
Design and Interfaces of a
Device Service for L4 SDI OS

Felix Palmen <felix@palmen-it.de>
Alexander Roeckel

System Architecture Group

June 18th 2009

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



1 Design goals

2 Device Manager

3 Drivers

4 Console

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Design goals 1/11

What should be achieved

Central management of all hardware usage

One driver thread per piece of hardware

Generic interface between driver and device manager

Design constraints

Keep the amount of required state low

Use IPC economically

Optimize performance

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Design goals 1/11

What should be achieved

Central management of all hardware usage

One driver thread per piece of hardware

Generic interface between driver and device manager

Design constraints

Keep the amount of required state low

Use IPC economically

Optimize performance

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Design overview 2/11

Component diagram

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Interrupts 3/11

Registering Interrupts

registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

releaseInterrupt releases a previously registered IRQ.

Exceptions:

occupied – IRQ already registered by other thread
denied – IRQ not registered by client
invalid – IRQ number does not exist

Interface “IRQ”

registerInterrupt(in short number, in short
exclusive) raises (occupied, invalid);

releaseInterrupt(in short number) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Interrupts 3/11

Registering Interrupts

registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

releaseInterrupt releases a previously registered IRQ.

Exceptions:

occupied – IRQ already registered by other thread
denied – IRQ not registered by client
invalid – IRQ number does not exist

Interface “IRQ”

registerInterrupt(in short number, in short
exclusive) raises (occupied, invalid);

releaseInterrupt(in short number) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Interrupts 3/11

Registering Interrupts

registerInterrupt reserves given IRQ (exclusively). Device
Manager forwards IRQ IPC to driver thread.

releaseInterrupt releases a previously registered IRQ.

Exceptions:

occupied – IRQ already registered by other thread
denied – IRQ not registered by client
invalid – IRQ number does not exist

Interface “IRQ”

registerInterrupt(in short number, in short
exclusive) raises (occupied, invalid);

releaseInterrupt(in short number) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Memory-mapped I/O 4/11

Requesting MMIO access

Device manager needs mappings for MMIO space directly
from σ0 (must know physical address).

requestMMIO maps fpage to client containing a given MMIO
address.

releaseMMIO unmaps fpage

Interface “MMIO”

requestMMIO(in L4 Word t base, in L4 Word t size,
out fpage page) raises (occupied, invalid);

releaseMMIO(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Memory-mapped I/O 4/11

Requesting MMIO access

Device manager needs mappings for MMIO space directly
from σ0 (must know physical address).

requestMMIO maps fpage to client containing a given MMIO
address.

releaseMMIO unmaps fpage

Interface “MMIO”

requestMMIO(in L4 Word t base, in L4 Word t size,
out fpage page) raises (occupied, invalid);

releaseMMIO(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Memory-mapped I/O 4/11

Requesting MMIO access

Device manager needs mappings for MMIO space directly
from σ0 (must know physical address).

requestMMIO maps fpage to client containing a given MMIO
address.

releaseMMIO unmaps fpage

Interface “MMIO”

requestMMIO(in L4 Word t base, in L4 Word t size,
out fpage page) raises (occupied, invalid);

releaseMMIO(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



I/O Ports 5/11

Requesting I/O Ports

Device manager needs iofpage mapping for complete I/O AS

requestIOPort maps iofpage to client

releaseIOPort unmaps iofpage

Interface “IOPorts”

requestIOPort(in L4 Word t base, in int size bits,
out iofpage page) raises (occupied, invalid);

releaseIOPort(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



I/O Ports 5/11

Requesting I/O Ports

Device manager needs iofpage mapping for complete I/O AS

requestIOPort maps iofpage to client

releaseIOPort unmaps iofpage

Interface “IOPorts”

requestIOPort(in L4 Word t base, in int size bits,
out iofpage page) raises (occupied, invalid);

releaseIOPort(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



I/O Ports 5/11

Requesting I/O Ports

Device manager needs iofpage mapping for complete I/O AS

requestIOPort maps iofpage to client

releaseIOPort unmaps iofpage

Interface “IOPorts”

requestIOPort(in L4 Word t base, in int size bits,
out iofpage page) raises (occupied, invalid);

releaseIOPort(in L4 Word t base) raises (denied,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



DMA 6/11

Requirements for DMA

Mapping

Need physical address to setup DMA buffers in DMA controller
Pager for device mapper must know physical addresses
Pager could use 1:1 mappings from σ0

Device manager could map pages to driver threads

Programming the DMA controller

Driver must provide information for addressing the physical
device in the DMA controller

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Drivers (1) 7/11

Driver design

One driver thread per device

Driver registers with name service (no indirection)

Driver provides generic interface to clients

Contains calls for character and block devices
Raises “unsupported” exceptions when call not applicable to
device
Contains “ioctl” call for special commands

Driver may provide additional specific interface

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Drivers (1) 7/11

Driver design

One driver thread per device

Driver registers with name service (no indirection)

Driver provides generic interface to clients

Contains calls for character and block devices
Raises “unsupported” exceptions when call not applicable to
device
Contains “ioctl” call for special commands

Driver may provide additional specific interface

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Drivers (1) 7/11

Driver design

One driver thread per device

Driver registers with name service (no indirection)

Driver provides generic interface to clients

Contains calls for character and block devices
Raises “unsupported” exceptions when call not applicable to
device
Contains “ioctl” call for special commands

Driver may provide additional specific interface

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Drivers (2) 8/11

Generic driver interface

read(out buffer t data, inout L4 Word t size)
raises (unsupported);

blockread(out buffer t data, in L4 Word t
blockNumber, inout L4 Word t size) raises
(unsupported);

write(in buffer t data, inout L4 Word t size)
raises (unsupported);

blockwrite(in buffer t data, in L4 Word t
blockNumber, inout L4 Word t size) raises
(unsupported);

ioctl(in L4 Word t command, inout buffer t data,
inout L4 Word t size) raises (unsupported,
invalid);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Console driver overview 9/11

Component diagram

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



VGA BIOS Interface 10/11

VGA Textmode

80x25 characters

Two bytes per character: ASCII Code and display mode
(color, blinking, ...)

Specific Interface “VGA-BIOS”

setChar(in short x, in short y, in short
charCode, in short displayMode);

getChar(in short x, in short y, out short
charCode, out short displayMode);

clearScreen();

putString(in short x, in short y, in buffer t
data, in short displayMode);

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Console 11/11

Console driver

uses read() from generic interface of keyboard driver

reads 2 bytes per call (scancode)

uses specific interface of VGA driver to implement character
device

must remember cursor position

must implement scrolling when reaching bottom end of screen

provides generic interface, appears as a single read-/writable
device to the outside world

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de



Questions?

Felix Palmen, Alexander Roeckel Device Service Design

System Architecture Group

University of Karlsruhe
i30www.ira.uka.de


	Design goals
	Device Manager
	Drivers
	Console

