Networks Distributed Systems

Philipp Kupferschmied

Universität Karlsruhe, System Architecture Group

May 6th, 2009

- Communication Basics
 - Introduction
 - Layered Communication
 - Layers in the ISO/OSI Model
- 2 A Brief Introduction to Networks
 - Static Interconnection Networks
 - Dynamic Interconnection Networks
- 3 The Network Layer (3)
 - Routing in Switched Networks
- 4 The Transport Layer (4)
 - Connection Handling
 - Reliable Communication

A Brief Introduction to Networks The Network Layer (3) The Transport Laver (4)

Introduction

Why Communication?

- Threads of a distributed application collaborate
- Lack of shared memory \Rightarrow messages

Preconditions:

- Physical interconnection network
 - Electric signals on wires, etc.
- Rules obeyed by each communication partner
 - Communication protocols
- Common language and common semantics
 - Otherwise no mutual understanding

Introduction Layered Communication Layers in the ISO/OSI Model

Information, Data, Signals

information: abstract idea of what I want

data: formal representation of information using a known vocabulary

Introduction Layered Communication Layers in the ISO/OSI Model

Information, Data, Signals

information: abstract idea of what I want

data: formal representation of information using a known vocabulary

Introduction Layered Communication Layers in the ISO/OSI Model

Information, Data, Signals

information: abstract idea of what I want

data: formal representation of information using a known vocabulary

"tree"

Introduction Layered Communication Layers in the ISO/OSI Model

Information, Data, Signals

information: abstract idea of what I want

data: formal representation of information using a known vocabulary

"tree"

A Brief Introduction to Networks The Network Layer (3) The Transport Laver (4)

Introduction

Base Model of Communication

- Participants act as sender (client) or receiver (server)
- Using a service by a client takes place via a service-interface on a specific service entry point
- Via the medium the spatial distance is met

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Mod

Medium—The Physical Essence in Networks

• Signals need a medium

- Air for sound waves
- Paper for written letters
- Copper wire for electrical signals
- Fibre for optical signals
- "The ether" for wireless transmission
- Some media relay the signals to many receivers, others don't
 - Broadcast, shared medium
 - Point-to-point communication

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Mode

What May Happen When Communicating

- Identify the communication partner
- Need to find the communication partner
- Get a communication line (with certain properties)
- Make sure we talk "the same language"
- Come to a common understanding what we agreed upon
- Deal with partial or complete network breakdown
- (more)

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Model

Reliable vs. Unreliable Communication

- Reliable Communication
 - All messages are delivered either exactly once
 - ... or at least once
 - ... or at most once
- Unreliable Communication
 - Each message may be delivered once
 - ... or multiple times
 - ... or not at all

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4)

Introduction Layered Communication Layers in the ISO/OSI Mode

Uni- vs. Bidirectional Communication

Notification

- One way, unidirectional
- Sender continues immediately
- Usually 'unreliable' (may get lost)
- E.g., remote log messages
- Request
 - Bidirectional
 - Sender waits for response
 - ACK or
 - Some result
 - Usually 'reliable' required
 - E.g., RPC

Introduction Layered Communication Layers in the ISO/OSI Model

Point-to-Point vs. End-to-End

- Point-to-point
 - Data exchange between directly physically connected hosts
 - + No routing required
 - Completely meshed network required
- End-to-end
 - Data exchange between between potentially non-neighbored hosts
 - Routing required (depending on topology)
 - + Less expensive network topology possible

A Brief Introduction to Networks The Network Layer (3) The Transport Laver (4)

Layered Communication

Layered Communication

- Seemingly: horizontal communication within layers
- Actually: vertical communication between layers per system

Image: A mathematical states and a mathem

- ₹ 🖬 🕨

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Model

Protocols and Interfaces

- Two adjacent layers in a protocol stack work together
 - Server offers service
 - Client wants service
- Interface must be specified

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Model

Headers and Encapsulation

- Each layer wraps data from previous layer
- Type of contents
 - Explicitly given in outer protocol header
 - Implicitly inferred from received 'data'

< 口 > < 同

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Model

The ISO/OSI Reference Model

A Brief Introduction to Networks The Network Layer (3) The Transport Layer (4) Introduction Layered Communication Layers in the ISO/OSI Model

