
Distributed SystemsDistributed Systems

8 8 Migration/Load BalancingMigration/Load Balancing

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

May-25-2009
Gerd Liefländer

System Architecture Group

Today’s Schedule

 Classification of Migration
 Code Migration

 Process-/Task Migration Models
 Implementation

 Data Migration

Overview

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

 Implementation of Migration
 Load Balancing
 Motivation
 Taxonomy of Load Balancing Schemes
 Needed Information for Load Balancing
 Load Balancing Policies
 Load Sharing

What is Migration?

Two major approaches
 Code migration (traditional)

 Weak migration: only code
 Java class loading

 Strong migration: code and execution state
 Process migration

Motivation

© 2009 Universität Karlsruhe (TH), Systemarchitektur 3

 Process migration
 Java object migration (via RMI)

 Data migration (newer)

 Examples
 Juggle: Automatic object and thread distribution in a VM
 Java Party: A distributed Companion to Java
 Emerald

Why Migration?

 Performance
 Move code on a faster machine
 Move code to a lightly loaded machine
 Move code closer to its data (e.g. a data base)(g)

 Availability
 Move code to a node that will not be shut down in

the near future

 Flexibility
 Allow to dynamically configure a distributed

system

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

Performance Reasons

 Migrating a process to another node in a DS might
induce a lot of migration overhead and later follow up
costs

 However, migrating from a heavily loaded node to a
lightly/loaded one might improve overall systemlightly/loaded one might improve overall system
performance

 A search query can be implemented a small program,
moving from node to node collecting all search
results

 A client processing a very large amount of data from
a specific server may be better off executing on the
server machine

© 2009 Universität Karlsruhe (TH), Systemarchitektur 5

Code Fetching to install a DS

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 6

 Principle of dynamically configuring a client to a server.
Client first fetches necessary software for future interaction with the
sever, then it invokes the server.

 However, you have to trust the downloaded code

Might contain code for
different client machines

Traditional Code Migration

Code Migration

 Moving a “not yet created task” ~ downloading code

 Moving a non-active task to another machine is not
that hard (in homogeneous systems)
 Some resources at load time have to be released at the

source node and reserved/allocated at the target node

© 2009 Universität Karlsruhe (TH), Systemarchitektur 7

 Moving an “active” task from one machine to another
can involve a lot of overhead
 In any case, migrate iff you’re sure to gain either

performance or availability

 When migrating an active task you can do
 complete or partial migration
 in any case you have to migrate a sufficient amount of its

context state from one machine to another

Modeling for Code Migration

Framework described by Fugetta*:
A process consists of 3 “segments”

 Code segment
 Resource segment

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 8

 Resource segment
 Links(handles) to (external) resources, e.g.

 files or devices
 other processes

 Execution segment
 Process context (environment)

* Fuggeta, A. et al: “Understanding Code Mobility”,
IEEE Trans. Software Engineering, 1999, p. 717

Models for Code Migration

Code Migration

Code + initial data, always
start from program begin,

you only have to
guarantee that code is

executable on the target
node, e.g. Java applets

© 2009 Universität Karlsruhe (TH), Systemarchitektur 9

 Alternatives for code migration

Initiate migration on node
containing code, e.g. upload code
on a compute server or transfer
search program to a web server

Fewer security flaws, e.g.
Java applets

Weak Migration

 Migrate (download) a software component to
a new target node, e.g.
 Process or task

 Object

Weak Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 10

 …

 Relocation transparency

 Passive components
 Migrate complete object or AS (i.e. data + code)

 Must wait until current activity has terminated

Strong Migration

 Active software components
 Migrate a running task or a process

 Additionally migrate its
 state & context

Strong Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 11

 instruction pointer (program counter)
 register set
 stack …

 Need support from OS because execution
environment of activity must be preserved, e.g.
 open files with current file pointer and access rights etc.,

IPC with remote or local partners
 maintain a stub for forwarding incoming signals and

messages to the target machine

Strong Process Migration

1. Stop active process

2. Take snapshot of process

3. Transmit snapshot + process to target

4 Recreate process at target node with given

Process Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 12

4. Recreate process at target node with given
snapshot image

5. Bind open descriptors
 Unattached, fastened, or fixed resources
 Binding by identifier, value, or type

6. Resume process
 OS and architecture specific
 Language independent

Data Space Management & Binding

 Binding by identifier (strong)
 Execution environment (EU) requires that at any time it is to

this uniquely identified resource, i.e. this resource can not
be substituted by another one of the same type

 Binding by value (mediocre)

