"Architektur von Rechensystemen", 12. GI/ITG Fachtagung, Kiel, 23.-25. Mdrz 1992
A. Jammel (Ed.), Springer Verlag, Berlin He1delberg New York

lamc

— MNMhinfo
widalld 0‘. L § 3 (4)

Jochen Liedtke
German National Research Center for Computer Science (GMD)
W —520S Sankt Augustin
Germany

jochen.liedtke@kmx.gmd.dbp.de

N RE—y

ADSITact:

Clans are introduced as a basic concept of an operating system kernel. They permit full algorithmic
control of process interaction in a user definable but secure way. All communication across a clan's
borderline is inspected and possibly modified by the clan’s so called chief task. Thus the mechanism

mran ha nead FfAar ArAatastiAan Arviato Asrvevatiea ke Aabssmwrin Avrant trnrimo arailadtsae R & ST
Laii o Uolud 1ul pruLuvi, ll‘-lll\.ﬂu‘v \.Uuuuuull.auvu, ucuusﬁuls, C\‘Clll- 121 \.llls, Clidiauvil, o u.ut:\.uus

heterogeneous systems and even process migration. It has been implemented in the operating system
L3 where, besides some smaller applications, remote message handling and a multi-level-security
monitor rely on clans.

Keywords: Clan, chief, inter-process communication, operating system, protection, L3.

1. Introduction
Offering protection mechanisms is one of the most important tasks of an operating system. Ideally the
mechanisms shouid be very few but powerful, permit arbitrary strong or weak protection poiicies and
restrict the users as. little as possible. In modern u-kernel based system architectures various security
policies and high level mechanisms are built on top of the kernel as servers: authentication servers,
file servers restricting access by reference monitors or access control lists and others. It is the
,;-nernei _]uu {o suppou the servers’ uy basic pi‘GtELtIO'i r‘xed‘xanisns, i.iSi.i&uy aiitonoimy uaumu\‘j"i O1
tasks/address spaces) and some sort of process interaction/communication control. Examples of such
existing client/server based systems are Amoeba [15] (tickets/capabilities), Mach [1,14] (controlled

channels/port rights) or BirliX [6,7] (message integrity). All these examples are “message-oriented”.

This model seems to he more convenient in the context of multinrocessors and distribution than the

1his model seems o be more con enient 1In e coniext ol LM ULLIIUL S G W LA A

"procedure-oriented” one. Lauer and Needham pointed out “that these two categories are duals of each
other and that a system which is constructed according to one model has a direct counterpart in the
other™ [8]. However, the message-oriented model will be used for reasoning here.

{7]. Here it is
lists F ch of

~ -

The idea of Clans & Chiefs was influenced by the subject restriction concept of BirliX
S

Il suspicious active entities (qnhlaﬂtﬂ hv means of Qllhlf‘{'f restrictio

2 2202 LLAVE Tl LaifEL L9 8 e

these specifies the set of all partners (mostly servers), which are accessible by the corresponding
suspicious subject. The clan concept goes beyond this in two aspects:

mqqlhle 0 enw

e It allow fu l] ajgom.hmlc comrol on user level. Arbitrary algorithms can supervise and modify

- Pl PR
w o LldIls

Reasoning and implementation are based on the operating system L3 [10], which is purely message

oriented (iike RC4000 [4], Demos [2], Mach [1] and many others). In L3 autonomous tasks with

_ , . t
protected address spaces communicate exclusively via messages.) In contrast to Demos and Mach

messages are transferred directly without intermediate system objects like links or ports (for reasons
see section 2).

