
Distributed SystemsDistributed Systems

8 8 Migration/Load BalancingMigration/Load Balancing

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

May-25-2009
Gerd Liefländer

System Architecture Group

Today’s Schedule

 Classification of Migration
 Code Migration

 Process-/Task Migration Models
 Implementation

 Data Migration

Overview

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

 Implementation of Migration
 Load Balancing
 Motivation
 Taxonomy of Load Balancing Schemes
 Needed Information for Load Balancing
 Load Balancing Policies
 Load Sharing

What is Migration?

Two major approaches
 Code migration (traditional)

 Weak migration: only code
 Java class loading

 Strong migration: code and execution state
 Process migration

Motivation

© 2009 Universität Karlsruhe (TH), Systemarchitektur 3

 Process migration
 Java object migration (via RMI)

 Data migration (newer)

 Examples
 Juggle: Automatic object and thread distribution in a VM
 Java Party: A distributed Companion to Java
 Emerald

Why Migration?

 Performance
 Move code on a faster machine
 Move code to a lightly loaded machine
 Move code closer to its data (e.g. a data base)(g)

 Availability
 Move code to a node that will not be shut down in

the near future

 Flexibility
 Allow to dynamically configure a distributed

system

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

Performance Reasons

 Migrating a process to another node in a DS might
induce a lot of migration overhead and later follow up
costs

 However, migrating from a heavily loaded node to a
lightly/loaded one might improve overall systemlightly/loaded one might improve overall system
performance

 A search query can be implemented a small program,
moving from node to node collecting all search
results

 A client processing a very large amount of data from
a specific server may be better off executing on the
server machine

© 2009 Universität Karlsruhe (TH), Systemarchitektur 5

Code Fetching to install a DS

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 6

 Principle of dynamically configuring a client to a server.
Client first fetches necessary software for future interaction with the
sever, then it invokes the server.

 However, you have to trust the downloaded code

Might contain code for
different client machines

Traditional Code Migration

Code Migration

 Moving a “not yet created task” ~ downloading code

 Moving a non-active task to another machine is not
that hard (in homogeneous systems)
 Some resources at load time have to be released at the

source node and reserved/allocated at the target node

© 2009 Universität Karlsruhe (TH), Systemarchitektur 7

 Moving an “active” task from one machine to another
can involve a lot of overhead
 In any case, migrate iff you’re sure to gain either

performance or availability

 When migrating an active task you can do
 complete or partial migration
 in any case you have to migrate a sufficient amount of its

context state from one machine to another

Modeling for Code Migration

Framework described by Fugetta*:
A process consists of 3 “segments”

 Code segment
 Resource segment

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 8

 Resource segment
 Links(handles) to (external) resources, e.g.

 files or devices
 other processes

 Execution segment
 Process context (environment)

* Fuggeta, A. et al: “Understanding Code Mobility”,
IEEE Trans. Software Engineering, 1999, p. 717

Models for Code Migration

Code Migration

Code + initial data, always
start from program begin,

you only have to
guarantee that code is

executable on the target
node, e.g. Java applets

© 2009 Universität Karlsruhe (TH), Systemarchitektur 9

 Alternatives for code migration

Initiate migration on node
containing code, e.g. upload code
on a compute server or transfer
search program to a web server

Fewer security flaws, e.g.
Java applets

Weak Migration

 Migrate (download) a software component to
a new target node, e.g.
 Process or task

 Object

Weak Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 10

 …

 Relocation transparency

 Passive components
 Migrate complete object or AS (i.e. data + code)

 Must wait until current activity has terminated

Strong Migration

 Active software components
 Migrate a running task or a process

 Additionally migrate its
 state & context

Strong Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 11

 instruction pointer (program counter)
 register set
 stack …

 Need support from OS because execution
environment of activity must be preserved, e.g.
 open files with current file pointer and access rights etc.,

IPC with remote or local partners
 maintain a stub for forwarding incoming signals and

messages to the target machine

Strong Process Migration

1. Stop active process

2. Take snapshot of process

3. Transmit snapshot + process to target

4 Recreate process at target node with given

Process Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 12

4. Recreate process at target node with given
snapshot image

5. Bind open descriptors
 Unattached, fastened, or fixed resources
 Binding by identifier, value, or type

6. Resume process
 OS and architecture specific
 Language independent

Data Space Management & Binding

 Binding by identifier (strong)
 Execution environment (EU) requires that at any time it is to

this uniquely identified resource, i.e. this resource can not
be substituted by another one of the same type

 Binding by value (mediocre)

