
University of Karlsruhe
System Architecture Group
Gerd Liefländer

Teaching Assistant:
Philipp Kupferschmied

System Architecture 2008/09
Assignment 6

Question 6.1: Portable Barrier Synchronization
Consider the following code for barrier synchronization of two threads (from the lecture).

module synchron i za t i on
export synchron ize ;
import BLOCK, UNBLOCK;
type sync = record

S : s i g n a l = reset ;
W : thread = ni l ;

end ;

procedure synchron ize (var SY: sync)
begin

i f (SY. S = reset) then begin

(∗ f i r s t thread to a r r i v e ∗)
SY. S := set ; (∗ arm ba r r i e r ∗)
SY.W := myse l f ; (∗ t e l l my par tner who i s wa i t ing ∗)
BLOCK(myse l f) (∗ wai t f o r par tner ∗)

end else begin

SY. S := reset ; (∗ a l l ow fu t u r e reuse ! ∗)
UNBLOCK(SY.W) (∗ r e a c t i v a t e par tner ∗)

end

end

end

1. Assume synchronize is used for synchronization of two KLTs that run on an operating system
with preemptive scheduling. Will the code shown above lead to correct results? If not, what
needs to be done to fix it?

2. Does the solution place any constraints on the scheduling policy? Does it work both with time-
slice–based scheduling and with static priorities?

3. Improve the code so that it reliably works for N ≥ 2 threads.

Question 6.2: Terms and Definitions

1. What is the difference between a critical section (CS) and a critical region (CR)1?

2. Enumerate and explain the requirements for a valid synchronization solution.

3. What is the difference between a weak and a strong counting semaphore?

Question 6.3: Concurrent Modifications of Shared Memory
Consider the following Pascal program:

1This definition is KIT-specific

1

const n = 50 ;
var t a l l y : integer ;

procedure t o t a l ;
var count : integer ;
begin

for count := 1 to n do t a l l y := t a l l y + 1
end ;

begin (∗ main program ∗)
t a l l y := 0 ;
parbegin

(∗ two threads execu t ing in p a r a l l e l ∗)
t o t a l ; t o t a l

parend ;
write (t a l l y)

end .

1. Determine the lower and upper bounds of the final value of the shared variable tally as printed
by the main program. Assume that threads can execute at any relative speed and that a value can
only be incremented after it has been loaded into a register by a separate machine instruction.

2. Suppose that an arbitrary number t > 2 of parallel threads performing the above procedure
total is started within the parbegin...parend clauses of the above main program. What (if any)
influence does the value of t have on the range of the final values of tally?

3. Now suppose parbegin created and started PULTs for each function called before the closing
parend. Would this change make a difference to the output?

4. Finally consider a modified total routine:

procedure t o t a l ;
var count : integer ;
begin

for count := 1 to n do begin

t a l l y := t a l l y + 1 ;
y i e l d

end

end ;

What will be printed now, if PULTs or KLTs are used?

Question 6.4: Protecting Shared Data Structures
Consider n > 1 threads concurrently accessing (a) a doubly linked list and (b) a binary tree. Each
node in the data structures describes a customer record containing first and last names, home and
work addresses, phone numbers, . . . The contents of the customer records will never change. Nodes are
added to the data structures, maintaining sort order by last name. Before a new node is added to the
data structure, it is visible only to the thread that creates the customer record, but after the record
is added, it becomes visible to all other threads, since they can follow the pointers in the tree or list.

1. Describe how the data structures are vulnerable to race conditions and how to avoid the race
conditions.

2. Must a customer record have completely valid data before it is added to a data structure? Why
or why not?

2

Question 6.5: Towards High-Performance Spinlocks
Assume you had a symmetric multi-processor system (SMP) consisting of 4 processors P1, . . . , P4 with
common main memory and dedicated L1 and L2 caches per processor.
Three cooperating threads T with a medium sized working set—each fitting into each L2 cache—run
in parallel on processors P1, . . . , P3. These threads synchronize with each other via spinlocks:

do

reg := myThreadId ;
(∗ a t omi ca l l y exchange shared v a r i a b l e ‘ sp in l ock ’ and reg ∗)
swap(&sp in lock , reg) ;

until (reg = 0) ;
(∗ c r i t i c a l s e c t i on ∗)
sp i n l o ck := 0 ;

Independently of those 3 threads, processor P4 executes a grandmaster chess program with a large
working set not fitting into the L2 cache.

1. Why does the chess program run substantially slower when the threads T execute concurrently?

2. How can you modify the software so that the chess program’s performance is only hardly affected
by the execution of T?

Question 6.6: Software-Based Mutual Exclusion
The following code fragment shows Peterson’s solution for mutual exclusion of two threads:

(∗ Peterson ’ s CS pro t o co l f o r 2 threads Ti and Tj ∗)
forever do begin

(∗ non−c r i t i c a l code ∗)
(∗ entry code f o r thread Ti ∗)
f l a g [i] := true ;
turn := j ;
while (f l a g [j] and (turn = j)) do begin (∗ wai t ∗) end ;
(∗ c r i t i c a l s e c t i on ∗)
(∗ e x i t code f o r thread Ti ∗)
f l a g [i] := fa l se ;

end

1. Is the variable turn really required, or would it be sufficient to only use the array flag?

2. What is the advantage of Peterson’s algorithm over a simpler solution that uses only a single
turn variable (as in “algorithm 1” in the lecture)?

3. Describe a scenario where Peterson’s solution can lead to starvation.

3