/4 \ (\ - - intended
— — o W, communication
//__\ _/\\ s SR redirected
() » communication
‘.% / din
N ~) () task
—
_/ k clan
T —
Figure 1. Clan & Chief
Tew bhin mmacmdaws 2 ~ala;m (o0 Aoaficaad ta o 2 oo -0 sl Lo d.d lee ~ bk i ea-l. ANl e mmcmmea e O 1
4l US> LCULILCAL 4 dddl 1o UCLIIICU W LT a4 L Ul Wah> Jicaucu vy 4 d1IC1 A AUl LICS3AESY LITUIN Cldan
mambare ta rackle Anteida tha sAlanm asa adira~rmad le tha Lassal ¢4 tha Alhiaf fFevsira 1YV Tha p—
HICINUCL S W WoAs UuiUe Wit Ciall ale ICUIICCICU Uy Wil ACITICL WU ule Gl ij. 1

It turned out that the clan concept is not only useful in the area of protection. Besides debuggi
tracing, chiefs can be used to forward messages via networks, to en/decrypt messages via suspicious
channels, to emulate environments or hide heterogeneity by message transformation. Furthermore they
cannot only protect the outer world against suspicious subjects but also their clans against the outer

world, independent of application programs.

ng and
o

A simple example using the clan mechanism is the prototype of a virus encapsulator. It uses the
following strategy: Each time suspicious software is invoked, it creates a clan with the virus
encapsulator as its chief. Inside the clan the suspcious program runs like in a cage:

N
— / Virue \

J Encapsmamr]

virus encapsulator (program, read file list, write file list, terminal) :

generate and start (clan member, program) ;
REP
receiver) ;

message, sender,

- -T-F-Tal=]

1§ message
ar message to terminal
OR read access to read permitted file

" Similar to Mach shared objects are realised by external pagers. Thus [18] access to memory objects is also based upon
commuaication.

OR write access to write permitted file

THEN send deceiving (message, sender, receiver)
ELSE report illegal message and drop
FI
ENDREP .
Besides this and some further small examples (ipc tracer, driver debugger, version adapter) two larger
systems applying Clans & Chiefs have been developed on top of the L3 u-kernel. The first handles
remote inter-process-communication ("ipc”) by means of chiefs as shown in figure 3:
() _ —
/—\i‘< .ﬁ.---u“llnnb—‘()
//O 3 \l (O 1L\
/(S \—(R))
b I | o R‘_
/ g \ >/
Figure 3. Networks and Clans
The second system implements muiti-level security (B3/Al functionality in [16] or FS in [19]). Both
profit from the fast ipc of L3: 25.0 us (386, 25 MHz) or 12.3 us (486, 25 MHz) for short messages.
The performance is discussed in more detail in [121.

Section 2. briefly describes L3, which is the basic model used for reasoning. (L3 does exist and is
used commercially.) Section 3 defines the concept of clans in detail and discusses security problems
related to it. Section 4 describes the current implementation of the clan concept in L3. Section 5

discusses the possibilities implementing the clan concept in operating systems like Demos or Mach.

for Reasoning (L3)

- -g.._.l_,-ll-,.:.-....

briefly. In fact, this is
[3,9,101.

L
f
¢
(
{
Q
.1
¢
=
.

The L3-kernel is an abstract machine implementing the data type task. A task consists of

® at least one thread
A thread (like a Mach thread [1]) is a running program. All threads (actually up to 16384 per
station), except resident (unpaged) driver or kernel threads, are persistent objects.

® up to 16383 dataspaces
A dataspace is a virtual memory object of size up to 1 GB. Dataspaces are also persistent
objects and are subject to demand paging. Copying and sending is done lazily. Physical copy
operations are delayed ("copy on write™) like in Accent [17], Mach [1], EUMEL [S] and
BirliX [6].

® one address space

Dataspaces are mapped dynamically into the address space for reading or modifying. For
hardware driver tasks the address space is logically extended by the IO ports assigned to the
task. (All device drivers are located outside the kernel and run at user level.)

done by the defauit or external pager tasks. So all interactions between tasks
d are based on inter-process-communication.

e
(1]
-
(=
...1
1]
=
v
a
2
S
=
-
c
)
¥
=3
=]
LE]
7
=]
o
~
=
- 8
w
2]
g
g
=
11
5
1]
=
3
=}
=
1]
=
o
E-
=
e
b
=
l:
LR
o)
=X
17
£}
n

uuuuuuu

such as links or ports are ‘involved. This simple model dlffers in two points from most other message
oriented systems:

© absence of explicit binding (opening a channel)
One could expect additional costs, because the kernel must check the communication’s validi ity
each time a message is sent. But on the other hand there is no necessity for the bookkeeping
of open channels. We consider the simple concept as a bit more elegant and, in fact,
communication in L3 is faster than usual [12]. Nevertheless some special types of clans may
be realised more efficiently when using explicit binding (see section 5).

