
Distributed Systems Distributed Systems

4 DS Architectures4 DS Architectures

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

Architectural Style

System Architectures

May-04-2009

Summer Term 2009

System Architecture Group

Roadmap of Today

 Architectural Styles

 Software Architectures

 System Architectures
 Centralized SA (Client/Server)

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

 Decentralized SA (P2P)
 Hybrid SA

Architectural Styles of DS

 Layered architectures
 Traditional software architecture

 Object-based architectures
 Modern software architectural style

Architectural Style

© 2009 Universität Karlsruhe (TH), Systemarchitektur 3

 Client/Server Systems
 Well-understood and in use world-wide

 Peer to Peer System (P2P)
 Depending on P2P protocol highly scalable

Layered vers. Object Based Architecture

Architectural Style

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

Observation:

(a) Layered style used for client/server systems

(b) Object based style used for distributed object systems

Client/Server Model

Client Server
Request

Reply

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 5

Kernel

Interconnection Medium

Remark:
Though logically communication is between client and server,
the kernels & communication layers of both nodes are involved

Kernel

P2P Systems

 The term refers to a kind of distributed computing
system in which the “main” service is provided by
having the client systems talk directly to one-another

 In contrast, traditional systems are structured with
servers at the core and clients around the edgesservers at the core and clients around the edges

© 2009 Universität Karlsruhe (TH), Systemarchitektur 6

Server

Client/Server versus P2P

 Centralized administration
 Trusted infrastructure
 Server must be prepared to

scale with client base
 Server vulnerable to faults
and malicious attacks

 Self-organizing
 No required infrastructure
beyond connectivity
 Self-scaling (“organic” growth)
 More reliable and fault-tolerant

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 7

and malicious attacks
 What about availability?

Server

Client

Client Client

Client

Network

Wikipedia (see http://en.wikipedia.org/wiki/Client-server)

Internet

e.g. Gnutella

An important Topic?

 … or at least, it gets a lot of press
 Recording industry claims that p2p downloads are killing

profits!
 Used to be mostly file sharing, but now online radio feeds

(RSS feeds) are a big deal too

 University of Washington study showed that 80% of their
network bandwidth was spent on music/video downloads!
 DVDs are largest, and accounted for the lion’s share
 A great many objects were downloaded many times
 Strangely, many downloads took months to complete…
 Most went to a tiny handful of machines in dorm rooms

© 2009 Universität Karlsruhe (TH), Systemarchitektur 8

Where has all the Bandwidth gone?

200
300
400
500
600
700
800

M
bp

s

P2P P2P

non-HTTP
 TCP

non-HTTP
 TCP

© 2009 Universität Karlsruhe (TH), Systemarchitektur 9

0
100

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

W
ed

Th
u Fr
i

Sa
t

Su
n

M
on

Tu
e

W
ed Th

u

WWW WWW
Akamai

• WWW = 14% of TCP traffic; P2P = 43% of TCP traffic

• P2P dominates WWW in bandwidth consumed!!

Source: Hank Levy. See
http://www.cs.washington.edu/research/networking/websys/pubs/osdi_2002/osdi.pdf

Bandwidth consumed by UW Servers
(outbound traffic)

Bandwidth Consumed by UW Servers

150

200

250
Kazaa

© 2009 Universität Karlsruhe (TH), Systemarchitektur 10

0

50

100

150

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

0:
00

12
:0

0

M
bp

s

WWWGnutella

Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

Object Types for Different Systems

Byte Breakdown per Content Delivery System

80%

100%
TEXT (T)
IMAGES (I)
AUDIO (A)
VIDEO (V)
OTHER (O) V

V

© 2009 Universität Karlsruhe (TH), Systemarchitektur 11

0%

20%

40%

60%

WWW Akamai Gnutella Kazaa

%
 B

yt
es

()

T I

A
V

O

T

I

A

V O

T I

A

V

O
T I

A
O

Software ArchitecturesSoftware Architectures

12© 2009 Universität Karlsruhe (TH), Systemarchitektur

 Layered Systems
 Network OS
 Distributed OS
 Middleware

Local System Architecture

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 13

 Applications separated from privileged µkernel

 Clients/servers protected within address spaces

 A µkernel does not imply a flat system architecture,
 add software layers, whenever appropriate

Software Layers
 Breaking up the complexity of systems by designing

them through layers and services
 Layer: group of closely related and highly coherent

functionalities
 Service: functionality provided to a superior layer

Examples of layered software systems:

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 14

 Examples of layered software systems:
 OSes, e.g. kernel & other services
 Computer network protocol architectures (ISO/OSI)