© 2009 Universität Karlsruhe (TH), Systemarchitektur 13

g y ()
 At any moment, the resource must be compliant with a

given type and its value cannot change as a consequence of
migration

 Binding by type (weak)
 EU requires that at any moment the bound resource is

compliant with a given type, no matter what its actual value
or identity is

 Typical for resources that are available at any node, like
system variables, libraries or devices, e.g. a display

Bindings, Resources, DS Management

Unattached Fastened Fixed

By identifier
By value
By type

MV or GR
CP (or MV, GR)
RB (or GR, CP)

GR (or MV)
GR (or CP)
RB (or GR, CP)

GR
GR
RB (or GR)

Resource-to-machine bindingDegree
of binding

Code Migration

Rebind to
another
printer

© 2009 Universität Karlsruhe (TH), Systemarchitektur 14

By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

GR Establish a global system-wide reference MV move the resource
CP Copy the value of the resource RB Rebind task to locally available resource

Strongest form via ID, e.g. use an absolute URL for a specific web site in
case of a shared resource, otherwise migrate resource together with the task

Binding by value is weaker, cause you only need to provide a resource with
delivering the same value, e.g. using a standard library

By type is weakest binding form, e.g. usage of a local printer,
you want to print on whatever printer

Binding, Resources

Unattached Fastened Fixed

By identifier
By value
B t

MV (or GR)
CP (or MV, GR)
RB (GR CP)

GR (or MV)
GR (or CP)
RB (GR CP)

GR
GR
RB (GR)

Resource-to-machine binding

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 15

By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Degree of binding

Unattached resources are very easy to migrate,
e.g. a data file associated with a program

Fastened resources might be migrated but at high cost, e.g.
complete web sites or a local data base

Fixed resources cannot be migrated

Migration in Heterogeneous Systems

 Up to now we could expect, that a migrated process
can be easily resumed on teh target machine

 What if the new machine has a different hardware?
 Make sure, that the program can be executed on

h d h it ld b i t d t (itheach node, where it could be migrated to (either
recompilation or support of multiple binary codes)

 Make sure that the execution segment is properly
represented and interpreted by each platform

 Weak mobility is easy to achieve: simply recompile
the program or maintain multiple binaries

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

Strong Migration in Het. Systems

 How to transform the execution segment? It is highly platform
dependent

 Each execution segments contains the current stack (local
values and register values)

 To transfer an execution segment make sure no platform To transfer an execution segment, make sure no platform
dependent data is stored

 Restrict code migration to specific points within the code, e.g.
migration can take place only when a procedure is called;
runtime system maintains a copy of the execution stack in a
machine independent format-migration stack

 Migration stack is updated each time a procedure is called, or
when a return from the procedure occurs

© 2009 Universität Karlsruhe (TH), Systemarchitektur 17

Migration in Heterogeneous Systems

Code Migration

Reduce migration
points at run time,
e.g. before next

procedure call or use
an intermediate code

Machine
independent

© 2009 Universität Karlsruhe (TH), Systemarchitektur 18

Principle of maintaining a migration stack to support migration
of an execution segment in a heterogeneous distributed system

Local machine
dependent stack

Implementing Migration

19© 2009 Universität Karlsruhe (TH), Systemarchitektur

Implementing Task Migration

5 variants of migrating tasks
 eager all (complete)
 pre-copy

di t

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 20

 eager dirty
 copy-on-reference
 flushing

Complete Migration

 Eager (all): Transfer entire task, i.e. with all 3
segments
 Clean approach, no trace of task left behind

 When the task was waiting for signals or messages, how to
inform the signaler or the sender?

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 21

Due to heavy traffic on the net and additional storage
requirements on target machine this affects not only the

migrating task, but also other non related tasks

inform the signaler or the sender?

Tasks with waiting signals from a peripheral cannot be
migrated without a substitute at the source node that is able
to forward all results from a previously initiated I/O

 If AS = large and if task does not need most of it
 this approach is quite expensive

Pre-Copy Migration

 Task continues to execute on source node
while its AS is copied to the target

 Pages that have been modified on the source
during this pre-copy operation have to be copied a

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 22

during this pre copy operation have to be copied a
second time

 Reduces time that a task is temporarily “frozen”

Eager Dirty Migration

 Transfer only mapped and modified pages
 Transfer other pages on demand from background storage

of source machine
 How to implement, e.g. the disk addresses of unmapped pages

may be only valid on the source machine
Two possibilities:

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 23

 Two possibilities:
 While copying the address space tables to the target machine,

translate all disk addresses of the source to remote disk addresses

 Source machine involved throughout the life of the task, i.e. it has
to maintain page/segment tables and has to offer remote paging
support, i.e. each page fault on the target machine is tunneled to
the source machine