© no message buffering
Due to the absence of channel objects we have synchronous ipc only; sender and receiver
must have a rendezvous. But practice has shown that higher level communication objects like
pipes, ports, queues and others can be implemented flexibly and efficiently on top of the
kernei by means of threads.

For local” ipc the kernel guarantees message integrity:

® o deceit: A receiver will always get the correct sender id.
® no wiretapping: Only the receiver specified by the sender sees the message.
® no modification: Messages wiil be neither modified nor lost.

Tasks and threads have unique identifiers, unique even in time. Thus a server usually concludes from
the sender id of the order message whether the required action is permitted for this client or not.

So the message integrity in connection with the task autonomy is the basis for higher level protection,
always implemented on top of the u-kernel.

- 55 j =
3. Clans & Chiefs

Within the L3 scenario and also other systems based on direct message transfer, e.g. BirliX,
protection is basically a matter of message control. For the well known access control lists (acl) this
can be done at the server level. But maintenance of large distributed acls becomes hard, when access
rights change rapidly. So Kowalski and Hirtig [7] propose to complement ﬂhig:ct (= passive eﬁ.jt}!}

protection by subject (= active entity) restrictions.
outgoing message of a task (the subject) by means of a list of perrmtted receivers.

The clan concept is an algorithmic generalization of this idea, or of reference monitors respectively.

7 How to get the id of a new partner for communication? This is not a job of the kernel but of some name server(s).
Us ually the creatmg task 1mplams the id of at least one name server into the new task. By this it can communicate with at

—
‘.9.,
(=%
-y

[=}
=
t-ﬂ
s
tn
(=1

remote ipc

second it is replaced by an application of the new clan concept descrlbed in this paper.

=l I

clan is a set of tasks headed by a ¢
- m 1

T 3

e kern

AT Aliata gl

regardless wherhcr outgoing or incoming, it is redirected to the clan’s chief. This chief may inspect

""'—l'

the message (sender and receiver as well as contents) and decide whether or not it should be passed to

the destination to which it was addressed. As demonstrated in figure 4 these rules apply to nested
cians as weil.

jef task. Inside the cian aii messages are transferred freeiy and
L1 r

Lo riac tn ocrace a eclan'e l\nﬂ P PR R
UL T L 4 lUCoaups Wivd W Wivoo @ widi S LUt 11T,

Figure 4. Nested Clans

Obviously subject restrictions and local reference monitors can be implemented outside the kernel by

means of clans. Since chiefs are tasks at user level, the clan concept allows more sophisticated and
user definable checks as well as active control.

The clan concept leads to a recursive data type task. Important new Operations are

. Ccreate inner K

delete inner task

If a task creates its first inner task, a new clan with the invoker as chief is generated. Then the
newly created task and the chief are the members of the clan. By further creating inner tasks the chief
will extend the clan. Thus chiefs are always members of two clans, the inner clan headed by the chief
and the outer clan containing it as a simple member.
If delete inner task is applied to a chief of a clan, all clan members will be deleted implicitly. Deletion

cou_ld_l;e handled more fnzecly, but this strict method prevents clan members from unrecognized
changes of their chief (see 3.5).

It is important to understand that create inner task differs significantly from the conventonal create
child task operation. The task tree does not necessarily reflect the clan structure. Creating a child task
generates a new member of the invoker’s clan and does not generate a new clan. Thus the tree of
tasks generated by creation of child tasks is not necessarily kernei based uxe ctamcruer Usually the

task tree is a higher les ‘.1 bj\.ct The most natural way for implementation is by using a clan's chief
as server for child task creation and C_i letion. If a task A wants to creat new child task. it sends an

G
reate a child task,
bV

appropriate message to c!uef (A), thi invoking create inner task

and updates the task tree by entering B as child task of A.

