
University of Karlsruhe
System Architecture Group
Gerd Liefländer

Teaching Assistant:
Philipp Kupferschmied

System Architecture 2008/09
Assignment 7

Question 7.1: Synchronization Primitives

1. Recall the requirements for a valid solution to the problem of critical sections.

2. Distinguish the various types of synchronization objects and summarize their respective opera-
tions’ semantics:

signals, counting semaphores, binary semaphores, mutex objects, barriers, condition variables,
monitors, locks

3. What are strong semaphores as opposed to weak semaphores?

4. Which of the above objects are suitable to protect critical sections?

Question 7.2: Emulating Atomic Test-And-Set
Consider a computer that does not have a test-and-set instruction, but does have an instruction
to swap the contents of a register and a memory word in a single indivisible action. Can that be
used to write a routine to enter a critical section, like acquire SMP() on slide 51 of lecture 9 (Mutual
Exclusion)?

Question 7.3: Environmental Influences on Mutual Exclusion

1. Explain why spinlocks are not appropriate for single-processor systems, yet are often used in
multi-processor systems.

2. Explain why disabling interrupts is not an appropriate means for implementing synchronization
primitives in multi-processor systems.

3. Show how to implement the P() and V() semaphore operations in multi-processor environments
using the testAndSet() instruction. The solution should exhibit minimal busy waiting.

Question 7.4: Generalizing Peterson’s Algorithm
Peterson’s solution to the mutual exclusion problem for two threads (i.e., Algorithm 3 of the lecture
slides, see below) can be generalized to provide mutual exclusion among n > 1 threads. Design this
solution and prove that it meets the following three requirements:

• mutual exclusion

• deadlock freedom

• no starvation

1



Question 7.5: IPC Basics
Explain the following design parameters for an IPC mechanism. Discuss pros and cons of each possible
parameter value.

• connection-oriented vs. connectionless

• asynchronous send vs. synchronous send

• asynchronous receive vs. synchronous receive

• buffered vs. unbuffered

• direct addressing vs. indirect addressing

2


