
University of Karlsruhe
System Architecture Group
Gerd Liefländer

Teaching Assistant:
Philipp Kupferschmied

System Architecture 2008/09
Programming Assignment 3

Submission Deadlines: 23.01.2009, 12:00h (theoretical part)
13.02.2009, 12:00h (practical part)

1 Introduction

In this assignment you will implement the virtual memory subsystem of OS/161. The existing VM
implementation in OS/161, dumbvm, is a minimal implementation with a number of shortcomings. In
this assignment you will adapt OS/161 to take full advantage of the simulated hardware by imple-
menting support for the software-managed translation look-aside buffer (TLB) available in the MIPS
architecture. You will also write code to manage the physical system memory.

2 Overview on System/161 Memory Management Hardware

System/161 simulates the MIPS architecture, including TLB and memory map as will be discussed in
this section.

2.1 The System/161 TLB

In the System/161 machine, each TLB entry includes a 20 bit virtual page number and a 20 bit physical
frame number as well as the following five fields:

global: (1 bit) If set, the pid-bits in this TLB entry are ignored

valid: (1 bit), If set, this TLB entry contains a valid translation

dirty: (1 bit), If set, this page has been modified since it has been loaded into memory (e.g., from an
executable). If clear, any store operation to this page will raise a TLB Modified Exception; the
handler should then either allow write access by setting this bit or cause the faulting thread (or
process) to be killed.

nocache: (1 bit) If set, the hardware will disable the cache for this page. The nocache bit is unsup-
ported in System/161.

pid: (6 bits) A context or address space ID that can be used to allow entries to remain in the TLB
even after a context switch.

All these bits/values are maintained by the operating system. When the valid bit is set, the TLB entry
contains a valid translation. This implies that the virtual page is present in physical memory. A TLB
miss occurs when no valid TLB entry with a matching virtual page number and the current address
space ID (PID) or set global bit is found.
Note: For this assignment, we strongly recommend that you ignore the pid field and mark all your
pages as global. However, you must then flush the TLB on every context switch (why?).

1

2.2 The System/161 Virtual Address Space Map

The MIPS architecture divides its address space into several regions that have hardwired properties
related to memory management. These are:

kseg2: TLB-mapped, cacheable kernel space

kseg1: direct-mapped, uncacheable kernel space

kseg0: direct-mapped, cacheable kernel space

kuseg: TLB-mapped cacheable user space

Both direct-mapped segments map to the first 512 MB of physical address space.
kuseg spans the lower 2 GB (0x00000000–0x7fffffff), kseg0 takes the following 512 MB (0x80000000–
0x9fffffff), followed by 512 MB assigned to kseg1 (0xa0000000–0xbfffffff), leaving the final 1 GB of
virtual addresses for kseg2 (0xc0000000–0xffffffff).

virtual address range segment special properties

0xc0000000 - 0xffffffff kseg2

0xbfc00180 - 0xbfffffff kseg1 Exception handler if BEV is set.

0xbfc00100 - 0xbfc0017f kseg1 UTLB exception handler if BEV is set.

0xbfc00000 - 0xbfc000ff kseg1 Reset handler (start-up code).

0xa0000000 - 0xbfbfffff kseg1

0x80000080 - 0x9fffffff kseg0 Exception handler if BEV is clear.

0x80000000 - 0x8000007f kseg0 UTLB exception handler if BEV is clear.

0x00000000 - 0x7fffffff kuseg

3 Setting up the Assignment

In this section, you will create a new repository for the source code of this assignment.

3.1 Obtaining and setting up ASST3 in Mercurial

Only one of you must to do the following. Again, s hghost has to perform the following commands.

$ mkdir -p ~/sysarch/sharedrepos/asst3-src

$ cd ~/sysarch/sharedrepos/asst3-src

$ hg init

$ cd ~/sysarch/

$ hg clone sharedrepos/asst3-src

$ wget http://i30www.ira.uka.de/~pkupfer/edu/2008ws/sysarch/asst3-src.tbz2

$ tar -xjf asst3-src.tbz2

$ rm asst3-src.tbz2

$ cd ~/sysarch/asst3-src

$ hg add

$ hg commit

$ hg tag asst-base

$ hg push

3.2 Obtaining a Working Copy

s hghost has already cloned the shared repository during the setup process described above. s member
can clone it via

$ mkdir -p ~/sysarch

$ cd ~/sysarch

$ hg clone ssh://sysarch_hg/asst3-src

You are now ready to start with this assignment.