 Good choice if task is only partly migrating to another machine
(e.g. only a thread)

Copy-On-Reference Migration

 Migrate pages when referenced

 variation of eager dirty

 lowest initial cost of task migration

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 24

Flushing Migration

 Pages are cleared from main memory by
flushing dirty pages to disk

 Later use copy-on-reference policy

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 25

 Relieves the source machine of holding mapping
information for migrated task in its main memory

Summary

 If a task is a multi-threaded application and
the basic migration unit is a thread, then use:
 eager dirty or
 copy-on-reference or

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 26

Similar considerations apply if a migrated task has open files,
i.e. a thread running on target machine might never access the file,
so why should we migrate open files when migrating a thread?

py
 flushing

Distributed SystemsDistributed Systems

8 8 Load BalancingLoad Balancing

27© 2009 Universität Karlsruhe (TH), Systemarchitektur

May-25-2009
Gerd Liefländer

System Architecture Group

Motivation

Load Balancing

28© 2009 Universität Karlsruhe (TH), Systemarchitektur

Why Load Balancing?

 To achieve a fair & robust distribution of computations
across nodes to increase performance & availability

c1
c2
c3

© 2009 Universität Karlsruhe (TH), Systemarchitektur 29

c3
c4

c1
c2
c3
c4

Perfect load balancing

Imperfect load balancing

Idea behind Load Balancing

 Try to effectively and efficiently use your resources in
your DS

 Try to get system & performance data describing the
current and future load of each node in your DS as

© 2009 Universität Karlsruhe (TH), Systemarchitektur 30

y
precisely as possible, but also as cheap as possible

 Try to satisfy

 your customers by low turnaround times

 as well as your managers by high resource usage,
but low power consumption

Principles of Load Balancing

 Distributed server, e.g.
 Dispatcher + w worker processes
 Load can be easily distributed to w nodes

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 31

 Load
 Any instance that consumes resources like

 CPU
 Ram usage
 Network bandwidth …

 e.g. tasks, processes, KLTs

Principles of Load Balancing

 Distributed Multiprocessing Server, e.g.

 Team model
 Worker get requests from a global mailbox, e.g.

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 32

ray-tracing (pull-model)

 Pipeline-model
 Intermediate results are handed from process

to process

Load Balancing on n>1 Workstations

 Often a WS is not fully used
 Users often do other things
 During night a WS is almost inactive completely

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

 Start workers on currently not used WS
 Problem: trust

 Need trusted WS

 Problem: user wants to use its WS
 Stop worker process (of a remote machine)
 Abort worker process and start somewhere else
 Migrate running worker process

Which one
is fitting?

Taxonomy of Load Balancing

34© 2009 Universität Karlsruhe (TH), Systemarchitektur

Design Parameters of LB*

 Static versus dynamic

 Deterministic versus probabilistic

 Centralized versus distributed

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

 Centralized versus distributed

 Cooperative versus non-cooperative

*LB = Load Balancing

Algorithms for Load Balancing

 Problem
 w tasks with a given execution and communication behavior

 What is the optimal load balancing?
 Avoid resource bottlenecks

 How to get info on future resource utilization?

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

 How to get info on future resource utilization?
 Enable efficient execution of requests

 Classification of load balancing algorithms

static methods dynamic methods

without migration with migration

Static versus Dynamic LB

 Static load balancing
 Calculate at boot time an optimal distribution of the load
 Balancing is done whenever a new distributed application

will be created

 Dynamic load balancing without migration

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

y g g
 Whenever you create within a distributed application a new

task or process or a new KLT
 Take into account the current load on all nodes

 How to get the actual system states?
 Inform the load balancing node or all other nodes

 Dynamic load balancing with migration
 Whenever you measure a significant over-/underload try to

export/import processes

Static Load Balancing

 Round Robin: whenever a task has to be created, it is
created on the next node (chained in a logical ring)

 Randomized: Allocate a new task at random

 Recursive bisection: recursively divide the allocation
problem into sub problems of equal computational

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

problem into sub-problems of equal computational
effort
 The problem of allocating tasks to nodes for arbitrary

networks is NP-hard

 No efficient polynomial time algorithm exists, i.e. we have to
live with heuristics. However, there are some interesting
static load balancing algorithms

Summary: Static Load Balancing

 When a good mathematical solution exists, static
load balancing has the following drawbacks:

 It is difficult to estimate a-priori [in a accurate way]
the executions times of various parts of the program

