University of Karlsruhe

System Architecture Group
Gerd Lieflainder

Teaching Assistant:
Philipp Kupferschmied

System Architecture 2008/09
Programming Assignment - Practical Part 0 Update 2

Submission Deadline: 14.11.2008, 12:00h

This assignment is intended to guide you through the basic steps for setting up your development
environment, and to become familiar with the tools you will use. Before you start with the steps
described below, you should have found a partner with whom you work.

In order to fulfill the assignments, you will have to set up a Mercurial repository. Mercurial is a
distributed source management tool, where each developer can work on his/her own, local repository.
However, as you will also need to merge the work of each group member, we will set up a “store”
to which both group members have read and write access. In the following, we will give a detailed
explanation how to set up a directory in one user’s $HOME folder that is accessible by both team
members in a secure way. All Mercurial repositories (one for each programming assignment) are going
to be created within this shared directory.

We will explain how to set up your development environment when each of you will work only with
his/her ATIS account (no matter if directly in the ATIS pool or remotely via SSH). We will also give
some additional hints in case you want to work locally on your own computer.

In either case, we assume bash as your shell (that’s the default shell on the ATIS machines). To set an
environment variable, you need to use export VAR=‘‘value’’. If you need more information use the
man pages (man bash).

In the remainder of this document, several cd shell commands intentionally use absolute paths rather
than shorter, relative ones; some are even completely redundant. The chosen form tries to minimize
potential errors resulting from executing commands in the wrong places—feel free to replace/omit
them.

In several places, $HOME is used instead of “~”; please keep this notation, as $HOME “always” expands
to an absolute path required e.g. by configure tools, whereas ~ does not.

1 Setting up your Development Environment

We start with setting up a shared directory for the Mercurial repositories, to which each of you will
have read and write access. This directory will be hosted on the ATIS account of one of you, to whom
we will refer as s_hghost ! in the following. To the other team member, we will refer to as s_member.
Whenever s_hghost or s_member appear in text that must be entered in the instructions
below, you have to substitute it with the correct ATIS account name of the respective
user. For this initial setup process, both of you should meet in the ATIS.

1.1 Settting up the Mercurial Configuration

Mercurial can be configured with different options specified in the file ~/.hgrc. We will set only two:
the user name that will appear in the commit history, and the editor that shall be used for entering
commit messages. To do so, both team members have to enter the following commands:

$ cd -~
$ cat >> .hgrc

[ui]

! Hg is the chemical symbol of mercury. All Mercurial commands start with hg.

1

username = Your name
editor = Your favorite editor

Press Ctrl + d

As username, you should use your real name, perhaps together with your email address. It can for
example look like this: “Philipp Kupferschmied (pk@ibds.uka.de)” As an editor, you can specify which-
soever you like (as long as it is installed on the machine). If you are unsure which one to choose and
not familiar with editors like vi, vim, or emacs, we suggest to use nano.

1.2 Setting up the “Shared Directory”

To gain access to the shared directory in s_hghost’s account, s_member needs to create an SSH key.
Remote access via that key will be restricted so that s_member can only execute Mercurial commands
within the shared directory.

This description relies on the OpenSSH client (installed in the ATIS pool, see ssh -V); other SSH
implementation may require different paths (e.g. ~/.ssh2/) or different arguments.

1.2.1 Preparing s_member’s Account

s_.member has to create a key on his/her account, associate it with the sysarch hg hostalias, and copy
the public part into s_hghost’s account via:

$ mkdir -p “/.ssh

$ cd “/.ssh
$ ssh-keygen -t dsa -P "" -f sysarch_s_member
$ cat >> config

Host sysarch_hg

Hostname iO08fsl.ira.uka.de
IdentityFile ~/.ssh/sysarch_s_member
PubkeyAuthentication yes

User s_hghost

Press Ctrl + d
$ scp sysarch_s_member.pub s_hghost@iO8fsl.ira.uka.de:.ssh/

Make sure that you did not mistype the PubkeyAuthentication command, it is really Authentication,
not Authentification. The last command will require s_hghost to enter his/her account password.

