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µµ--Kernel Construction (1)Kernel Construction (1)

Overview, Motivation, Problems
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Staff

� Lecturer: Raphael Neider

� PhD student

� Meeting Times

� Tue, 14:00-15:30h

� Bldg. 50.34, Room 161
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Background

� L4Ka project (http://l4ka.org)

� State-of-the-art in microkernel construction

� L4Ka::Pistachio

� Microkernel

� IDL4

� Interface compiler

� Virtual machines

� Target application
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Purpose of Operating Systems

� Abstract from the hardware

� Interrupts, exceptions

� Provide common services

� Address spaces and protection

� Threads and concurrency control

� Persistency of data

� Bridge semantic gap

� Application demands vs. hardware provides



5
© 2009 University of Karlsruhe, System Architecture Group

Purpose

HardwareHardware

Operating
System

Operating
System

AppApp AppAppAppApp

ApplicationApplicationApplication

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

HardwareHardwareHardware
bit

wordregister
byte

instruction

Operating SystemOperating SystemOperating Systemfile

address space

socket

semaphore

IPC

process

monitor

event
segment

mutex

priority

ACL
thread

pipepagetask

schedule



6
© 2009 University of Karlsruhe, System Architecture Group

Operating System Designs

application-specific monolithic

µ-kernel with object interfaces

�Ultimate flexibility
�Ultimate minimalism
�Ultimate performance
�Normal programming 

paradigm
� Proprietary and 

incompatible solutions

�Standard interface
�Runs programs from 

different vendors
� Compromised 

interface
� Poor performance
� Inflexible

�Standard interface
�User-defined interfaces
�Runs subsystems from 

different vendors
�Good flexibility
�Good minimalism
�Good performance
� Difficult to use
� Different paradigm



7
© 2009 University of Karlsruhe, System Architecture Group

Monolithic Kernels – Advantages

� Kernel has access to everything, potentially

� All optimizations are possible

� All techniques/mechanisms/concepts can 
be implemented

� Kernel extended by adding more code

AppApp AppAppAppApp
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Driver Driver

TCP/IP EXT2
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Approaches to Tackling Complexity

� Monolithic approaches

� Layered Kernels

� Modular Kernels

� Object Oriented Kernels 

� Alternatives

� Extensible Kernels

� Microkernels
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History

� Monolithic kernels

� 1st-generation µ-kernels

� Mach  

� Chorus      

� Amoeba     

� (L3)           

� 2nd-generation µ-kernels

� (Spin)          

� Exokernel  

� L4                

CMU, OSF

Inria, Chorus

Vrije Universiteit

GMD

U Washington

MIT

GMD / IBM / UKa Recursive Address SpacesRecursive Address Spaces

External PagerExternal Pager

UserUser --Level DriverLevel Driver
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Smaller trusted 
computing base
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What if address spaceWhat if address space

switches were for free?switches were for free?
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Microkernel Based Systems:
The Challenge
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The Great Promise

� Coexistence of different

� APIs

� File systems

� OS personalities

� Flexibility

� Extensibility

� Simplicity

� Maintainability

� Security

� Safety IBM IBM WorkPlaceWorkPlace OS: OS: 

~2,000,000,000 US$~2,000,000,000 US$

� SLOW

� INFLEXIBLE

� LARGE

The Big Disaster
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25 MHz 386                  50 MHz 486                90 MHz Pentium             133 MHz Alpha

The 100The 100--µµs Disasters Disaster



21
© 2009 University of Karlsruhe, System Architecture Group

0

50

100

0 50 100 150

msg len

[µs]

Mach

L4

IPC Costs (486, 50 MHz)

0

100

200

300

400

0 2000 4000 6000

msg len

Mach

raw copy

[µs]

L4



22
© 2009 University of Karlsruhe, System Architecture Group

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800

Mach 486

Mach Alpha

Chorus 486

Spin Alpha

L4 Pentium

average cycles between successive IPCs

ov
er

he
ad

 d
ue

 to
 IP

C

Overhead due to IPC

~2.400 cycles

~140.000 
cycles



23
© 2009 University of Karlsruhe, System Architecture Group

L4 IPC: ’95—’00
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L4Ka::Pistachio (today)
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Thesis

A A µµ--kernel does the job ifkernel does the job if

�� properly designed andproperly designed and

�� carefully implemented.carefully implemented.

� Minimality

� Architectural 
Integration

� Elegance

� Efficiency

� Flexibility
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Thesis

A A µµ--kernel does the job ifkernel does the job if

�� properly designed andproperly designed and

�� carefully implemented.carefully implemented.

� Minimality

� Architectural 
Integration

� Elegance

� Efficiency

� Flexibility

When analyzing IPC performance,When analyzing IPC performance,

cycles are not the only thing to consider!cycles are not the only thing to consider!
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Today’s Situation: Microprocessor

� Microprocessor-DRAM performance gap

� Time of a full cache miss in instructions executed
1st  Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 instr. = 136 instr.