Figure 5. Task Tree and Clau

So task trees are clan dependent. A chief can isolate its inner clan from the outer clan and hide its
task tree and name space (figure S, right). Also complete integration of the inner clan members into
the outer clan’s task tree and name space is possible by cooperation of the chiefs (figure S, left).

3.2 Communication

,,,,,,,,,,,,, I PrTRE T SR SRS SR TP SRR S . U SR TR
glvcﬂ COl‘lCCp[merarcn)" 0[read anda task 1S exiended owards cians. cians Ccoiiain Lwasks, [abkb Conraln
Py S An n mmememsmizmmman mbliaflle Aoas tmsmediiaad an taolea P | e P MTa amablda cadioao el . 0O
UUCTAUS. Ad> d LUIDCUUCIILT LIUCIS dlT HIUUUULCU ad> LadAd, UL 4> Ul Tauls 1U Tliauvic 1cullciuulil 1
nnnnnnn tn ~hiafe 1 tasl s interadisarad rmasnine sandis t~ an arhiteary thrand AF tha $tacl .
lll‘-aws‘ LW LillGio, |y‘. W a wWoh 1o UHIUWVUULLU TUCAllLLEE Viddld ¥ Wlvdu UE Wi 7 .

Let — denote a message transfer. Given a thread T and
where T, is an arbitrary thread of A.
This allows simple implementations of the clan concept, which always redirect messages to a dedice
thread of the chief. As well, more sophisticated implementations are possible by chosing dynamically

the receiving thread of the chief. Correspondingly the chief of a thread T, being part of task A is
defined to be chief (A).

These agreements make it convenient to use variables like S, R, C in the following both for tasks as
well as for threads.

— \ ,
/K s NN

Messages crossing cian borderiines are redirected to the chief controiiing the cian. So sending a
message from S to R (figure 6) is spiit into three steps:

1M S - R redirected to chief (S)

(2) chief () - R redirected to chief (R)

(3) chief R) - R

To allow such communication, thread ids must be visible outside the clan, where the thread resides.
So clans form a hierarchy, but thread and task ids form a flat space as far as visibility is concerned.
For a more formal specification some relations are defined:

A = B, A and B belong to the same clan, iff"

chief(A)=chief(B) v chief(A)=B v A =chief(B)

i S8 1 e § L) AL L

A < B, A lies inside B’s inner world, iff>

chief (A) = B v chief (A) < B

..... ey

ation € (outside the inner world) is the exact negation of < . (Thus A ¥ A holds.)

The kernel’s redirection policy applied to an ipc request S — R can be formally described by:

S — chief(S) if R « chief (S)
S - R ifS$ =R
S~-C if R < C = §, C#chief(S)
Due to the strict hierarchy of clans the chief C is unique.

In the so called restrictive model chiefs are only allowed to

© inspect a redirected message,
O throw it away,

© forward it unchanged to the true destination, which is always informed about the true sender.

Furthermore the chief cannot store messages. (This restriction seems to be unnecessary, if all

application level protocols are resistent to replays.) No deceit is possible by chiefs, only suppressing
communication and listening.

Thus the kernel guarantees a certain level of securi l‘y, even when chiefs are involved i t
to the possibility of secret wiretapping this advantage seems to be rather small. he other hand the
application of clans and chiefs in this model is restricted to protection, consistency checking and
tracing. Other possibilities require more liberal features. Moreover, the 1mplememat10n of message as

protected kernel objects would require a substantial overhead. So this restrictive model is dropped.

3.4 The Liberal Model
The liberal model allows chief:

may specify itself or any thread of the outer world as the apparent sender. Wher 1g to the outer
world, it may specify itself or any thread of its inner world as the apparent sender.
The nowation C|s —~ R is used to denote that C sends a message to R simulating S to be the
sender. Given S, R and a chief C, direction preserving deceit happens if either

or
Cls — R S < C,R < C (outgoing)
i 1 deceive s mnlv direction Arecerving o
The liberal model allows chiefs to deceive, but only direction preserving. C|s — R with S,R < C or
S < (8#C) are not permitted. The latter ones would be undetect !y Tinterventions by a

Furthermore chiefs are free to modify or drop messages. So it is no longer necessary to implement

5 o

< is a partai ordering.

messages as protected kernei objects. They can be regarded as simpie vaiues. The consequences

incoming and outgomg messages. They permit using clans more or less transparently concerning the
h

P T Te o Lo

ireads. It is hoped that this is a good basis for building higher ievei

Within a clan the integrity of messages is guaranteed by the kernei. But as soon as borderiines are
crossed, potentially suspicious chiefs are involved. So the sequence of chiefs involved in a particular
message transfer determines its integrity.