1.2.2 Preparing s_hghost’s Account

Afterwards, s_hghost must allow s_member to access the shared directory on his/her behalf, but must
also ensure that s_member is not allowed to do anything else but running Mercurial commands inside
this directory. To this end, only s_hghost executes the following commands:

atis$ mkdir -p “/.ssh

atis$ cd “/.ssh

atis$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/hg-ssh

atis$ chmod +x hg-ssh

atis$ (echo -n ’command="cd /home/stud/s_hghost/sysarch/sharedrepos &&
/home/stud/s_hghost/.ssh/hg-ssh *",no-port-forwarding,no-X11-forwarding,
no-agent-forwarding,no-pty ’; cat sysarch_s_member.pub;) >> authorized_keys

Note 1: There must be no whitespace in the echo command except for those in the string between
the double quotes and the one after no-pty (which are mandatory)!

2

Note 2: The echo command should be entered as a single line, it is broken into three here due to
space limitations only.

Note 3: Repeat the echo command for each SSH key which shall have access to the shared directory.
For example, if you want to work locally on your computer at home, create a new SSH key on that
machine, copy the public part of the key to ~/.ssh on s_hghost’s account, and repeat the echo com-
mand, where you replace sysarch_s member.pub with the filename of the newly copied public key.

This setup restricts remote access to the directory ~/sysarch/sharedrepos (which will be created
later on) on s_hghost’s account. s_member is only allowed to execute the hg-ssh script inside this di-
rectory. This script is a wrapper around the actual Mercurial functions and performs some additional
checks.

1.3 Installing the Cross-Compiler Toolchain

In the programming assignments, you will develop an operating system for the MIPS architecture. As
most of you will not develop on a MIPS machine, you need to install cross-compiler tools that can
generate code for MIPS.

1.3.1 ATIS account

On ATIS pool computers, these tools are already installed. To save space, do not install them
again. .. You only need to add the tools to your PATH via:

atis$ cat >> ~/.bashrc

export PATH=/opt/cs161/bin:$PATH
Press Ctrl + d

If you do not work in the ATIS pool, but log in remotely via SSH, you have to modify the file
/.bash_login (if it exists) in the same way.

1.3.2 Home Accounts

On each development machine you will need around 500 MB of free disk space in order to build and
install the cross-compiler toolchain. First, you will need to fetch the source archives. In order to build
the toolchain, you need to download, build, and install binutils, gcc and gdb—in that order. All these
tools build at least on x86 under Linux, *BSD, and possibly MacOS X.

Note: You must not have “.” in your $PATH prior to “/bin”; otherwise the build will fail with obscure
errors. For security reasons, adding “.” to $PATH is a bad idea anyway.

The following steps need to be taken for every development machine—i.e. every computer you would li-
ke to work on—except ATIS machines, as the tools are already installed there (see /opt/cs161/bin).

1. The easy way

For your convenience, there is a script available from our web sites which downloads, builds, and
installs the whole toolchain automatically. Simply type:

$ mkdir -p “/sysarch

$ cd ~/sysarch

$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/cs161-install.sh
$ bash csi161l-install.sh

The script will also update your ~/.bashrc, adding $HOME/sysarch/bin to your PATH for easy
use of the tools.

To be able to access the remote Mercurial repository, update your ~/.ssh/config file as described
above for the ATIS accounts. You either have to copy the key you created at the ATIS to your
local machine, or you can create a new one.

3

2. The harder way

If something goes wrong with the script or if you want to keep full control over the installation
process, proceed along the following steps:

(a) Download the sources:

$ mkdir -p ~/sysarch

$ cd “/sysarch

$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/cs161-binutils-1.4.tbz2
$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/cs161-gcc-1.4.tbz2

$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/cs161-gdb-1.4.tbz2

(b) Unpack the archives:

$ tar -xjf cs16l-binutils-1.4.tbz2
$ tar -xjf cs16l-gcc-1.4.tbz2
$ tar -xjf cs161-gdb-1.4.tbz2

(c) Build and install binutils, gcc and gdb:

$ cd csl61l-binutils-1.4

$./toolbuild.sh --cs161dir="$HOME/sysarch"
$ca ..

$ cd csi61l-gcc-1.4

$./toolbuild.sh --cs161dir="$HOME/sysarch"
$ cd ..