2

3.3 Building ASST3

Before proceeding any further, configure the sources and build the user land parts of OS/161 via

$ cd ~/sysarch/asst3-src

$./configure --ostree="$HOME/sysarch/root"

$ make

For your kernel development, we have provided you with another framework for ASST3. You have to
configure your kernel before you can use this framework. The procedure for configuring and building
a kernel is the same as before:

$ cd ~/sysarch/asst3-src/kern/conf

$./config ASST3

$ cd ../compile/ASST3

$ make

If you are told that the compile/ASST3 directory does not exist, make sure you ran config for ASST3.
If you now run the kernel as before (type ./sys161 kernel in ~/sysarch/root) you should get to the
menu prompt. If you try to run a program, the kernel will panic with a message telling you that
vm fault() is not implemented. For example, try p /bin/true at the OS/161 menu prompt to run the
program from ~/sysarch/root/bin/true.
You will (again) need to increase the amount of RAM simulated by System/161. We suggest that you
now allocate 16 MB to System/161 by editing ~/sysarch/root/sys161.conf. Change the line for the
busctl device to read

31 busctl ramsize=16777216 # 16 MB of RAM

You are now ready to start with this assignment.

4 Tutorial Exercises

Please answer the following questions and send them to os161@ira.uka.de before the first deadline has
passed. The subject of your mail must contain your group name (i.e., sapwX) and should additionally
contain some hint that you are submitting the solution to the theoretical part. You should be familiar
enough with navigating the kernel sources that you can find the answers to the questions below by
yourselves; you may want to employ tools such as grep, ctags, or cscope. You may also find it useful to
look at a MIPS R3000 reference manual. Hand in your answers in plain text, with line-wraps. Please
mention your group name and assignment number in the subject line.
Question 3.1: What is the difference between the different MIPS address space segments? What is

the use of each segment?
Question 3.2: What functions exist to help you manage the TLB? Describe their use. (Hint: look in

kern/arch/mips/include/tlb.h)
Question 3.3: Which macros are used to convert from a physical address to a kernel virtual address?
Question 3.4: What address should the initial user stack pointer be?
Question 3.5: What are the EntryHi and EntryLo coprocessor registers? Describe their contents.
Question 3.6: What do the as *() functions do? Why do we need both as prepare load() and

as complete load()?
Question 3.7: What does vm fault() do? When is it called?
Question 3.8: Assuming an inverted page table, a physical address space of only 16 frames, and a

single page and frame size of 4 kB. Further assume that the physical memory is initially empty
and frame allocation sequentially uses frames 0, 1, 2, . . .
For accesses to the virtual addresses (a) 0x100008, (b) 0x101008, (c) 0x1000f0, (d) 0x41000, and
(e) 0x41b00, show

1. their respective page number and offset,

3

2. the translated address (after page allocation), and

3. the contents of the page table after the TLB miss has been handled.

5 Coding Assignment

This assignment involves designing and implementing a number of data structures.
Before you start, you should work out what data you need to keep track of and what operations
are required. As in previous assignments, you are required to submit a small design document that
identifies the major issues you tackled in this assignment, and also describes your solutions to these
issues.
The document will be used to guide our markers in their evaluation of your solution to the assignment.
In the case of poor results in the functional testing combined with a poor design document, we will
base our assessment on these components alone. If you cannot describe your own solution clearly, you
cannot expect us to reverse engineer the code to a poor and complex solution to the assignment.
Create your design document at the top of the source tree to OS/161 (i.e., in ~/sysarch/asst3-src),
and include it in the Mercurial repository as follows.

$ cd ~/sysarch/asst3-src

$ hg add design.txt

When you later commit your changes into your repository, your design document will be included in
the commit, and later in your submission. Also, please word wrap your design doc if your have not
already done so. You can use GNU fmt to achieve this if your editor does not.

5.1 Memory Management

This assignment requires you to keep track of physical memory. The current memory management
implementation in dumbvm never releases memory; your implementation should handle both allocation
of and releasing frames.
In the assignment you will need to keep track of whether a frame is used or not. You do not need an
extra data structure for this purpose, as you can use the pointer of the collision chain to connect all
the free frames in the inverted page table (IPT).
The functions that deal with memory are described in kern/include/vm.h. You may assume that only
one page will be allocated at a time. Designing a page allocator that can allocate multiple pages at
a time is surprisingly tricky. However, make sure that you never allocate memory (through kmalloc)
that is larger than a page (use assert() to enforce this)!
Note that alloc kpages() should return the virtual address of the allocated page, i.e., an address in
kseg0.
Warning: alloc kpages() may be called before vm bootstrap() was called. This means that your
implementation of alloc kpages() must work even before your frametable is initialized. You should
just call ram stealmem() if the frametable has not been initialized.