© 2009 Universität Karlsruhe (TH), Systemarchitektur 39

t e e ecut o s t es o a ous pa ts o t e p og a

 Sometimes there are non negligible communication
delays that vary in an uncontrollable way

 For some problems the number of steps to reach a
solution is not known in advance

Dynamic Load Balancing

 Allocating a task or parts of it, is done during
the execution of the task

 Features:

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

 Drawbacks of static load balancing are taken into
account, improving the efficiency of load balancing

 There is an additional overhead during execution,
i.e. how to avoid unnecessary load state messages

 Termination detection of the tasks is more
complicate

Types of Dynamic Load Balancing

 Centralized load balancing:
 Tasks are allocated from some master node, master/slave

system architecture

 The centralized master node is again a single point of failure
and might become a bottleneck

© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

g

 Decentralized load balancing:
 Worker nodes interact among themselves to solve the

problem, finally reporting to a single node

 Tasks are passed between arbitrary nodes, a worker node
can receive tasks from any other worker node and can send
tasks to any other worker node

Centralized Dynamic LB

 Good, when there is a small number of slaves and the
problem consists of computationally intensive tasks

 Basic features:
 A master node holds the collection of tasks/processes to be

performed

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

 Tasks are sent to the slave/worker nodes
 When a slave has completed one task, it requests another

one from the master node

 The following terms reflect a centralized load balancing
scheme: work pool, replicated worker, processor farm

 Technically, it is more efficient to start with the long
runners, i.e. try to do some LPT scheduling in the large

Centralized DLB

…

Queue of “Ready Tasks”

Master node

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

request
send

Slave “worker” nodes

Termination in Centralized DLB

 Stop the computation when the solution has been
found

 When the tasks are taken from a task queue,
computation terminates when
 the task queue is empty and

d h d f h k h

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

 every node has made a request for another task without any
new tasks being generated

 Note: It is not sufficient to check if the master’s task
queue is empty, as long as worker nodes are allowed
to put tasks in the task queue

 In some applications a slave can detect the program
termination by some local termination, for instance
finding an item in a search algorithm

Decentralized DLB (1)

 Tree structured worker pool

…

© 2009 Universität Karlsruhe (TH), Systemarchitektur 45

…

request send

…

request send

…

Decentralized DLB (2)

 General (fully distributed) worker pool

© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Triggering Migration

1. Receiver initiated
 Node requests tasks from another node it selects; typically done

when the node has few or no tasks to compute

 Method works well when there is a high system load

2. Sender initiated

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

 Node sends tasks to other nodes it selects; typically done when
node has already a heavy load and can find other nodes willing
to accept additional load

 Method works well when there is only light system load

Final comments:
 Above pure approaches can be mixed

 However, whatever method one uses, in very high system loads,
load balancing is difficult due to the lack of node capacity

Node Selection in DLB

 Assumption: There are n nodes N1, … Nn in the DS

 Round Robin: node Ni requests tasks from node Nx,
where x is given by a counter that is incremented
modulo n, excluding x=i

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

 Random Polling: Node Ni requests tasks from node
Nx, where x is a number that is randomly selected
from the set I={1, 2, …i-1, i+1, …, n}

Termination Conditions

 The [application specific] local termination condition
are satisfied by all application members on all
involved nodes

 There are no messages in transit between these
nodes concerning the distributed application

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

nodes concerning the distributed application

 Note: The second condition is necessary to avoid
situations where a message in transit might restart
an already terminated task. This case is not easy to
check, as long as communication times are not
known in advance

Needed Information for LB

50© 2009 Universität Karlsruhe (TH), Systemarchitektur

Local Load Measuring/Calculating

Load Balancing

 You can measure usage patterns of
 CPU
 Memory
 I/O
 Power

© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

 …

 With an aging coefficient it’s possible to predict the
future behavior (see: principle of locality)

 However, how to decide, that a node, its CPU or any
another device is/are overloaded?

 If there a different nodes we must take into account
the different capacities of these nodes

Distinguishable Load States

 Underloaded:
 New local work can be done
 New remote work can be done

 Acceptably loaded:

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 52

 Acceptably loaded:
 No new work can be accepted, i.e.

 New local work must be postponed or must be exported
to another node (e.g. to the least loaded neighbour)

 Remote work has to be rejected

 Overloaded:
 New and/or current work has to be migrated

Global Load Calculating

 How to avoid significant overhead getting the
necessary load information of each node in the DS?
 Only collect status from the neighbors
 Broadcast the local status periodically, but not that often

(large Δt)

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

(g)
 As long as N = number of nodes is low and LAN, these

broadcast messages do not cost too much

 When do we need this information?
 Whenever creating a new application you have to decide:

 Establish it on the local node
 Postpone it
 Establish it on a remote node

Local Load Determination

 How to measure the current workload of a node?