$ cd cs161-gdb-1.4

$./toolbuild.sh --cs161dir="$HOME/sysarch"
$ cd ..

(d) Set up environment variables:

$ cat >> ~/.bashrc

export PATH="$HOME/sysarch/bin":$PATH

Press Ctrl + d
You will also have to adapt your ~/.ssh/config, as described above.

If you work as root—which is a really bad ideal~—you might need to type source ~/.bashrc every
time you open a shell.

1.4 Installing System/161

The MIPS simulator, System/161, is required to execute your operating system kernel. It must be
installed on all machines that you want to use for development—including your ATIS accounts.

mkdir -p “/sysarch

cd ~/sysarch

wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/sys161-1.13.tbz2
tar -xjf sys161-1.13.tbz2

cd sysl161-1.13

./configure --installdir="$HOME/sysarch/root" mipseb

make && make install

cd ~/sysarch/root

cp sysl6l.conf.sample sys161.conf

6B P BH P hH P hH P P

2 First Steps With OS/161

You will be using Mercurial to manage the OS/161 sources of your group. Mercurial documentation
can be found at http://www.selenic.com/mercurial. If you have just set up your environment, log out
and back in to activate the changes in your ~/.bashrc.

2.1 Import the Supplied Sources

s_hghost now has to download the sources of assignment 0 and create a new mercurial repostory inside
the shared directory ~/sysarch/sharedrepos. The following steps must not be performed more than
once per assignment and group!

First download and unpack the OS/161 sources via:

mkdir -p ~/sysarch/sharedrepos/asst0O-src
cd ~/sysarch/sharedrepos/asstO-src

hg init

cd ~/sysarch/

hg clone sharedrepos/asstO-src

wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/asst0-src.tbz2
tar -xjf asstO-src.tbz2

rm asstO-src.tbz2

cd ~/sysarch/asstO-src

hg add

hg commit

hg tag asst-base

hg push

P P P P P P P P P PH P BH P

These commands create a new, empty repository in ~/sysarch/sharedrepos/asstO-src. s_hghost then
locally clones the repository in ~/sysarch/asst0-src, extracts the downloaded tarball into this cloned
(and still empty) repository, adds the files to the repository, commits these changes, and gives this initi-
al revision a tag. Then, he/she pushes the newly created changeset back to ~/sysarch/sharedrepos/asst0-src
In this way, the shared repository does not contain a working directory but only the store (or, in other
words, no files are checked out). This helps to ensure that s_hghost does not accidentally work on the
shared repository, but on his/her local clone in ~/sysarch/asst0O-src instead.

hg commit will open the editor you specified in your ~./hgrc so that you can enter a commit message.
A commit message should contain a summary of what you changed since the last commit. Since this
is the first commit on this repository, enter something like “Initial commit”, save the file, and close
the editor. hg tag gives the inital revision a name.

2.2 Obtain a Working Copy

As said before, Mercurial is a distributed source management software. Thus, each of you will clone
the entire repository and subsequently work on this local clone. Committed changes will only affect
the local copy. In order to sync between clones, Mercurial provides the commands hg push and hg
pull. Details on how to use these commands will follow below. s_member has to clone the repository
with the following commands

$ mkdir -p “/sysarch

$ cd "“/sysarch

$ hg clone ssh://sysarch_hg/asstO-src
$ cd asstO-src

In contrast, s_hghost has already cloned the repository during the setup process.
After you have completed these steps, both s_hghost and s_member should have a directory ~/sysarch/asst0-src
to work on.

2.3 Build an 0S/161 Kernel

To the business end of this assignment: You will now build and install your first OS/161 kernel.

1. First you need to configure your source tree:

$ cd "/sysarch/asstO-src
$./configure --ostree="$HOME/sysarch/root"

2. Then you can build and install the user-land part of OS/161:

$ cd “/sysarch/asstO-src
$ make

As you will not modify the user-land tools, these two steps are required only once per assignment
(though you may perform them as often as you like).

3. The kernel itself must be configured separately:

$ cd “/sysarch/asstO-src/kern/conf
$./config ASSTO

4. The last step is to build and install the kernel:

$ cd "/sysarch/asstO-src/kern/compile/ASSTO
$ make

2.4 Execute Your Kernel

If you have made it this far, you have built and installed the entire OS! Now, let’s see how to run it...