The ISO/OSI Reference Model

3

Introduction Layered Communication Layers in the ISO/OSI Model

Role of ISO/OSI Layers 1-4

1. Physical layer (e.g., RS-232, Manchestercode)

- Unreliable point-to-point communication
- Carry signals between neighbors
- 2. Data link layer (e.g., Ethernet)
 - 'Reliable' point-to-point communication
 - Medium access control (MAC), bit error detection
- 3. Network layer (e.g., IP)
 - Unreliable end-to-end communication
 - Routing
- 4. Transport layer (e.g., TCP)
 - Reliable end-to-end communication
 - Detect packet loss, out-of-order reception

Introduction Layered Communication Layers in the ISO/OSI Model

Role of ISO/OSI Layers 5-7

5. Session layer

- Manage sessions
- Used for example by RPC

6. Presentation layer

- Convert data formats
 - Little-/big-endian
 - Relative/absolute data
 - Textual vs. numeric representation
- Mostly unused/integrated in application layer
- 7. Application layer (e.g., HTTP, FTP)
 - Whatever you want

Static Interconnection Networks Dynamic Interconnection Networks

Overview

• Multicomputer/DS: usually ring, lattice, hypercube, ...

Token Ring

- Constant, low node degree (always 2)
- (Practically) limited extensibility

Static Interconnection Networks Dynamic Interconnection Networks

- Sender puts message on line
 - If he received the token message
- All nodes inspect message and pass it on
- Original sender does not pass the message on
 - Converts message into token message
 - Medium access controlled by token

Lattice/Torus

Static Interconnection Networks Dynamic Interconnection Networks

- $\bullet~{\rm Torus}\sim{\rm generalized}~{\rm ring}$
- Constant node degree (2× #dimensions)
- Incrementally extensible in (small) steps
- Good for distributed apps. with 'local' communication pattern (e.g., meterologic simulations)

Hypercube

Static Interconnection Networks Dynamic Interconnection Networks

- Logarithmic diameter (max. distance between nodes)
- Extensible by doubling number of nodes only
 - Take two *d*-dimensional hypercubes
 - Combine corresponding nodes with edges
 - Also increases node degree (#dimensions)

Static Interconnection Networks Dynamic Interconnection Networks

Analysis Hypercube

- $N = 2^d$ nodes
- *d* neighbours per node (degree *d*)
- $d \times 2^d$ edges
- Diameter: $\log_2 N = \log_2 2^d = d$
- Simple routing
- Many paths (robust, parallel communication)
- Expensive

Static Interconnection Networks Dynamic Interconnection Networks

Cube Connected Cycles

- $d \times 2^d$ nodes (d: dimension)
- Logarithmic diameter
- Constant, low node degree (always 3)
- Extensible by (more than) doubling number of nodes only

Static Interconnection Networks Dynamic Interconnection Networks

Completely Meshed

- + Low diameter (1)
- High cost
- Limited extensiblility by max. node degree

Static Interconnection Networks Dynamic Interconnection Networks

Summary

- Lattice $L(a_1 \star a_2 \star \ldots \star a_d)$
- Torus $T(a_1 \star a_2 \star \ldots \star a_d)$

- Hypercube *H*(*d*)
- Cube Connected Cycles CCC(d)

(日) (同) (三) (三)

	nodes	edges	degree	diameter
Lattice	$\prod_{k=1}^d a_k$	$\sum_{k=1}^d \prod_{i eq k} {\sf a}_i({\sf a}_k-1)$	$\leq 2d$	$\sum_{k=1}^d (a_k-1)$
Torus	$\prod_{k=1}^{d} a_k$	$d\prod_{k=1}a_k$	= 2 <i>d</i>	$\sum_{k=1}^{d} \lfloor a_k/2 \rfloor$
H(d)	2^d	$d \times 2^{d-1}$	= d	d d
CCC(d)	$d \times 2^d$	$3d imes 2^{d-1}$	= 3	$2d + \lfloor d/2 \rfloor$

Static Interconnection Networks Dynamic Interconnection Networks

Bus-Connected Nodes

- Cheap
- Blocking
- Poor scalability
- E.g., PCI, SCSI, Ethernet

글▶ 글

Static Interconnection Networks Dynamic Interconnection Networks

Bus-Connected Nodes

- Cheap
- Blocking
- Poor scalability
- E.g., PCI, SCSI, Ethernet

글▶ 글

Static Interconnection Networks Dynamic Interconnection Networks

Bus-Connected Nodes

- Cheap
- Blocking
- Poor scalability
- E.g., PCI, SCSI, Ethernet

글▶ 글

Static Interconnection Networks Dynamic Interconnection Networks

Example: Ethernet

- Developed 1973–1976 at Xerox
- Physical bus, hubs and switches
- Medium access: CSMA/CD
- 2.94 MBit/s (today: 10 GBit/s)