 Not an easy problem, up to now there is not yet THE
SOLUTION

 Calculating the local load must be fast

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

 You can measure/estimate the following entities:
 # of active threads/processes

 Sum of all resource requirements

 Instruction mix of the threads/processes

 Architecture and speed of the node’s CPUs

 Remaining execution times of the threads/processes

Decision for Migration

overloaded overloaded High water
mark

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

underloaded
underloaded

acceptable loadthreshold

mark

Low water
mark

Load Balancing Policies

56© 2009 Universität Karlsruhe (TH), Systemarchitektur

Determination of Target Machine

 Where to migrate a process?

 Potential policies
 Threshold policy

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

 Shortest policy

 Bidding policy

 Pairing policy

Threshold Policy

1. Chose potential target randomly

2. Check if migration is accepted, if so migrate

3. Already L>1 potential targets checked?

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

 No, go to 1.

 Yes, don’t migrate, execute process locally,
eventually postponing it for a while

Shortest Policy

1. Chose L>1 potential targets randomly and ask for
their load

2. Migrate to the target with the lowest load, but
without danger of overloading this target

© 2009 Universität Karlsruhe (TH), Systemarchitektur 59

3. If there is no such target, execute process locally,
eventually postponing it for a while

Analysis:
 Needs often a lot of remote status information

 High communication costs

 Only marginally better than simple threshold policy

Bidding Policy

 DS modeled as big business world consisting
of managers and contractors

 Manager: machine looking for a target machine

Contractor: machine acting as the target machine

© 2009 Universität Karlsruhe (TH), Systemarchitektur 60

 Contractor: machine acting as the target machine

Who can help me
and how much is

it?

Due to my nature
100 $, is that OK?

On your own risk,
but I do it for 10 €

Bidding Policy

1. Manager broadcasts a “request for bids”

2. Contractors answer with their price

3. Manager chooses the best bid (below its price
threshold) and asks the contractor if still interested

© 2009 Universität Karlsruhe (TH), Systemarchitektur 61

4. If so, process is migrated, otherwise …

Analysis:
 Nodes are fully autonomous

 High communication costs

 Difficult price policy

Pairing Policy

Load balance only between 2 machines

1. Overloaded machine randomly looks for a partner

2. Having found a partner they form a couple

© 2009 Universität Karlsruhe (TH), Systemarchitektur 62

3. Only this couple mutually balance its load

4. If no longer ”mutual support” needed they separate

Local Load Information Exchange

 A dynamic load balancing scheme needs current load
information

 Too much load information might block the network

 Too few load information might lead to wrong

© 2009 Universität Karlsruhe (TH), Systemarchitektur 63

 Too few load information might lead to wrong
decisions

 We need some convincing compromise

Load Information Exchange (1)

 Periodic broadcast (every Δt)
 Every node broadcasts its current load state to all

other nodes
 Only in LANs with a limited number of nodes

© 2009 Universität Karlsruhe (TH), Systemarchitektur 64

 Potentially high communication costs

 Potentially many superfluous messages

 Network periodically blocked for application
messages

Load Information Exchange (2)

 Broadcast after state changes

 Every node broadcasts its state changes, e.g.
 from overload to underload

tasks # tasks + 1

© 2009 Universität Karlsruhe (TH), Systemarchitektur 65

 # tasks # tasks + 1

 Can be combined with a threshold policy

Load Information Exchange (3)

 A node broadcasts that it needs the current
load information of all (or of some other
related nodes) whenever this node leaves its
“acceptable load state”

When changing to overload only the underloaded

© 2009 Universität Karlsruhe (TH), Systemarchitektur 66

 When changing to overload, only the underloaded
nodes have to answer

 When changing to underload, only the overloaded
nodes might answer

Using Priorities

 You can distinguish between local (native) and
immigrated (foreign) tasks

 Priority rules
 Selfish

© 2009 Universität Karlsruhe (TH), Systemarchitektur 67

 Altruistic

 Hybrid

 “Analysis” of the above priority rules concerning
turnaround times
 Selfish is worst

 Altruistic is best

 Hybrid, nearly as good as altruistic

Limiting Migration

How often do you migrate one process?

 Uncontrolled

 Might lead to a never ending story

© 2009 Universität Karlsruhe (TH), Systemarchitektur 68

 Controlled

 Each process contains a migration counter

 Having reached the maximal value, it no longer
migrates

 Maximal value can be static or dynamic