$ cd “/sysarch/root
$./sys161 kernel

This executes the MIPS simulator System/161 and lets it execute your OS kernel. To power off the
simulated machine, type q at the menu prompt.

3 Using GDB

We cannot stress strongly enough to you the need to learn to use GDB. You can find short tutorial
on using GDB with OS/161 at http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/gdbtut.html.
Please work through this tutorial to become accustomed to using GDB together with System/161.
Finish the GDB tutorial before proceeding. At least, create or update your ~/sysarch/root/.gdbinit
with the following contents:

target remote unix:.sockets/gdb

dir ../asstO-src/kern/compile/ASSTO
set print array on

set print pretty on

b panic

4 Modifying Your Kernel

We will now go through the steps required to modify and rebuild your kernel. We will add a new file
to the sources. The file contains a function we will call from existing code. We need to add the file to
the kernel configuration, re-config the kernel, and then rebuild it.

1. Download hello.c and store it in “/sysarch/asstO-src/kern/main/ via

$ cd "/sysarch/asstO-src/kern/main
$ wget http://i30www.ira.uka.de/ pkupfer/edu/2008ws/sysarch/hello.c

2. Find an appropriate place the in the kernel code and add a call to complex hello() (defined in
hello.c) to print out a greeting. The message should appear immediately before the prompt.

(Hint: One of the files in kern/main/ is very appropriate.)

3. As we added a new file to the kernel code, we need to add it to the kernel configuration in order
to build it. Edit kern/conf/conf .kern appropriately to include hello.c.

4. Whenever you change the kernel config, you need to re-configure the kernel:

$ cd “/sysarch/asstO-src/kern/conf
$./config ASSTO

5. Now rebuild the kernel.

$ cd "/sysarch/asstO-src/kern/compile/ASSTO
$ make

6. Run your kernel as before—note that the kernel will panic with an error message.

7. Use GDB to locate the error. Probably a combination of display, break, and step commands
will come in handy...

Use ./sys161 -w kernel to start System/161, so that it immediately breaks and waits for a
debugger to connect.

Now open a new terminal, change to the directory ~/sysarch/root and start cs161-gdb kernel.
Then use GDB’s continue command (or c) to release your kernel.

8. Fix the bug in an editor of your choice, recompile, and run the kernel again to see the welcome
message.

You need not reconfigure the kernel tree, as you did not add or remove files from the configuration;
a simple make in kern/compile/ASSTO should do the trick.

5 Practicing Mercurial

Mercurial can be used in differeny ways, none of which being the only “right” way. For the programming
assignments, we suggest using it in a CVS-like manner, as we think this eases development and avoids
conflicts. Of course, you can use Mercurial in every way you want, the Mercurial website documents
various other working practices.

Mercurial organizes projects in repositories. A repository consists of a working directory and a store.
The store contains the complete history of a project, the working directory contains all files of the
project at a specific point in time. There are basically two ways to get a local Mercurial repository:
The first is to create a new one with hg init, the second is to clone an already existing repository via
hg clone. After having created/obtained a local repository, you can start editing files in its working

7

directory. Editing files does not affect the store unless you commit your changes, using hg commit. Com-
miting records the state of the working directory as a new revision. Note that commiting only affects
your local repository, not the repository you might have cloned it from. To synchronize between diffe-
rent repositories, Mercurial offers hg pull and hg push. As the names suggest, hg pull pulls changesets
from another repository to the local repository, whereas hg push pushes local changesets to another
repository. The Mercurial website offers more detailed documentation about the usage of Mercurial.
A good starting point is http://www.selenic.com/mercurial /wiki/index.cgi/UnderstandingMercurial
Now we will perform some operations with Mercurial.

1. Let’s check what changes you have made to your sources so far:

$ cd "/sysarch/asstO-src
$ hg diff | less

You should see a ‘diff” of all the changes you made to your source tree.

2. Note that the new file hello.c you added was not included in the diff output. This is because you
have not told Mercurial to include it in the repository. Do this now by executing the following
commands:

$ cd “/sysarch/asstO-src/kern/main
$ hg add hello.c

Note that hg add only marks the file for being added with the next commit, rather then adding
it immediately.