5.2 Address Space Management

OS/161 has an address space abstraction, the struct addrspace. To enable OS/161 to interact with
your VM implementation, you will need to fill in the functions in kern/vm/addrspace.c. The semantics
of these functions are documented in kern/include/addrspace.h.
You may use a fixed-sized stack for each process (e.g., 16 pages).

5.3 Address Translation

The main goal for this assignment is to provide virtual memory translation for user programs. To do
this, you will need to implement a TLB refill handler. You will also need to implement a page table.
For this assignment, you will implement an inverted page table (IPT).

4

Hashing functions for TLBs tend to be optimized for speed rather than uniform coverage and are
therefore very simple. An appropriate choice of the hash is to take the least significant bits of the page
number.
The following questions may assist you in designing the contents of your page table:

• What information do you need to store for each page?

• How does the page table get populated?

5.4 Testing and Debugging Your Assignment

To test this assignment, you should run a process that requires more virtual memory than the TLB
can map at any one time. You should also ensure that touching memory not in a valid region will raise
an exception. The huge and faulter tests in testbin/ may be useful. Apart from GDB, you may also
find the trace161 command useful. trace161 will run the simulator with tracing enabled, for example

$./trace161 -t t -f outfile kernel

will record all TLB accesses in outfile. The trace161 binary is accessible from the same directory as
sys161, i.e., in ~/sysarch/root.

5.5 Hints

Have a close look at the dumbvm implementation, especially vm fault(). Although it is simple, you
should get an idea on how to approach the rest of the assignment.
We suggest you implement the assignment in the following order:

1. Understand how a page table works and its relationship with the TLB.

2. Understand the specification and the supplied code.

3. Work out a basic design for your implementation.

4. Start simple: assume a small address space. This means you can use a straightforward static
array as the page table (without collision chain), and can keep your code and data structures
simple.

5. Implement the TLB exception handlers in vm.c using this simplified page table.

Note: Your final solution should use an inverted page table!

6. Implement the functions in kern/vm/addrspace.c that are required for basic functionality (e.g.,
as create(), as prepare load()). Allocating user pages in as define region() may also simplify
your assignment.

7. Test and debug this. Use the debugger! If you really get stuck, submit at least this much of the
solution and you should get some marks for it.

8. Understand how the inverted page table works.

9. Decide exactly what data structures you need.

10. Work out the design for the proper solution, using an IPT.

11. Modify your implementation to include the IPT.

12. Write routines in kern/vm/frametable.c to manage free frames and copy pages. Also modify
functions in kern/arch/mips/mips/vm.c to create and delete page table entries and keep the TLB
consistent with the page table.

13. Use these routines to finish the functions in kern/vm/addrspace.c.

14. Test and debug.

5

5.6 Assignment Submission

As with the previous assignments, you will again submit a diff of your changes to the original tree.
First, both team members need to commit their latest local changes, and push these changesets back
to the shared repository, using

$ cd ~/sysarch/asst3-src

$ hg commit

$ hg push

You might have to manually resolve conflicts.
The one who is going to create the diff and submit it should verify that his/her local repository is
up-to-date

$ cd ~/sysarch/asst3-src

$ hg pull

$ hg update

If everything is all right, the latest revision can be tagged, and the diff can be created:

$ cd ~/sysarch/asst3-src

$ hg tag asst-final

$ hg diff -r asst-base -r asst-final > ~/asst3.diff

Send the diff (~/asst3.diff) of your solutions via email to os161@ira.uka.de. Don’t forget to include
your group name and assignment number in the subject line.
Congratulations! By now you have (probably) completed all the programming assignments of this
course!
Note: If for some reason you need to change and re-submit your assignment after you have tagged it
“asst-final”, you will need to either delete the “asst-final” tag, commit the new changes, re-tag, and
re-diff your assignment, or choose a different final tag name and commit the new changes, tag with
the new tag, and re-diff with the new tag. To delete a tag, use hg tag --remove tagname

Even though the generated diff output should represent all the changes you have made to the supplied
code, occasionally students do something “ingenious” and generate non representative diff output. We
strongly suggest to keep your Mercurial repository intact to allow for recovery of your work if need
be.

6