© 2009 Universität Karlsruhe (TH), Systemarchitektur 13

g y ()
 At any moment, the resource must be compliant with a

given type and its value cannot change as a consequence of
migration

 Binding by type (weak)
 EU requires that at any moment the bound resource is

compliant with a given type, no matter what its actual value
or identity is

 Typical for resources that are available at any node, like
system variables, libraries or devices, e.g. a display

Bindings, Resources, DS Management

Unattached Fastened Fixed

By identifier
By value
By type

MV or GR
CP (or MV, GR)
RB (or GR, CP)

GR (or MV)
GR (or CP)
RB (or GR, CP)

GR
GR
RB (or GR)

Resource-to-machine bindingDegree
of binding

Code Migration

Rebind to
another
printer

© 2009 Universität Karlsruhe (TH), Systemarchitektur 14

By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

GR Establish a global system-wide reference MV move the resource
CP Copy the value of the resource RB Rebind task to locally available resource

Strongest form via ID, e.g. use an absolute URL for a specific web site in
case of a shared resource, otherwise migrate resource together with the task

Binding by value is weaker, cause you only need to provide a resource with
delivering the same value, e.g. using a standard library

By type is weakest binding form, e.g. usage of a local printer,
you want to print on whatever printer

Binding, Resources

Unattached Fastened Fixed

By identifier
By value
B t

MV (or GR)
CP (or MV, GR)
RB (GR CP)

GR (or MV)
GR (or CP)
RB (GR CP)

GR
GR
RB (GR)

Resource-to-machine binding

Code Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 15

By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Degree of binding

Unattached resources are very easy to migrate,
e.g. a data file associated with a program

Fastened resources might be migrated but at high cost, e.g.
complete web sites or a local data base

Fixed resources cannot be migrated

Migration in Heterogeneous Systems

 Up to now we could expect, that a migrated process
can be easily resumed on teh target machine

 What if the new machine has a different hardware?
 Make sure, that the program can be executed on

h d h it ld b i t d t (itheach node, where it could be migrated to (either
recompilation or support of multiple binary codes)

 Make sure that the execution segment is properly
represented and interpreted by each platform

 Weak mobility is easy to achieve: simply recompile
the program or maintain multiple binaries

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

Strong Migration in Het. Systems

 How to transform the execution segment? It is highly platform
dependent

 Each execution segments contains the current stack (local
values and register values)

 To transfer an execution segment make sure no platform To transfer an execution segment, make sure no platform
dependent data is stored

 Restrict code migration to specific points within the code, e.g.
migration can take place only when a procedure is called;
runtime system maintains a copy of the execution stack in a
machine independent format-migration stack

 Migration stack is updated each time a procedure is called, or
when a return from the procedure occurs

© 2009 Universität Karlsruhe (TH), Systemarchitektur 17

Migration in Heterogeneous Systems

Code Migration

Reduce migration
points at run time,
e.g. before next

procedure call or use
an intermediate code

Machine
independent

© 2009 Universität Karlsruhe (TH), Systemarchitektur 18

Principle of maintaining a migration stack to support migration
of an execution segment in a heterogeneous distributed system

Local machine
dependent stack

Implementing Migration

19© 2009 Universität Karlsruhe (TH), Systemarchitektur

Implementing Task Migration

5 variants of migrating tasks
 eager all (complete)
 pre-copy

di t

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 20

 eager dirty
 copy-on-reference
 flushing

Complete Migration

 Eager (all): Transfer entire task, i.e. with all 3
segments
 Clean approach, no trace of task left behind

 When the task was waiting for signals or messages, how to
inform the signaler or the sender?

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 21

Due to heavy traffic on the net and additional storage
requirements on target machine this affects not only the

migrating task, but also other non related tasks

inform the signaler or the sender?

Tasks with waiting signals from a peripheral cannot be
migrated without a substitute at the source node that is able
to forward all results from a previously initiated I/O

 If AS = large and if task does not need most of it
 this approach is quite expensive

Pre-Copy Migration

 Task continues to execute on source node
while its AS is copied to the target

 Pages that have been modified on the source
during this pre-copy operation have to be copied a

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 22

during this pre copy operation have to be copied a
second time

 Reduces time that a task is temporarily “frozen”

Eager Dirty Migration

 Transfer only mapped and modified pages
 Transfer other pages on demand from background storage

of source machine
 How to implement, e.g. the disk addresses of unmapped pages

may be only valid on the source machine
Two possibilities:

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 23

 Two possibilities:
 While copying the address space tables to the target machine,

translate all disk addresses of the source to remote disk addresses

 Source machine involved throughout the life of the task, i.e. it has
to maintain page/segment tables and has to offer remote paging
support, i.e. each page fault on the target machine is tunneled to
the source machine