2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 instr. = 320 instr.

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 instr. = 648 instr.

� 1/2X latency x 3X clock rate x 3X instr/clock ⇒ ≈4.5X

� Minimize kernel-induced cache misses!

Slide originally from
Dave Patterson, Parcon 98
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99.85%

0.15%

L2 cache

� 8192 cache lines (256K)

� 12 lines used for IPC
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1.17%

L1 cache

� 1024 cache lines (16K + 16K)

� 12 lines used for IPC

Cache Working Sets
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Multi-Processor Architectures

� Synchronization

� Bus locks

� Inter-processor interrupts

� NUMA behavior

� AMD Opteron

� Simultaneous multithreading 
(HyperThreading)
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A Perfect Microkernel?

Proving minimality, necessarity and completeness would be 
nice but is impossible, since there is no agreed-upon metric 
and all is Turing-equivalent.

Jochen Liedtke, On µ-Kernel Construction, SOSP ‘95
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Small Kernel ≠ Small Problem

SecuritySecurity

PerformancePerformance

MultiprocessorMultiprocessor

SchedulingScheduling

MemoryMemory

DevicesDevices

PersistencePersistence

Fault toleranceFault tolerance

Quality of serviceQuality of service

PortabilityPortability

Formal verificationFormal verification

Software engineeringSoftware engineering
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�� ThreadsThreads

�� Address SpacesAddress Spaces

IPCIPC

MappingMapping

µ-Kernel Design

� A µ-kernel does no real work

� µ-kernel services are only required to overcome µ-kernel 
constraints

� Therefore, µ-kernels have to be infinitely fast!  

MinimalityMinimality is the key!is the key!
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Threads – IPC

A

B

C

� Enable controlled communication across address 
space boundaries
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User-Level Device Drivers

A

B
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Net Gfx

IRQIRQ IRQ

C
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Address Spaces – Mapping

� Setup shared memory regions

map
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Address Spaces – Mapping

unmap

� Revoke shared memory regions
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Address Spaces – Mapping

grant

� Donate memory regions to others

� Frees up virtual memory in the granting space

� Required for file servers, … (at least useful)
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PF    IPC

res    IPC

Page Fault Handling

PagerApplication
map msg

"PF" msg



41
© 2009 University of Karlsruhe, System Architecture Group

EAX
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EAX
SP
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Exception Handling

Exception
Handler

Application
continue msg

exception msg

Kernel modifies register 
contents according to reply 

message
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Physical Memory
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Pager 1 Pager 2
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Pager 4
Application

Application Application

Application

Driver

Driver

Recursive Address Spaces
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Mach Virtual Memory

Physical Memory

Paging Policy
Mach

Application Application

Application

External PagerInflexible
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Tolerated Concepts

A concept is tolerated in the µ-kernel if …

competing user-level implementations 
would violate system requirements. 
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Functional Requirements

� Principle of independence

� Subsystem Sprovides guarantees 
independent of S’

� Principle of integrity

� Other subsystems can rely on 
independence guarantees

S1S1 S2S2

S’S’
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Requirement: Address Spaces

� µ-kernel must hide hardware address spaces

� Otherwise violates integrity principle

� But must permit arbitrary protection schemes 
[and non-protection]

� Solution: recursive construction of address 
spaces outside the kernel
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Requirement: Threads

� A thread τ is an activity inside an address 
space with

� registers

� instruction pointer

� stack pointer

� state information

� σ(τ) := address space of thread τ
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Why Tolerate Threads in µ-kernels?

� The decisive reason: σ(τ)
� Modifications to address spaces

σ(τ) := σ’

must be controlled by the kernel

� Thus a notion of τ that represents the above 

activity

� Additionally: concurrency
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Requirement: IPC

� IPC = inter-process communication

� Inherently required in µ-kernel

� Classical approach

� Transfer messages between threads

� Contractual

� Sender determines what to send

� Receiver agrees to receive the information
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Size Comparison

Linux (all platforms)
5.7 Million lines

Mach 4 (x86)
90,000 lines

L4Ka::Pistachio (x86+AMD64)
45,000 lines
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In this course …

You do learn

� How to design a µK

� Why L4 is sooooo fast

� Reasons why others 
failed

� Nitty-gritty details about 
IA32

� Some OS bashing …

� More cool stuff …

You don’t learn

� How to construct a 
system on a µK (�SDI)

� Linux dos and don’ts

� Operating system X is 
better than Y
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Plan

� Overview, Motivation, Problems

� Threads, System-calls, and Thread Switching

� TCBs and Address Space Layout

� IPC Functionality and Implementation

� Dispatching

� Small Address Spaces - IPC

� Virtual Memory and Mapping Database

� Interrupts, Exceptions and CPU Virtualization

� Security

Many algorithms, often influencing the system design.


