
Distributed Systems Distributed Systems

66 RMI/MP IPC RMI/MP IPC

1© 2009 Universität Karlsruhe (TH), System Architecture Group

May-18-2009

Gerd Liefländer

System Architecture Group

Intended Schedule of Today

 RMI (only rough overview)
 Message Passing

 Motivation
 Bridge Principle

 Message Passing Systems

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Message Passing Systems
 Design parameters
 Direct versus indirect naming
 Transient versus persistent communication
 Persistent communication
 IPC Semantics
 Communication Endpoints

 Events & Notification (see additional slides)
 Stream-oriented Communication (see other courses)

Remote Method InvocationRemote Method Invocation

Introduction

3© 2009 Universität Karlsruhe (TH), System Architecture Group

RPC  RMI
RPC: invoke procedure of a remote server
RMI: invoke method of a remote object at a
remote server (quite similar to RPC)

Remote Method Invocation (RMI)

 Client side stub: proxy marshalling method parameters
and transferring message to the server machine

 Server side stub: skeleton unmarshalling parameters and
calling remote object and “back again”

Pi f ft t “ id ” i t bj t (if it Piece of software at “server side” is a remote object (if its
state is completely located at one remote machine)

 Sometimes even the state of a remote object can be
distributed, then this is a true distributed object

 Additional problems arise when objects can migrate
and/or are replicated

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

RPC versus RMI

Remote object:
 Not associated to a specific server node, i.e. we

can achieve better transparency if object can
migrate

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Remotely accessible
 Exchange remote references between tasks

 Encapsulates state
 Easier to keep track of related state
 Easier migration/replication of state
 Easier synchronization of concurrent RMIs

CORBA IDL Example

// In file Person.idl
struct Person {

string name;
string place;
short salary;
long year;

} ;

Interface

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

interface PersonList {
readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
void updatePerson(in Person p, short s, out Person p);
long number();

};

Message PassingMessage Passing

7© 2009 Universität Karlsruhe (TH), System Architecture Group

Major drawbacks of RPC (and RMI):
1. Only transient communication, i.e. if callee

is not activated request is lost
2. Caller synchronously blocked
3. Application programmers sometimes want

more flexibility

Why do we need Message Passing?

 RPC/RMI is too restricted (e.g. limited parameters) or
just not available on all involved nodes

 Sometimes applications need a comfortable and
flexible IPC mechanism, e.g. a multicast to notify
multiple nodes e g in order to speed up a search

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

multiple nodes, e.g. in order to speed up a search

 Applications want to cooperate asynchronously
 Consumer on node1, producer on node2

 P2P applications

 Client-Server applications

 We need an efficient & secure way to transfer
application messages across the network(s)

Typical IPC Applications

 IPC via message passing is appropriate for fast
cooperation between distributed applications, i.e.
 Synchronize physical clocks

 Enable mutual exclusion

 Elect a new coordinator

 Enable a global snapshot

 Detect a global deadlock

 …

 In all these cases a synchronous RPC is insufficient

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

Bridge PrincipleBridge Principle

10© 2009 Universität Karlsruhe (TH), System Architecture Group

Communication Bridge Principle

Sender
send()

Receiver
receive()

receiver sender

Computer boundary

Bridge Principle

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Port Portreceiver
substitute

sender
substitute

Data transfer over Network

Remark: The functionality of the substitutes may vary depending
on the requirements of the “pair” <sender(s)/receiver(s)>

Bridge

How to implement Communication Bridges?