 Good choice if task is only partly migrating to another machine
(e.g. only a thread)

Copy-On-Reference Migration

 Migrate pages when referenced

 variation of eager dirty

 lowest initial cost of task migration

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 24

Flushing Migration

 Pages are cleared from main memory by
flushing dirty pages to disk

 Later use copy-on-reference policy

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 25

 Relieves the source machine of holding mapping
information for migrated task in its main memory

Summary

 If a task is a multi-threaded application and
the basic migration unit is a thread, then use:
 eager dirty or
 copy-on-reference or

Task Migration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 26

Similar considerations apply if a migrated task has open files,
i.e. a thread running on target machine might never access the file,
so why should we migrate open files when migrating a thread?

py
 flushing

Distributed SystemsDistributed Systems

8 8 Load BalancingLoad Balancing

27© 2009 Universität Karlsruhe (TH), Systemarchitektur

May-25-2009
Gerd Liefländer

System Architecture Group

Motivation

Load Balancing

28© 2009 Universität Karlsruhe (TH), Systemarchitektur

Why Load Balancing?

 To achieve a fair & robust distribution of computations
across nodes to increase performance & availability

c1
c2
c3

© 2009 Universität Karlsruhe (TH), Systemarchitektur 29

c3
c4

c1
c2
c3
c4

Perfect load balancing

Imperfect load balancing

Idea behind Load Balancing

 Try to effectively and efficiently use your resources in
your DS

 Try to get system & performance data describing the
current and future load of each node in your DS as

© 2009 Universität Karlsruhe (TH), Systemarchitektur 30

y
precisely as possible, but also as cheap as possible

 Try to satisfy

 your customers by low turnaround times

 as well as your managers by high resource usage,
but low power consumption

Principles of Load Balancing

 Distributed server, e.g.
 Dispatcher + w worker processes 
 Load can be easily distributed to w nodes

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 31

 Load
 Any instance that consumes resources like

 CPU
 Ram usage
 Network bandwidth …

 e.g. tasks, processes, KLTs

Principles of Load Balancing

 Distributed Multiprocessing Server, e.g.

 Team model
 Worker get requests from a global mailbox, e.g.

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 32

ray-tracing (pull-model)

 Pipeline-model
 Intermediate results are handed from process

to process

Load Balancing on n>1 Workstations

 Often a WS is not fully used
 Users often do other things
 During night a WS is almost inactive completely

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

 Start workers on currently not used WS
 Problem: trust

 Need trusted WS

 Problem: user wants to use its WS
 Stop worker process (of a remote machine)
 Abort worker process and start somewhere else
 Migrate running worker process

Which one
is fitting?

Taxonomy of Load Balancing

34© 2009 Universität Karlsruhe (TH), Systemarchitektur

Design Parameters of LB*

 Static versus dynamic

 Deterministic versus probabilistic

 Centralized versus distributed

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

 Centralized versus distributed

 Cooperative versus non-cooperative

*LB = Load Balancing

Algorithms for Load Balancing

 Problem
 w tasks with a given execution and communication behavior

 What is the optimal load balancing?
 Avoid resource bottlenecks

 How to get info on future resource utilization?

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

 How to get info on future resource utilization?
 Enable efficient execution of requests

 Classification of load balancing algorithms

static methods dynamic methods

without migration with migration

Static versus Dynamic LB

 Static load balancing
 Calculate at boot time an optimal distribution of the load
 Balancing is done whenever a new distributed application

will be created

 Dynamic load balancing without migration

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

y g g
 Whenever you create within a distributed application a new

task or process or a new KLT
 Take into account the current load on all nodes

 How to get the actual system states?
 Inform the load balancing node or all other nodes

 Dynamic load balancing with migration
 Whenever you measure a significant over-/underload try to

export/import processes

Static Load Balancing

 Round Robin: whenever a task has to be created, it is
created on the next node (chained in a logical ring)

 Randomized: Allocate a new task at random

 Recursive bisection: recursively divide the allocation
problem into sub problems of equal computational

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

problem into sub-problems of equal computational
effort
 The problem of allocating tasks to nodes for arbitrary

networks is NP-hard

 No efficient polynomial time algorithm exists, i.e. we have to
live with heuristics. However, there are some interesting
static load balancing algorithms

Summary: Static Load Balancing

 When a good mathematical solution exists, static
load balancing has the following drawbacks:

 It is difficult to estimate a-priori [in a accurate way]
the executions times of various parts of the program