Static Interconnection Networks Dynamic Interconnection Networks

Crossbar

- + Non-blocking
- + Fast
- Expensive
- Not scalable

æ

< ∃⇒

Static Interconnection Networks Dynamic Interconnection Networks

Omega Nets

- Hierarchical crossbar
- + Less expensive
- Higher latency
- Limited connectivity
 - 000 \rightarrow 000 precludes 100 \rightarrow 001
- Simple routing src \rightarrow dst
 - interpret dst bitwise, MSB first
 - 0: upper port,
 - 1: lower port

Static Interconnection Networks Dynamic Interconnection Networks

Fat Tree Nets

• Upper levels with higher bandwidths or multiple redundant links

< ∃⇒

Static Interconnection Networks Dynamic Interconnection Networks

Circuit vs. Packet Switching

Ä

Circuit switching

- Guarantees bandwidth
- Connection established if all systems can fulfill requirements
- State in intermediate systems represents the connection
- E.g., telephone, desired for streaming

Packet switched

- Gains bandwidth by multiplexing
- Packets are treated independently
- E.g., Internet, suited for message-oriented communication

Purpose Routing in Switched Networks

Connecting LANs

Purpose Routing in Switched Networks

Schematic Outline of a Router

- Packets are queued in each router
 - Increased lantency
 - Packets are dropped if incoming queue is full

< 口 > < 同 >

Purpose Routing in Switched Networks

Link-State Routing (Dijkstra)

- Convert graph to tree
 - Root = node whose routing table is desired
 - Successively add node with smallest accumulated distance
- Requires whole system image ⇒ not scalable

Routing in Switched Networks

Distance Vector Routing

- Simple adaptive routing protocol
- Originally used as 'RIP' for the Internet (now: BGP)
- Every router maintains a table
 - (node, out-port, distance) per node
- Tables are regularly exchanged with neighbours
 - If (distance+1) < my distance, update out-port and distance
- Problems
 - Slow convergence to consistent state
 - Count-to-infinity for broken nodes
 - High overhead due to exchange of complete tables

Purpose Connection Handling Reliable Communication

Purpose

- Use unreliable, packet switched network
- Provide reliable transmission of data streams
 - Introduce ACKs and sequence numbers
 - Retransmit unACKed packets after timeout
- Multiplex multiple connections on a link
- Flow control
- Congestion control
- E.g., TCP
 - UDP (more or less) offers IP at transport layer

Purpose Connection Handling Reliable Communication

Notions

- Acknowledgements
 - Positive: OK, packet received (ACK)
 - Negative: Packet missing, resend! (NACK)
- Sequence numbers
 - Allow correct reassembly of data
 - Packets may come in out-of-order
 - Packets may be lost
- Timeouts
 - Determine whether a packet should be resend
 - E.g., if no ACK was received after 3s

Purpose Connection Handling Reliable Communication

Establishing a Connection

• Are connections bidirectional?

Purpose Connection Handling Reliable Communication

Establishing a Connection

- Are connections bidirectional?
- Does this open one or two connections?

Purpose Connection Handling Reliable Communication

Stop and Wait

- Sender sends one packet and waits for ACK
 - Resend after timeout
 - If ACK was lost, receiver gets duplicates!
 - ⇒ Use sequence numbers to identify duplicates
- Slow due to waiting for ACKs

Sliding Window

Purpose Connection Handling Reliable Communication

- Send consecutive packets *i* to *i* + *W* 1
- Send further packets only after *i* has been ACKed
- + Increased throughput due to
 - Multiple outstanding packets
 - Aggregated ACKs
 - Possibly overlapping data and ACK packet transmission

Retransmission

Purpose Connection Handling Reliable Communication

- A sends 5 packets
- Packet 3 gets lost
- Packets 4 and 5 are withheld from the application at B
- B ACKs reception of all packets \leq 2 (or NACKs packet 3)
- A resends 3–5 (or just 3)
- + Complete data is passed in-order to the application
- Sender must keep sent packets

Purpose Connection Handling Reliable Communication

The End

Feel free to ask questions!

æ

<ロト <部ト < 注ト < 注ト