 Bridges completely outside of the kernel
 distributed process model (Prozessverbund1)

 Bridges within kernel & outside of kernel

Bridge Principle

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Hybrid model

 Bridges completely within kernel
 distributed kernel model (Kernverbund)

1Terminology of Heiss (TU Berlin) and Wettstein

Distributed Kernel Model

Communication Communication

Computer Boundaries

Application A Application B

…
User
Mode

Bridge Principle

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Kernel
Mode

Distributed Kernel
Local Kernel

Software

Local Kernel

Software

 Distribution is hidden below the kernel API

 System calls at kernel API might access arbitrary kernel-objects

 Distributed kernel := union of all local kernels

Distributed Process Model

Communication Communication

Computer Boundaries

Application A Application B

User
Mode

Bridge Principle

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

Kernel
ModeLocal Kernel

Software

Local Kernel

Communication
Software…

 API of local kernels must not be adapted

 Local kernel is not aware of being a member of a DS

IPC Models & ParametersIPC Models & Parameters

15© 2009 Universität Karlsruhe (TH), System Architecture Group

Introduction
Simple or Multiple Client Server
Message-Oriented Transient IPC
Sockets and MPI
Message-Oriented Persistent IPC

Message Passing System*

 Implements explicit data transfer via a network

 Offers communication primitives at API at least
 a send(...) & a receive(...) operation

Basic Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

*Very simple form of a middleware

Distributed Application

Node 1 Node 2 Node 3

API

Network

Simple IPC Models

 Only 2 instances are part of the IPC, e.g.

 1 client and 1 server, e.g.

 2 processes or

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 1 process and a procedure

 Clients requests, server replies

 2 peers (always 2 processes), both partners with
equal communication rights can send or receive

Simple IPC Pattern
Client

send
Peer

d

Peersend

i

receive

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

server

receive reply

sendRequest, receiveRequest, replyResult

send receive

Multiple IPC Pattern (Client/Server)
Client

send

Client

send

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

server

receive receive

server

receive receivereply
replyreply

sendRequest as multicast What to do when replies are different?

Pragmatic Design Parameters

Overview

 Length of message
 Constant or fixed

 Variable, but limited in size

 Unlimited

 Loss of messages

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

g
 Not noticed

 Suspected and notified

 Avoided

 Integrity of messages
 Not noticed

 Detected and notified

 Automatically corrected

Orthogonal Design Parameters

 Number of involved communication partners

 Synchronous versus asynchronous

 Placing the message buffers

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 Persistent versus transient communication

 Addressing the communicating instances
 …

Direct versus Indirect Addressing

Relationship mailboxes (ports) & processes

 1:1 (one port per process)
 1:n
 m:1

Basic Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 m:1
 m:n

 Extension of buffering (in mailbox, channels)
 Number of involved buffers

 Limited buffer size (typical)

Direct Addressing

 Source and destination process/task serve as
designators
 Allows a process easy control when to receive a

message from a specific process
 Used to implement client/server applications

 Well suited iff 1 client & 1 server
 Otherwise: server must be able to receive request from

any client
 A client should be allowed to invoke many services at a

time if more than one server is available

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

Indirect Addressing (Mailboxes)

 Mailbox shared by n>1 processes
 Messages sent to a mailbox can be received by

any process currently attached to mailbox
 Implement more flexible client/server applications

 Client sends request to mailbox next server executes it

 Drawback: costly implementation
1. Message sent to mailbox
2. Relayed to all other sites that could potentially receive

from mailbox
3. If on site decides to receive, inform all other sites that

message is no longer available for receipt
4. Mutual exclusion for concurrent access

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

Indirect Addressing (Cont.)

 Port=mailbox, only one process can receive from

 ...

 Channel
 Static (at compile time)

 ...

 Dynamic (at runtime)
 ...

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

Persistence & Synchronicity

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

 Organization of a communication system in which hosts are
connected through communication servers via a network

 Communication servers (and/or hosts) can hold
undeliverable messages as long as needed

Communication Models

 Persistent versus Transient
 Persistent messages stored as long as necessary by the

communication system (e.g. E-mail)

 Transient messages are discarded when they cannot be
delivered (e.g. transport level)

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

(g p)

 Synchronous versus Asynchronous
 Asynchronous implies sender proceeds as soon as it sends

the message, i.e. no blocking

 Synchronous implies sender blocks until the receiver buffers
the message or even delivers the message to the receiver