© 2009 Universität Karlsruhe (TH), Systemarchitektur 39

t e e ecut o s t es o a ous pa ts o t e p og a

 Sometimes there are non negligible communication
delays that vary in an uncontrollable way

 For some problems the number of steps to reach a
solution is not known in advance

Dynamic Load Balancing

 Allocating a task or parts of it, is done during
the execution of the task

 Features:

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

 Drawbacks of static load balancing are taken into
account, improving the efficiency of load balancing

 There is an additional overhead during execution,
i.e. how to avoid unnecessary load state messages

 Termination detection of the tasks is more
complicate

Types of Dynamic Load Balancing

 Centralized load balancing:
 Tasks are allocated from some master node, master/slave

system architecture

 The centralized master node is again a single point of failure
and might become a bottleneck

© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

g

 Decentralized load balancing:
 Worker nodes interact among themselves to solve the

problem, finally reporting to a single node

 Tasks are passed between arbitrary nodes, a worker node
can receive tasks from any other worker node and can send
tasks to any other worker node

Centralized Dynamic LB

 Good, when there is a small number of slaves and the
problem consists of computationally intensive tasks

 Basic features:
 A master node holds the collection of tasks/processes to be

performed

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

 Tasks are sent to the slave/worker nodes
 When a slave has completed one task, it requests another

one from the master node

 The following terms reflect a centralized load balancing
scheme: work pool, replicated worker, processor farm

 Technically, it is more efficient to start with the long
runners, i.e. try to do some LPT scheduling in the large

Centralized DLB

…

Queue of “Ready Tasks”

Master node

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

request
send

Slave “worker” nodes

Termination in Centralized DLB

 Stop the computation when the solution has been
found

 When the tasks are taken from a task queue,
computation terminates when
 the task queue is empty and

d h d f h k h

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

 every node has made a request for another task without any
new tasks being generated

 Note: It is not sufficient to check if the master’s task
queue is empty, as long as worker nodes are allowed
to put tasks in the task queue

 In some applications a slave can detect the program
termination by some local termination, for instance
finding an item in a search algorithm

Decentralized DLB (1)

 Tree structured worker pool

…

© 2009 Universität Karlsruhe (TH), Systemarchitektur 45

…

request send

…

request send

…

Decentralized DLB (2)

 General (fully distributed) worker pool

© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Triggering Migration

1. Receiver initiated
 Node requests tasks from another node it selects; typically done

when the node has few or no tasks to compute

 Method works well when there is a high system load

2. Sender initiated

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

 Node sends tasks to other nodes it selects; typically done when
node has already a heavy load and can find other nodes willing
to accept additional load

 Method works well when there is only light system load

Final comments:
 Above pure approaches can be mixed

 However, whatever method one uses, in very high system loads,
load balancing is difficult due to the lack of node capacity

Node Selection in DLB

 Assumption: There are n nodes N1, … Nn in the DS

 Round Robin: node Ni requests tasks from node Nx,
where x is given by a counter that is incremented
modulo n, excluding x=i

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

 Random Polling: Node Ni requests tasks from node
Nx, where x is a number that is randomly selected
from the set I={1, 2, …i-1, i+1, …, n}

Termination Conditions

 The [application specific] local termination condition
are satisfied by all application members on all
involved nodes

 There are no messages in transit between these
nodes concerning the distributed application

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

nodes concerning the distributed application

 Note: The second condition is necessary to avoid
situations where a message in transit might restart
an already terminated task. This case is not easy to
check, as long as communication times are not
known in advance

Needed Information for LB

50© 2009 Universität Karlsruhe (TH), Systemarchitektur

Local Load Measuring/Calculating

Load Balancing

 You can measure usage patterns of
 CPU
 Memory
 I/O
 Power


© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

 …

 With an aging coefficient it’s possible to predict the
future behavior (see: principle of locality)

 However, how to decide, that a node, its CPU or any
another device is/are overloaded?

 If there a different nodes we must take into account
the different capacities of these nodes

Distinguishable Load States

 Underloaded:
 New local work can be done
 New remote work can be done

 Acceptably loaded:

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 52

 Acceptably loaded:
 No new work can be accepted, i.e.

 New local work must be postponed or must be exported
to another node (e.g. to the least loaded neighbour)

 Remote work has to be rejected

 Overloaded:
 New and/or current work has to be migrated

Global Load Calculating

 How to avoid significant overhead getting the
necessary load information of each node in the DS?
 Only collect status from the neighbors
 Broadcast the local status periodically, but not that often

(large Δt)

Load Balancing

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

(g)
 As long as N = number of nodes is low and  LAN, these

broadcast messages do not cost too much

 When do we need this information?
 Whenever creating a new application you have to decide:

 Establish it on the local node
 Postpone it
 Establish it on a remote node

Local Load Determination

 How to measure the current workload of a node?

