
A Stack-Based Resource Allocation
Policy for Realtime Processes

T.P. Baker
Department of Computer Science

Florida State University
Tallahassee, FL 32304-4019

Presented by Tsai Lin-Jiun

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Abstract & Introduction

! share a single runtime stack
! if Job is preempted it can’t resume until all

the jobs that occupy stack space above it
have completed

! refinement of the Priority Ceiling Protocol

Abstract & Introduction (contd.)

! SRP offers improvements over the PCP.
" unifying the treatment of stack, reader-writer,

and multiunit resources, and binary semaphores
" applying directly to some dynamic scheduling

policies, including EDF, as well as to static
priority policies

" with EDF scheduling, supporting a stronger
schedulability test

" reducing the maximum number of context
switches by a factor of two

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Definitions

! Jobs
" a finite sequence of instructions to be executed

on a single processor
" pending requests are classified as waiting,

meaning the job hasn’t yet started
" active, meaning the job has started to execute
" process Pi is an (infinite) sequence of job

execution requests Ji,1, Ji,2 , Ji,3 ...

Definitions (contd.)

! Resources
" assume there is a single processor, which is

preemptable, and a finite set of nonpreemptable
resources Ri,... Rm

" (J,R,m) J: a job, R: a nonpreemptable resource,
m: a mode (read = 1, write = NR(total # of R))

" while a job holds an allocation, says outstanding
" LIFO request order, overlap if properly nested

Definitions (contd.)

! Stack Space
" Shared runtime stack space is a

nonpreemptable resource
" 1. request at least 1 cell before execution, can’t

relinquish until completes execution, entire
execution of each job is a critical section

" 2. it must continue to hold its stack resources
while it is blocked for some request

" 3. request can be granted iff is not yet holding
any space or holding the top of the stack

" 4. only the job at the top may execute(grow up)

Definitions (contd.)

! Direct blocking
" (J, R, m) is blocked directly iff VR < m
" identifable set of other jobs that are blocking J
" job J is directly blocked iff there’s another job J’

holding the space immediately above the space
occupied by J on the stack

Definitions (contd.)

! Priorities
" J has higher priority than J’ iff p(J) > p(J’)
" larger values indicate greater urgency
" preemptable according to the priorities of

requests and FIFO among jobs of equal priority

Definitions (contd.)

! Preemption levels π(J)
" statically assigned to jobs
" J’ isn’t allowed to preempt another job J unless

π(J’) > π(J)
" enable static analysis of potential resource

conflicts, even for dynamic priority schme
" p(J) < p(J’) iff t’ + D’ < t + D (by EDF)
" π(J) < π(J’) iff D(J’) < D(J)
" J’ can never be preempted by J, but this doesn’t

mean that J’ always have higher priority than J

Definitions (contd.)

! Preemption levels (contd.)
" π(J) < π(J’):
" p(J) > p(J’) or p(J’) > p(J) can preempt J

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Stack Resource Policy(SRP)

! Unify and extend definition of priority ceiling
" priorities are replaced by preemption levels.

This allows EDF priorities to be handled without
requiring to recompute ceilings at run time

" ceilings are defined for multiunit resources,
subsuming both binary semaphores and r/w lock

! Abstract ceilings
" if J is currently executing or can preempt the

currently executing job, and may request an
allocation of R that would be blocked directly by
the outstanding allocation of R, then R ≥ π(J)

Stack Resource Policy(SRP) (contd.)

! Specific ceilings
" RVR = max({0} ∪ {π(J) | VR < µR(J)})
" VR units of R available
" µR(J) is the maximum number of units of R that

job J may need to hold at any one time

Stack Resource Policy(SRP) (contd.)

! Specific ceilings (contd.)

Stack Resource Policy(SRP) (contd.)

! Current ceiling
" π’ = max({Ri | i = 1,…,m} ∪ {π(Jc})
" if there’re no jobs currently execute, π’ = 0

! the SRP
" requires that a job execution request J be

blocked from starting execution until π’ < π(J)
" once J has started execution, all subsequent

resource request by J are granted immediately
" doesn’t restrict the resource acquiring order,

and allocate only when requests.

Stack Resource Policy(SRP) (contd.)

! the SRP (contd.)
" release resources when they are not need.
" JH is free to preempt until J actually requests

enough of R to block JH (without being blocked)
! examples

" solid horizontal lines indicate job executions
" barred lines indicate π’
" ex1: since R20 = 2, J2 is unable to preempt J1

after it acquire R2 , J3 preempts J1 as soon as J1
release R1

Stack Resource Policy(SRP) (contd.)

! the SRP (contd.)

Stack Resource Policy(SRP) (contd.)

! the SRP (contd.)

Stack Resource Policy(SRP) (contd.)

! Blocking properties of the SRP
Theorem 1

$ If no job J is permitted to start until π’ < π(J) =>
$ (a) No job can be blocked after it starts
$ (b) There can be no transitive blocking or deadlock
$ (c) If the oldest highest-priority job is blocked, it will

become unblocked no later than the first instant that
the currently executing job isn’t holding any
nonpreemptable resources.

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Schedulability

Theorem 2
$ A set of n (periodic and aperiodic) jobs is

schedulable by EDF scheduling if

Bi : the execution time of the longest critical section
of any job Jk such that Di ≤ Dk and i != k

Ci : max execution time Di : relative deadline

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Relation to PCP

! Ceiling are defined in terms of preemption levels,
instead of priorities, so that the SRP applies directly
to EDF scheduling (without dynamic recomputaion
of ceilings)

! Ceilings are defined for multiunit resources.
! Stack sharing is supported
! The blocking test is only applied when a job tries to

start execution

Relation to PCP (contd.)

! Resouces requests never block, and hence can’t
require extra context switches (at most TWO!)

! Because there is no blocking after a job starts
executing, a stronger EDF schedulability result can
be obtained than with dynamic priority ceilings

! Different jobs of a process may have different
priorities

Relation to PCP (contd.)
Theorem 3

$ The maximum priority-inversion time of any job under
the SRP is no longer than under the PCP

Theorem 4
$ The SRP requires at most two context switches per

job execution request
Theorem 5

$ The PCP, like any other policy that waits to block a job
until it makes a resource request, may require four
context switches per job execution request, for any job
that shares a semaphore with a lower priority job

Outline
! Abstract & Introduction
! Definitions
! Stack Resource Policy(SRP)
! Schedulability
! Relation to Prority Ceiling Protocol(PCP)
! Implementation Consideration, Conclusions,

and Further Research

Implementation Consideration,
Conclusions, and Further Research

! Simple and efficiently, similar to that of PCP, but
simpler blocking operation.

! Ceilings Rn are static in table
! π’ = Rvr iff π’ < Rvr when VR is updated, and the old

π’ and VR are pushed on the stack (be restored later
and check whether waiting jobs to preempt)

! refinement version of SRP, the Minimal SRP(MSRP)
is developed

Thank you