R S R 2

cunigcauon paudi B;" K

A communication path is determined uniquely by S and R, assuming inter-clan migration of tasks
not supported. The trustworthiness of a communication path is given by the trustworthiness of the

Y o

chiefs. To snmpmy argumemanon two qualmes are defined:

A chief is called P-trusted, if it is trustworthy with respect to some given predicate P.
It is called P*-trusted, if it is P-trusted and communicates for P-related operations only with other
P*-trusted chiefs or within its own clan.”

Sometimes the use of P*-trusted chiefs can solve the integrity problems in a very elegant way. But
chiefs cannot be P*-trusted for all predicates P and suspicious chiefs are needed, e.g. to represent
insecure data channels or less trusted domains. Thus a general method is required which allows sender
and receiver to decide about the trustworthiness of the communication path.

For each real transfer S—R there are the originally requested transfer S—R’, where R’ is the receiver
specified by S, and the transfer S’ —~R as it arrives at the real receiver considering S’ as sender. At a
first glance it seems to be necessary for R to determine S’> R and for S to determine S» R’ in a

_______ S L -
1

secure way. These are symmetric probiems; so we wili discuss the receiver’s part judging about

Qs D
S5 > R.

Obviously an incorruptable kernel function chief (A) would do the job. Unfortunately this wou!
require Lhe network handiing for the remote case to be part of the u-kernel. But just the network is u
typical application of the cian concept (figure 3).

Instead of the general chief function the kernel is able to provide two simple functions, rchief, which
is restricted to the function invoker’s clan, and nchief yielding the chief nearest to the function invoker
in the direction of the addressed task. Suppose R has received a message from S. When R invokes the
kernel functions, it EEis

-

| chief(s) if s =
| fails otherwise

_ | rchief R) if S¥R
~ | C#chief(S) if S<C = R
A

" At a first glance the restriction to other P*-trusted chiefs seems to be stronger than restricting the complete
communication paths to P-trusted chiefs. But in fact this can be adjusted by modifying P.

By means of this R can try to parse S'3> R backwards:
determine path (S,R) :

IF in same clan (S,R)

THEN S
ELIF L*-trusted (nchief (S))
TLIC R rap——y Ml s = £ C “"’, e B 2

Ay senu | Ciildei \aj ¢ » ncnil
receive (path of chiefs
nchief (S) CAT path of chiefs

ELSE nchief (S)

FI .

L : "uses the above algorithm” .

the reievant postfix of 8’3 R leading back either to the first not location trusted chief or to 3, if there
tn smem lmanssmecs mssmsusmemsss s sew C= D | T R p———— A slane tha manstiras Aalasnifian all maskha ssrbaimale Asa
1a 11U I.Ubdl..I.Ul.l auapluvub JL1C I.ll. o2 IN. AL 15 [JLUPU:}CU. ldi Ul ITLEIVCL Claddilicd dail paudid, wildil 4aic
nAar samnalataly lacarian trictad as euniermimiAne with racrmant ta all Arhar Aaradicata D tAan Thn Arastica thio
MV \-Ullll}l\-bbl} IVLAWHVIL W BoVe, Ao awyu.svua ¥ il l\r-)y\r\.b VAl Vuivi yl\.w\.uu\. A WV, AdL Pl Aviivie WU
seems to be no hard restriction, So specific integrity decisions can be done based on the relevant
postfix. Some interesting properties of this integrity judgement are
r o r = o J =
rr_ =1 R S — R R . D S &= RN . P wa— ., By P, Jr—— g P I T
usudily one€ receiver or one sen r nas o jJudagc c 1C55d L SICT INICErIlYy Only once.
sha math Feame © ta D o ~F fmtmveder e mazsr Akhiafs Anem imtesAda smes thio asshosrara s Thin
ul daldl L1IWVILL o W IN 1l Ul I.I.C-BI.].LJ', w ICYyY LILCIS Waldl I UG 1LY [SPF) auuayal. 111 Lil>
fnnnn-n e |Uﬂﬂbﬂﬂ.ﬂf‘ wwrfan lr‘lfl‘Ml!!‘!ﬂﬂ ﬂ"llﬂr"jf;ﬂﬂ
Lwdidl v 1J LA AT ¥ Ly Le YY LAl LML wl-ll-llls lkll&l(-llul\lll'