Persistence and Synchronicity (1)

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

a) Persistent asynchronous communication (email)

b) Persistent synchronous communication

active
active

Persistence and Synchronicity (2)

2-22.2

Message Oriented Communication

active

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

c) Transient asynchronous communication

d) Receipt-based transient synchronous communication

Message Oriented Communication

Persistence and Synchronicity (3)

Done

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

e) Delivery-based transient synchronous communication

f) Response-based transient synchronous communication

Transient IPCTransient IPC

Berkeley Sockets
MPI

31© 2009 Universität Karlsruhe (TH), System Architecture Group

Message Passing Interface (1)

 Overcome disadvantages of sockets:

 Wrong level of abstraction being implemented at a
too low level with only very primitive operations

 Designed for communication across networks

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

 Designed for communication across networks
using general-purpose protocol stacks (TCP/IP)

 Relatively poor performance

 Not well suited for high-speed interconnection
networks used in COW* (Myrinet)

*COW = Cluster Of Workstations

MPI (2)

Assumptions:
1. Communication only within a group of processes

2. Each group has a unique identifier

3 Groups may overlap

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

3. Groups may overlap

4. Each process in a group has a (local) identifier
 <GID, PID> identifies source/target of message

5. Support diverse forms of buffering and
synchronization (over 100 functions)

6. If serious failures occur (e.g. network partition), no
automatic recovery is offered

Message-Passing Interface (3)
Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

 The most intuitive message-passing primitives of MPI

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Persistent IPCPersistent IPC

Message-Queuing Systems
Message-Oriented Middleware (MOM)

35© 2009 Universität Karlsruhe (TH), System Architecture Group

Persistent Communication

 Application communicate by inserting messages in
specific message queues
 Loosely coupled communication, i.e. it’s no longer required

that both sides are active while communicating

 Offer persistent intermediate-term storage capacity

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

 Offer persistent intermediate term storage capacity

 Applications can usually tolerate longer message
transfer times

 Applications typically need larger message sizes

Message-Queuing Model (1)
 4 combinations for a loosely-coupled communication

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

(b) Message remains in one of the
queues till receiver is calling a receive,

sender keeps on sending

Message-Queuing Model (2)

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty and remove the first message

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

 Basic interface to a queue in a message-queuing system.

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install an observer handler to be called when a message is put into the
specified queue (callback function).

Message-Queuing System (1)

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

 Relationship between queue-level addressing
and network-level addressing

Message Oriented Communication

Message-Queuing System

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

 General organization of a message-queuing system with routers

2-29

Message Brokers

Message Oriented Communication

Subscribe
list

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

 General organization of a message broker in a MQS
 A message broker can also act as a central manager

of a publish/subscribe systems

Example: IBM MQSeries

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

 Organization of IBM's MQSeries message-queuing system

Channels

Attribute Description

Transport type Determines the transport protocol to be used

FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message Maximum length of a single message

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

 Attributes associated with message channel agents

length Maximum length of a single message

Setup retry
count Specifies maximum number of retries to start up the remote MCA

Delivery retries Maximum times MCA will try to put received message into queue

Message Transfer (1)

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

 General organization of an MQSeries queuing
network using routing tables and aliases.

Message Transfer (2)

Primitive Description

MQopen Open a (possibly remote) queue

MQclose Close a queue

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 Primitives available in an IBM MQSeries MQI

MQput Put a message into an opened queue

MQget Get a message from a (local) queue

Simple Mail Transfer Protocol (SMTP)

 Processes
 User agents (mail readers)

 Eudora, pine, elm, outlook, messenger
 Mail servers

 Store messages

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

 SMTP
 Uses TCP/IP
 Uses DNS

 Client-to-server protocols
 Pop (post office protocol)
 Imap (internet mail access protocol)