 Not an easy problem, up to now there is not yet THE
SOLUTION

 Calculating the local load must be fast

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

 You can measure/estimate the following entities:
 # of active threads/processes

 Sum of all resource requirements

 Instruction mix of the threads/processes

 Architecture and speed of the node’s CPUs

 Remaining execution times of the threads/processes

Decision for Migration

overloaded overloaded High water
mark

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

underloaded
underloaded

acceptable loadthreshold

mark

Low water
mark

Load Balancing Policies

56© 2009 Universität Karlsruhe (TH), Systemarchitektur

Determination of Target Machine

 Where to migrate a process?

 Potential policies
 Threshold policy

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

 Shortest policy

 Bidding policy

 Pairing policy

Threshold Policy

1. Chose potential target randomly

2. Check if migration is accepted, if so migrate

3. Already L>1 potential targets checked?

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

 No, go to 1.

 Yes, don’t migrate, execute process locally,
eventually postponing it for a while

Shortest Policy

1. Chose L>1 potential targets randomly and ask for
their load

2. Migrate to the target with the lowest load, but
without danger of overloading this target

© 2009 Universität Karlsruhe (TH), Systemarchitektur 59

3. If there is no such target, execute process locally,
eventually postponing it for a while

Analysis:
 Needs often a lot of remote status information

 High communication costs

 Only marginally better than simple threshold policy

Bidding Policy

 DS modeled as big business world consisting
of managers and contractors

 Manager: machine looking for a target machine

Contractor: machine acting as the target machine

© 2009 Universität Karlsruhe (TH), Systemarchitektur 60

 Contractor: machine acting as the target machine

Who can help me
and how much is

it?

Due to my nature
100 $, is that OK?

On your own risk,
but I do it for 10 €

Bidding Policy

1. Manager broadcasts a “request for bids”

2. Contractors answer with their price

3. Manager chooses the best bid (below its price
threshold) and asks the contractor if still interested

© 2009 Universität Karlsruhe (TH), Systemarchitektur 61

4. If so, process is migrated, otherwise …

Analysis:
 Nodes are fully autonomous

 High communication costs

 Difficult price policy

Pairing Policy

Load balance only between 2 machines

1. Overloaded machine randomly looks for a partner

2. Having found a partner they form a couple

© 2009 Universität Karlsruhe (TH), Systemarchitektur 62

3. Only this couple mutually balance its load

4. If no longer ”mutual support” needed they separate

Local Load Information Exchange

 A dynamic load balancing scheme needs current load
information

 Too much load information might block the network

 Too few load information might lead to wrong

© 2009 Universität Karlsruhe (TH), Systemarchitektur 63

 Too few load information might lead to wrong
decisions

 We need some convincing compromise

Load Information Exchange (1)

 Periodic broadcast (every Δt)
 Every node broadcasts its current load state to all

other nodes
 Only in LANs with a limited number of nodes

© 2009 Universität Karlsruhe (TH), Systemarchitektur 64

 Potentially high communication costs

 Potentially many superfluous messages

 Network periodically blocked for application
messages

Load Information Exchange (2)

 Broadcast after state changes

 Every node broadcasts its state changes, e.g.
 from overload to underload

tasks  # tasks + 1

© 2009 Universität Karlsruhe (TH), Systemarchitektur 65

 # tasks  # tasks + 1

 Can be combined with a threshold policy

Load Information Exchange (3)

 A node broadcasts that it needs the current
load information of all (or of some other
related nodes) whenever this node leaves its
“acceptable load state”

When changing to overload only the underloaded

© 2009 Universität Karlsruhe (TH), Systemarchitektur 66

 When changing to overload, only the underloaded
nodes have to answer

 When changing to underload, only the overloaded
nodes might answer

Using Priorities

 You can distinguish between local (native) and
immigrated (foreign) tasks

 Priority rules
 Selfish

© 2009 Universität Karlsruhe (TH), Systemarchitektur 67

 Altruistic

 Hybrid

 “Analysis” of the above priority rules concerning
turnaround times
 Selfish is worst

 Altruistic is best

 Hybrid, nearly as good as altruistic

Limiting Migration

How often do you migrate one process?

 Uncontrolled

 Might lead to a never ending story

© 2009 Universität Karlsruhe (TH), Systemarchitektur 68

 Controlled

 Each process contains a migration counter

 Having reached the maximal value, it no longer
migrates

 Maximal value can be static or dynamic