© In many cases a very elegant way for solving the integrity judgement problem may be to use
f the chief cu'op all messages coming via suspicious paths you have a fairly general

ludon outside the applications.

O Of course sometimes suspicious paths have to be used. They can be made secure by use of
data encryption techniques. If this is done in trusted chiefs, the domain of P-trustworthiness
can be widened.

3.6 Inter-Clan Migration
The model described so far is very static. Once generated a task is fixed in the clan hierarchy. This
feature is very convenient when reasoning about security and integrity. But if tasks were permirted to

migrate to a different clan, process migration (between computers) could be implemented by means of
clans and chiefs.

Figure 7. Migration

In figure 7 a task A has migrated to a different station. The messages are redirected automatically by
the clan system. The new chief C’' cooperates with the old chief C and emulates the original
environment for A.

When the migration feature is added to the modei, the analysis of communication paths described in
3.5 becomes uncertain. Between or even during message transfer a task may migrate. So previous or
subsequent analysis of S3 R may give invalid results.

These difficulties can be overcome by adding migration numbers to task and thread ids, which are
incremented at each inter-clan migration. As a consequence the receiver of a message will realise that

the source has moved in the meantime and can analyse the new communication path. The problems of
findi tegrity in such a situation are subjects of

inding a task _;umpmg from clan to clan and judging i ty in

Clans & Chiefs were implemented in L3 to prove that the concept can be realised efficiently and
provide experience for further experiments concerning the usefulness, convenience and applicability of
the clan concept. This section briefly describes the extent of the implementation and the experience
obtained to date.

The clan concept described in section 3 except the migration features was implemented. Migration was
dropped, because up to now L3's thread ids are not location independent. We expected significantly
higher implementation costs and performance problems. So we decided first to do without migration.

Ac mentioned in section 2. the gg‘i_gi_nnl L.

As mentioned in section 2, the ipc is quite sim

ple. Its primitives are

aprmie o N AY AY #1
. wait {(message), source), yrec timeout, res))
call {)dest, Ymessage),)send timeout,)rec timeout, res))

Receive accepts only messages from the source specified and Wait accepts messages from any source.
Call works like

send (dest,message,sendtimeout,res) ;

IF res

THEN receive (dest,message;rectimeocut

= LESL;NESod] F

res)

but is atomic, in contrast to the above sequence of system calls. This allows a simple Remote
Procedure Call (RPC) implementation.

ANlainoly: am awvtamod~n 1
Obviously an extension to the u-kerne!l level is necessary to implement clans and chiefs. Besides
creation and deletion of inner tasks one new ipc primitive was added to the kernel

send ()dest,)apparent sender,)message,)send timeout, res

S
el

Here the kernel accepts direction preserving deceit only. Furthermore the kernel provides
rchief (Dtask, chief), success))

' yx denotes an input, X) an output and)x) an inout parameter.

Without change of the kernel interface the ipc semantics were extended as described in section 3, i.e.
messages crossing clan borders are redirected to the corresponding chief.

