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© Design goals

© Device Manager

© Drivers

@ Console
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Design goals 1/11

What should be achieved

@ Central management of all hardware usage
@ One driver thread per piece of hardware

@ Generic interface between driver and device manager
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Design goals 1/11

What should be achieved

@ Central management of all hardware usage

@ One driver thread per piece of hardware

@ Generic interface between driver and device manager

o
Design constraints

@ Keep the amount of required state low

@ Use IPC economically

@ Optimize performance

N
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Design overview 2/11

Component diagram
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Interrupts 3/11

Registering Interrupts

@ registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

Interface “IRQ”

@ registerInterrupt(in short number, in short
exclusive) raises (occupied, invalid);

| \
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Interrupts 3/11

Registering Interrupts

@ registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

@ releaseInterrupt releases a previously registered IRQ.

v
Interface “IRQ”
@ registerInterrupt(in short number, in short

exclusive) raises (occupied, invalid);

@ releaselnterrupt(in short number) raises (denied,
invalid);
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Interrupts 3/11

Registering Interrupts

@ registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

@ releaseInterrupt releases a previously registered IRQ.
@ Exceptions:
e occupied — IRQ already registered by other thread

o denied — IRQ not registered by client
o invalid — IRQ number does not exist

Interface “IRQ”

@ registerInterrupt(in short number, in short
exclusive) raises (occupied, invalid);

@ releaselnterrupt(in short number) raises (denied,
invalid);
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Memory-mapped 1/0 a/11

Requesting MMIO access

@ Device manager needs mappings for MMIO space directly
from op (must know physical address).
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Memory-mapped 1/0 a/11

Requesting MMIO access

@ Device manager needs mappings for MMIO space directly
from op (must know physical address).

@ requestMMIO maps fpage to client containing a given MMIO
address.

| A\

Interface “MMIO”

@ requestMMIO(in L4 Word t base, in L4 Word t size,
out fpage page) raises (occupied, invalid);
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Memory-mapped 1/0 a/11

Requesting MMIO access

@ Device manager needs mappings for MMIO space directly
from op (must know physical address).

@ requestMMIO maps fpage to client containing a given MMIO
address.

@ releaseMMIO unmaps fpage

4

Interface “MMIQ”

@ requestMMIO(in L4 Word t base, in L4 Word t size,
out fpage page) raises (occupied, invalid);

@ releaseMMIO(in L4 _Word_t base) raises (denied,
invalid);
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1/0 Ports 5/11

Requesting 1/0 Ports

@ Device manager needs iofpage mapping for complete /O AS
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1/0 Ports 5/11

Requesting 1/0 Ports
@ Device manager needs iofpage mapping for complete /O AS

@ requestIOPort maps iofpage to client

| A\

Interface “lIOPorts”

@ requestIOPort(in L4 Word_t base, in int size bits,
out iofpage page) raises (occupied, invalid);
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1/0 Ports 5/11

Requesting 1/0 Ports

@ Device manager needs iofpage mapping for complete /O AS

@ requestIOPort maps iofpage to client

@ releaseI0Port unmaps iofpage

y

Interface “lIOPorts”

@ requestIOPort(in L4 Word_t base, in int size bits,
out iofpage page) raises (occupied, invalid);

@ releaseIOPort(in L4 _Word_t base) raises (denied,
invalid) ;
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DMA 6/11

Requirements for DMA

@ Mapping
o Need physical address to setup DMA buffers in DMA controller
o Pager for device mapper must know physical addresses
o Pager could use 1:1 mappings from o
o Device manager could map pages to driver threads

@ Programming the DMA controller

o Driver must provide information for addressing the physical
device in the DMA controller
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Drivers (1) 7/11

@ One driver thread per device

@ Driver registers with name service (no indirection)
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Drivers (1) 7/11

@ One driver thread per device

@ Driver registers with name service (no indirection)
@ Driver provides generic interface to clients

o Contains calls for character and block devices

o Raises “unsupported” exceptions when call not applicable to
device

o Contains “ioctl” call for special commands
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Drivers (1) 7/11

@ One driver thread per device

@ Driver registers with name service (no indirection)
@ Driver provides generic interface to clients

o Contains calls for character and block devices

o Raises “unsupported” exceptions when call not applicable to
device

o Contains “ioctl” call for special commands

@ Driver may provide additional specific interface
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Drivers (2) 8/11

@ read(out buffer_t data, inout L4_Word_t size)
raises (unsupported);

@ blockread(out buffer_t data, in L4 _Word_t
blockNumber, inout L4 _Word_t size) raises
(unsupported) ;

@ write(in buffer_t data, inout L4 _Word_t size)
raises (unsupported);

@ blockwrite(in buffer_t data, in L4 _Word_t
blockNumber, inout L4 Word_t size) raises
(unsupported) ;

@ ioctl(in L4 _Word_t command, inout buffer_t data,
inout L4 _Word_t size) raises (unsupported,
invalid);

v
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Console driver overview 9/11

Component diagram
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VGA BIOS Interface 10/11

VGA Textmode
@ 80x25 characters

@ Two bytes per character: ASCIl Code and display mode
(color, blinking, ...)

v

Specific Interface “VGA-BIOS”

@ setChar(in short x, in short y, in short
charCode, in short displayMode);

@ getChar(in short x, in short y, out short
charCode, out short displayMode) ;

@ clearScreen();

@ putString(in short x, in short y, in buffer_t
data, in short displayMode);
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Console 11/11

Console driver

@ uses read() from generic interface of keyboard driver
@ reads 2 bytes per call (scancode)

@ uses specific interface of VGA driver to implement character
device

@ must remember cursor position
@ must implement scrolling when reaching bottom end of screen

@ provides generic interface, appears as a single read-/writable
device to the outside world
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Questions?
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