3. As your kernel has now reached a small milestone, it makes sense to commit your changes to the
repository to publish and preserve this state.

$ cd “/sysarch/asstO-src
$ hg commit

Again, you will have to enter a (meaningful) commit message.

If you do not like being asked to type a log entry into an editor each time, you can simply
append -m ¢ ‘<log message>’’ after the commit argument to the Mercurial command: hg commit
-m ‘‘log entry message’’.

Note that this commit only affects your local clone of the repository. If the other group member
shall see your changes, too, you have to push them to the “main” repository, hosted on s_hghost’s
account. To do this, type the following:

$ hg push

In case someone else already pushed something to the shared repository (and thus created one
or more revisions), Mercurial will not perform the push operation, unless you explicitly force it
to do so. However, this is not a good idea. Instead, you should first pull the remote changesets to
your repository, locally merge them with your local changes, and finally push back the changes.
Execute the following commands in order to do this:

$ hg pull
$ hg merge
$ hg push

Note that you might have to resolve conflicts manually when you run hg merge. See the slides of
the introduction lecture for details.
8

4. Now edit kern/main/main.c: Remove a large part of the file. Try to rebuild your kernel, which
should fail.

$ cd "/sysarch/asstO-src/kern/compile/ASSTO
$ make

5. Restore the previous version of main.c:

$ cd "/sysarch/asstO-src/kern/main
$ rm -f main.c
$ hg update

Check to see if your kernel builds again.

6 Submitting the Assignment

Once you have added hello.c to your kernel, fixed the bugs, and run the kernel to see the welcome
message, you have completed the first assignment. When running your kernel using sys161 kernel
¢¢q’’, you should see output similar to

sysl61l: System/161 release 1.13, compiled Oct 12 2007 16:36:52
0S/161 base system version 1.10
Copyright (c) 2000, 2001, 2002, 2003
President and Fellows of Harvard College. All rights reserved.
Put-your-group-name-here’s system version 0 (ASSTO #3)
Cpu is MIPS r2000/r3000
344k physical memory available
Device probe...
lamebusO (system main bus)

con0 at lser0
pseudorand0 (virtual)

Hello World!'!'!

0S/161 kernel: q
Shutting down.

The system is halted.

This is also generally the way we test your submission.

Now it is time to submit your solution. Submission requires some coordination with you partner to
ensure that both of you have completed their work before it is submitted (this is especially true for the
later assignments, which allow for more concurrent work). Before submitting, both members should
locally commit their latest changes, and push those changes to the shared repository using hg push.
Merge conflicts locally if necessary (using hg pull and hg merge, as described above). Decide on one of
you to submit your solution (there is no need to send you tutor the same solution twice). Let us assume
you chose s_member. s_-member first ensures that his/her local repository is up-to-date by running

$ cd "/sysarch/asstO-src
$ hg pull
$ hg update

Now s_member can tag the current revision to mark it as the final version

$ cd “/sysarch/asstO-src
$ hg tag asst-final
$ hg push

Running hg push after having tagged the current revision ensures that the tag becomes visible in the
shared repository, too. Finally, s-member must have a look at the changes you made to the source
originally provided:

$ cd "/sysarch/asstO-src
$ hg diff -r asst-base -r asst-final > ~/asstO.diff

Send ~/asst0.diff to os161@ira.uka.de to complete your submission. The topic of your mail must
look like “sapwX, asst 0”, where X has to be replaced with your group number. Do not forget the due
date: Late submissions must be rejected. Before sending in the diff please register with your tutor, by
sending a mail to os161@ira.uka.de which contains your group id, the name of both team members,
and the name of the desired tutor.

You are now done.

Even though the generated diff output should represent all the changes you have made to the supplied
code, occasionally students do something “ingenious” and generate non-representative diff output.
Always keep your Mercurial repository so that we may recover your assignment should something go
wrong.

Note: If for some reason you need to change and re-submit your assignment after you have tagged
it “asst-final”, you will need to either delete the tag, commit the changes, re-tag, and re-diff your
assignment, or choose a different final tag name, commit the changes, tag with the new tag, and re-diff
using the new tag. To delete a tag, use hg tag --remove tagname.

10

