 µs (Itanic1 800 MHz)

0.35 µs (P4 2.800 GHz)

25
© 2009 University of Karlsruhe, System Architecture Group

L4Ka::Pistachio (today)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

message length in words

[us]

IA32 800MHz Inter-AS

Itanium1 800MHz

Itanium2 1GHz

IA32 800MHz Intra-AS

26
© 2009 University of Karlsruhe, System Architecture Group

Thesis

A A µµ--kernel does the job ifkernel does the job if

�� properly designed andproperly designed and

�� carefully implemented.carefully implemented.

� Minimality

� Architectural
Integration

� Elegance

� Efficiency

� Flexibility

27
© 2009 University of Karlsruhe, System Architecture Group

Thesis

A A µµ--kernel does the job ifkernel does the job if

�� properly designed andproperly designed and

�� carefully implemented.carefully implemented.

� Minimality

� Architectural
Integration

� Elegance

� Efficiency

� Flexibility

When analyzing IPC performance,When analyzing IPC performance,

cycles are not the only thing to consider!cycles are not the only thing to consider!

28
© 2009 University of Karlsruhe, System Architecture Group

Processor-DRAM Gap (Latency)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

DRAM

CPU

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

1
9
8
2

Processor-Memory
Performance Gap
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

Slide originally from
Dave Patterson, Parcon 98

29
© 2009 University of Karlsruhe, System Architecture Group

Today’s Situation: Microprocessor

� Microprocessor-DRAM performance gap

� Time of a full cache miss in instructions executed
1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 instr. = 136 instr.

2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 instr. = 320 instr.

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 instr. = 648 instr.

� 1/2X latency x 3X clock rate x 3X instr/clock ⇒ ≈4.5X

� Minimize kernel-induced cache misses!

Slide originally from
Dave Patterson, Parcon 98

30
© 2009 University of Karlsruhe, System Architecture Group

99.85%

0.15%

L2 cache

� 8192 cache lines (256K)

� 12 lines used for IPC

98.83%

1.17%

L1 cache

� 1024 cache lines (16K + 16K)

� 12 lines used for IPC

Cache Working Sets

31
© 2009 University of Karlsruhe, System Architecture Group

Multi-Processor Architectures

� Synchronization

� Bus locks

� Inter-processor interrupts

� NUMA behavior

� AMD Opteron

� Simultaneous multithreading
(HyperThreading)

32
© 2009 University of Karlsruhe, System Architecture Group

A Perfect Microkernel?

Proving minimality, necessarity and completeness would be
nice but is impossible, since there is no agreed-upon metric
and all is Turing-equivalent.

Jochen Liedtke, On µ-Kernel Construction, SOSP ‘95

33
© 2009 University of Karlsruhe, System Architecture Group

Small Kernel ≠ Small Problem

SecuritySecurity

PerformancePerformance

MultiprocessorMultiprocessor

SchedulingScheduling

MemoryMemory

DevicesDevices

PersistencePersistence

Fault toleranceFault tolerance

Quality of serviceQuality of service

PortabilityPortability

Formal verificationFormal verification

Software engineeringSoftware engineering

34
© 2009 University of Karlsruhe, System Architecture Group

�� ThreadsThreads

�� Address SpacesAddress Spaces

IPCIPC

MappingMapping

µ-Kernel Design

� A µ-kernel does no real work

� µ-kernel services are only required to overcome µ-kernel
constraints

� Therefore, µ-kernels have to be infinitely fast!

MinimalityMinimality is the key!is the key!

35
© 2009 University of Karlsruhe, System Architecture Group

Threads – IPC

A

B

C

� Enable controlled communication across address
space boundaries

36
© 2009 University of Karlsruhe, System Architecture Group

User-Level Device Drivers

A

B

Disk
Net Gfx

IRQIRQ IRQ

C

37
© 2009 University of Karlsruhe, System Architecture Group

Address Spaces – Mapping

� Setup shared memory regions

map

38
© 2009 University of Karlsruhe, System Architecture Group

Address Spaces – Mapping

unmap

� Revoke shared memory regions

39
© 2009 University of Karlsruhe, System Architecture Group

Address Spaces – Mapping

grant

� Donate memory regions to others

� Frees up virtual memory in the granting space

� Required for file servers, … (at least useful)

40
© 2009 University of Karlsruhe, System Architecture Group

PF IPC

res IPC

Page Fault Handling

PagerApplication
map msg

"PF" msg

41
© 2009 University of Karlsruhe, System Architecture Group

EAX
SP
IP

…

EAX
SP
IP

…

Exception Handling

Exception
Handler

Application
continue msg

exception msg

Kernel modifies register
contents according to reply

message

42
© 2009 University of Karlsruhe, System Architecture Group

Physical Memory

Initial AS

Pager 1 Pager 2

Pager 3

Pager 4
Application

Application Application

Application

Driver

Driver

Recursive Address Spaces

43
© 2009 University of Karlsruhe, System Architecture Group

Mach Virtual Memory

Physical Memory

Paging Policy
Mach

Application Application

Application

External PagerInflexible

44
© 2009 University of Karlsruhe, System Architecture Group

Tolerated Concepts

A concept is tolerated in the µ-kernel if …

competing user-level implementations
would violate system requirements.

45
© 2009 University of Karlsruhe, System Architecture Group

Functional Requirements

� Principle of independence

� Subsystem Sprovides guarantees
independent of S’

� Principle of integrity

� Other subsystems can rely on
independence guarantees

S1S1 S2S2

S’S’

46
© 2009 University of Karlsruhe, System Architecture Group

Requirement: Address Spaces

� µ-kernel must hide hardware address spaces

� Otherwise violates integrity principle

� But must permit arbitrary protection schemes
[and non-protection]

� Solution: recursive construction of address
spaces outside the kernel

47
© 2009 University of Karlsruhe, System Architecture Group

Requirement: Threads

� A thread τ is an activity inside an address
space with

� registers

� instruction pointer

� stack pointer

� state information

� σ(τ) := address space of thread τ

48
© 2009 University of Karlsruhe, System Architecture Group

Why Tolerate Threads in µ-kernels?

� The decisive reason: σ(τ)
� Modifications to address spaces

σ(τ) := σ’

must be controlled by the kernel

� Thus a notion of τ that represents the above

activity

� Additionally: concurrency

49
© 2009 University of Karlsruhe, System Architecture Group

Requirement: IPC

� IPC = inter-process communication

� Inherently required in µ-kernel

� Classical approach

� Transfer messages between threads

� Contractual

� Sender determines what to send

� Receiver agrees to receive the information

50
© 2009 University of Karlsruhe, System Architecture Group

Size Comparison

Linux (all platforms)
5.7 Million lines

Mach 4 (x86)
90,000 lines

L4Ka::Pistachio (x86+AMD64)
45,000 lines

51
© 2009 University of Karlsruhe, System Architecture Group

In this course …

You do learn

� How to design a µK

� Why L4 is sooooo fast

� Reasons why others
failed

� Nitty-gritty details about
IA32

� Some OS bashing …

� More cool stuff …

You don’t learn

� How to construct a
system on a µK (�SDI)

� Linux dos and don’ts

� Operating system X is
better than Y

52
© 2009 University of Karlsruhe, System Architecture Group

Plan

� Overview, Motivation, Problems

� Threads, System-calls, and Thread Switching

� TCBs and Address Space Layout

� IPC Functionality and Implementation

� Dispatching

� Small Address Spaces - IPC

� Virtual Memory and Mapping Database

� Interrupts, Exceptions and CPU Virtualization

� Security

Many algorithms, often influencing the system design.