This impnlementation was done durine a redesion nhase of the u-kernel. So the mannower needed to
A aam IAEPALAIILLIMAMILL T ADS ML BUl s G ITMWLSIS PGST VR WL pRTRLL L. D deh didnapoi e altulu W
implement just the clan concept is hard to isolate, but certainly less than 3 person weeks were needed
for pure implementation

q (""0“0 ‘;ﬂ ("\fl"!ﬂ‘l" .h F=tafalsly =1 ﬁrﬂ‘aﬂfarl nnnrqf;nn Q\rcfnmc

. S lddlo 11l Villvd J..Y.I.UQQQE\.« AP S LET AW UPMI“&AJLE UJQLMI.LLO

Due to its structuring effect and its features related to integrity and trustworthiness, the clan
mechanism goes beyond the redirection of messages already available in Demos [2]. But systems like
Demos or Mach [14], which permit redirection by kernel level channels (Demos: "link™, Mach: "port
right™) and control of the distribution of these channels, should allow the implementation of clans on
top of them. This will be outlined using the Mach terminology.

The principle idea is to use alias ports in the chief task for all ports belonging to the outer world.
Then the chief controls all outgoing and incoming communication:

2} Whanaver a chiaf tack creareac a naw clan mem r the initial nart richte af the new taclk all
“uy TV Al dihe Vil wlldes LI Wl Wbt W LR Y R L L) el R AdiAbvdidd yvn L l&ll‘—’ At At LA YV io i L
have to identify ports of the chief. Then requesting new ports will be done via the chief

b) Whenever a port right is sent to a cian member from outside or sent outside from a cian
member, the chief generates an alias port and sends rights on this instead.

¢) Whenever a port right is sent from one clan member to another, the chief may forward it.
Thus intra-clan communication will not use the chief.

The chief must not pass port rights between its inner and outer clan directly, only by means of
aliases. If there is only one connection from the clan to the outer world, which is not controlled by
the chief, arbitrary port rights, i.e. new uncontrolled connections, can intrude into the clan. Thus this
model also enforces a hierarchical structure of clans. It is not yet clear, whether the judging of
integrity in such an implementation can be done similarly to in the original clan implementaton.

SOOZ33>>> poruransfer

<
P 4
/ v z_r-é“"““ \@\ f —_— intended
[\[communication
. / \ S redireczed

communication

— port

Figure 8. Clans in Mach

A LI I oS+ L W S S . (i D P P PSS [] | o T Y . I TR .G R
A PICLULC (THIEWE ©) UL UUS IHIOJEL IUUKS VEI'Y sSlIllidl O JIEUIC 1. Felilaps polivillidille DelIclils Ll Lo
avemantad fam oamma Fsean AF alamas T n Aliaf amler Aanidan ~A;m tha lhacia ~F tha camdas esana ar maie aleor
CAPCLILU 1UL JUILLIT LYLTO Ul Lldlld. Ll a LCINCL UlllyY Uculiucs vl ul [&) 15 Ul UIC SClidci-ICLLilyYTl pall avuul
tha samimiinicarian'ce laaaliry tha ~hiaf je Aanly inuvaluad ar Rindine firma nAr ar sAammiinicanan fima
ulC COMUITIUNICAUON 5 wCgduly, uic Cilcl 15 Ofl MyGiveU 4l Ulliling ullic, Ut i CUNMMMUINCauUil winc
Riit whoanavar maccacgne hava tn ha incrnanstad Aar madifiad Ar cammunicanian ricghte chanca dunamically
DUl wilLUL YLl liloodsio lUdYLe W LG WlopAilicl Ul THRGILLILU Ul LULHTLUIWLILAUVIL LRI VilddiEs Uyildiladday,
thiec hind tima hanine 1ICAMMARA RS

BUS UG U UUTUS Gisapplal s,

® The clan concept can be implemented efficiently.

® Clans & Chiefs are powerful mechanisms for protection.

® They can be used in many other areas too, e.g. debugging, networking, migration, heterogeneous
systems. Probably this list will increase with experience of the clan concept.

& Perhaps the clan concept with its hierarchy will turn out to be a usabie basis for higher ievel
e nmente lila Adictecibhiibad mecba st e e s el e A
LULILCPLS LIAC UISLLIDULICU PDIVICLLIVIL Ul SCIHALIUC UULLTALTS

Future work has to be done, especially in the field of inter-clan migration and practical applications of
the concept.