SMTP
Mail server Mail server

SMTP User
agent

User
agent

User
agentUser

agent
User
agent
User
agent

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

Mail server

Queue of outgoing messages
User mailbox

User
agent

User
agent

Network News Protocol

News server 1 News server 3

News client 1.1

News client 1.2

News client 1.3

News client 3.1

News client 3.2

Message Oriented Communication

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

News server 2 News server 4
News client 2.1

News client 2.2

News client 4.1

News client 4.2

News client 4.4Network News Reader Protocol (NNRP)
Network News Transport Protocol (NNTP)

 Uses TCP
 Servers “flood fill” their peers with new postings

Communication EndpointsCommunication Endpoints

49© 2009 Universität Karlsruhe (TH), System Architecture Group

Communication Endpoints

 Identified via a DS wide unique identifier
 Location transparency if  global name scheme

 Different types of “receiving instances”:
Procedure or method i e something passive to be

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

 Procedure or method, i.e. something passive to be
invoked on the remote side

 Process or thread receiving the message, i.e.
something active on the remote side

 Port handovers message to its owner process
 Mailbox buffers message for its attached

processes

Types of Service Instances
Common AS1 Separate ASes

Passive
Instance

Library
Local Procedure
Local Object

Remote ProcedureRemote Procedure
Remote ObjectRemote Object

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

Active
Instance

Thread Process
Task

1except SASOS

Communication Endpoints

 Identifier of the place of destination can have

 meaning that is location transparent (or not)

  tradeoff between

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

 performance and

 flexibility or transparency

 Value of identifier must be system wide unique (at
least for a while)

Example Remote Procedure

Comparable to
a PCB or TCB

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

• If caller must know about the node hosting the remote procedure
we have no location transparency

Example Process

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

Example Port

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

Example Mailbox

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

Example Port Chain

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

Summary: Endpoints

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

How to achieve Uniqueness?

 Identifier must have a value excluding ambiguity
 Random number depends on quality of random number

generator

 Time stamp needs a global time

 Processor number depends on manufacturer

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

p

 Already locally you need uniqueness, e.g.
 Used only once (see: UNIX PID)

 Generation number differs between reused identifiers

 Address of an object in RAM

 Degree of uniqueness depends on potential range of
values
 See Y2K problems

Structured Identifiers

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

 Typically the structure of an identifier is not visible
from outside

 It enhances an efficient lookup for an insider

 Identifier is location transparent (but contains
location hints)

Communication Process

 Direct: identifier is a PID, i.e. either a process
or a procedure or a TID, i.e. a thread-id
 Messages are sent to the corresponding AS

 Indirect: identifier is a port-id or a mailbox-id

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

 Indirect: identifier is a port id or a mailbox id
 Messages are sent to receiver via a port or mailbox

 Connection oriented: identifier is a port-id
 Connection exists between ports
 Using a connection helps to reserve resources

Direct Communication (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

 Address a remote procedure to do work specified in
the request message

 Scheme neither supports migration nor failure
transparence

Direct Communication (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 Address a remote process to do work specified in the
request message
 Time when this message will received determines the

scheduling of the related worker thread (process)

 Potential scheduling latency requires a message queue

 Scheme neither supports migration nor failure
transparency

Indirect Communication (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 Address a remote port to forward the request message
 Receiver (with PID 55) is loosely coupled (docked) with the

entrance port

 Binding is dynamic and can relate to multiple ports

 Scheme supports migration, but not failure transparency

Indirect Communication (2) WHY?

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

 You address a remote mailbox to queue messages
 Multiple processes can receive from the same mailbox

 Typical for multithreaded server

 Scheme neither supports migration nor failure
transparency

Connection Oriented Communication (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 You address the local port to forward your request
message
 Linking between send-port and remote process is dynamic

 Identifier of the remote process can be a replicate

 Scheme supports migration and failure transparency

Connection Oriented Communication (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

 Address local port to forward request message via a
port chain
 Dynamic linking of send-port to receive-port either according

to 1:1 or N:1

 In case of node crashes you have to repair broken port-
chains

 Scheme supports migration and failure transparency