References

[1] M.Accenta, R.Baron, W.Bolosky, D.Golub, R.Rashid, A.Tevanian, M.Young: "Mach: A New Kernel Foundation
for UNIX Development”, in Proc. Summer Usenix. July, 1986.

» = N S Pa T T L H crvvrcac i e e b e o
} F. Baskeﬁ J.H. HG‘-‘v""'d, I.T. }v{uaﬁague Task Communication in Demos , i Proc. Sith Syr mposium on Uperaln

System Principles, Purdue 1977, Operating Systems Review 11,5
[3] U.Beyer, D.Heinrichs, J.Liedtke: "Dataspaces in L3", in Proc. MIMI ’88. Barcelona, July, 1988.
(4] P.Brinch Hansen: "Operat.ing Systems”, Eng]ewood Cliffs, 1973

i)
1<

[S} "‘:Ull\'iEL DCHUI.LCIIIJLIUUULH » uuxvcxau.y UI DI.CI.CICIU. DICI.CI.CI.U 19—!’9

[6] H.Hirtig, W.Kihnhauser, W.Lux, H.Streich, G.Goos: "Structure of the BirliX Operating System”, in GMD
Jahresbericht 1985. St Augustin, 1986

) O.Kowalski, H.Hartig: "Protection in the BirliX Operating System”, in Proc. 10th International Conference on

................... 1 Qu,
Distributed \..uu:pui.lug -:j.)u::ua. 1990

(81 H.C.Lauer, R.M.Needham: "On the Duality of Operating System Structures”, in Proc. Second International
Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in Operating Systems Review, 13,2, April 1979

9] J.Liedtke: "An Overview on the L3 Operating System”, in Proc. MIMI '88. Barcelona, July, 1988.
rn Tr @ dal. o T D12 _ TT T__.__ ™ b P ™ [oy s R La o wr_ S - L, el
{(10] J.Liedtke, U. Barting, U. Beyer, D. Heinrichs, R. Ruland, G. Szalay: "Two Years of Experience with =

u-Kernel Based OS”, in Operating Systems Review 2/91.

S VSIS e

(1] J.Liedtke: "Clans & Chiefs — A New Kernel Level Concept for Operating Systems”, GMD Tech Report No 579.
St. Augustin, 1991,

i2j J.Liedtke: "Fast Interprocess Communication in the L3 Operating System”, in preparation.
I.Liedtke: "Task N{larﬁrtnn Usineg Clans™ in nremaration.

3 I Liedtk atio ng Clans , in preparation
K.Loepere (Ed.): "Mach 3 Kernel Interface, Revision 0.5”, Open Software Foundation and Carnegie Mellon
University, 1990.

[15] 5.J.Muliender, G.van Rossum, A.S.Tanenbaum, R.van Renesse, J.M.van Staveren: "Amoeba — A distributed

. ”
operating system for the 1990s”, Centrum voor Wiskunde en Informatica, Report CS-R9004, Amsterdam 1990.

[16] National Computer Security Center: "Trusted Computer System Evaluation Criteria” (Orange Book), DOD
5200.28-STD, Washington 1985
[17] R.Rashid, G.Robertson: "Accent: A communication Oriented Network Operating System Kernel”, in Proc. 8th

Svmpocsium nn Oneratino Svoram Principles Dacambars 1081
SYIMPOSIUTT O UPErgang S ysent Srincipees, s CCCimolr, 1581

(18] M.Young, A.Tevanian, R.Rashid, D.Golub, J.Eppinger, J.Chew, W.Bolosky, D.Black, R.Baron: "The Duality of
Memory and Communication in the Implementation of a Multiprocessor Operating System”, in Proceeedings of
the 11th Symposium on Operaung System Principles, November 1987

———————— 11 ol als Tl rmationsie L. W1 Qb b teebltea lo T Y S .
:..cuu..ual.cuc u.u JILI.J.CII.ICII. Il.l LI.CI Lorm -JJ.UI&I.C(.(11K, I 1-JICOEr NEISKTIETIEN el DW Iy Dullu':h(UJLCIECI t‘l

99a. Koln, 1989

._-.
—
<o

=