Typical Layers in DS

Middleware 2

Applications, Services 1

e.g. CORBA,
OMG, DCOM

Provides an interface

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 15

Computer and Network HW

Operating System

1 Network Time Service via NTP (= Network Time Protocol)
2 Main task of middleware is

 hiding heterogeneity
 providing an easy and portable programming model

Platform, e.g
SunSPARC/Solaris

to system resources

Potential System Support

 Potential support for distributed applications
 No support
 Network Operating Systems (NOS)
 Middleware Systems
 Distributed Operating Systems (DOS)

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

 Distributed Operating Systems (DOS)

System Description Main Goal

NOS
Loosely-coupled operating system for
heterogeneous multicomputers (LAN,
MAN, and WAN)

Offer local services to
remote clients

Middleware Additional layer on top of NOS
implementing general-purpose services

Provide distribution
transparency

DOS Tightly-coupled operating system for
multi-processors and homogeneous
multi-computers (only LAN)

Hide and manage hardware
resources

No Application Support
 No local OS supports a distributed application

 Distributed application must handle:
 Identification of each “remote” application or system component

 Communication protocols

 All possible error conditions

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 17

p

Distributed Application

Network

Hardware

Local OS

Hardware

Local OS

Hardware

Local OS

Hardware

Local OS

All additional service done at this software level!!

Network Operating System

Distributed Application

Network-Operating System Layer

Local OS Local OS Local OS Local OS

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 18

Network

Computer Computer Computer Computer

Design:
You add another software layer on top of all local OSes
offering functions needed for the DS, e.g. NFS

Multi-Computer Operating System

Software Architectures

e.g. Chorus

© 2009 Universität Karlsruhe (TH), Systemarchitektur 19

 General structure of a multicomputer operating system

 Data structures for OS no longer in a shared main memory,
e.g. support for a distributed shared memory

 Each node with a local kernel + inter-node communication

homogeneous

Network System versus DS

 Computer network: the autonomous computers are
explicitly visible (have to be addressed explicitly)

 Distributed system: existence of multiple autonomous
computers is transparent

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 20

 However:
 Many problems in common

 In some sense networks (or parts of them, e.g. name
services) are also DS, and

 Normally, every DS relies on services provided by a
computer network

Example 1: Network-OS

Given a LAN of WSs, each user has a WS of its own,
all commands run locally.

 he may use rlogin, i.e. to get a specific service

 his WS tends to be a terminal of the remote machine.
h t k h th i i l t d

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 21

 each user must know where the service is located
 at any instance of time he can only use one remote machine
 a copy service may be installed, e.g.

rcp machine1:file 1 machine2:file2

Example 2: Network-OS

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 22

Different clients can have a different view onto the file system

Middleware

Heterogeneous
NOS platforms

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 23

 Functionality of middleware?

 Paradigms, the middleware is based upon?
 Built upon abstractions of commodity OSes

 process model and

 message passing

 Middleware runs in user space

Middleware Services

 High-level communication facilities
 Access transparency

 Naming
 Location transparency

Scalability

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 24

 Scalability

 Persistence
 Recoverability

 Distributed Transactions

 Security

 Availability

Why will Middleware win?

 Builds on commonly available abstractions of network
OSes (tasks, processes, messages)

 Examples: RPC, NFS, CORBA, DCOM, J2EE, .NET

 There ar also languages (or language modifications) g g (g g)
designed for distributed computing(e.g. Erlang, Ada,
Limbo, etc.)

 Usually runs in user space

 Raises level of programming, i.e. less error-prone

 Independent of OS, network protocol. Programming
language, etc., i.e. increased flexibility

© 2009 Universität Karlsruhe (TH), Systemarchitektur 25

Openness & Middleware

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 26

 In an open middleware-based DS, protocols used by each
middleware layer should be the same, as well as the
interfaces they offer to applications 

 Improve portability + migration

Characteristics of DS Architectures

Item
Distributed OS

Middleware
NOS

Multiproc. Multicomp.

Degree of
transparency Very High High High Low

Same OS on all
nodes Yes Yes No No

Software Architectures

© 2009 Universität Karlsruhe (TH), Systemarchitektur 27

Number of OS
copies 1 N N N

Basis for
communication

Shared memory
+ Messages

Messages Model
specific Files

Resource
management Global, central Global,

distributed Per node Per node

Scalability Low Moderately varies Yes

Openness Closed Closed Open Open

System ArchitecturesSystem Architectures

28© 2009 Universität Karlsruhe (TH), Systemarchitektur

 Centralized SA (Client/Server)
 Decentralized SA (P2P)
 Hybrid SA

Centralized Architectures

 Basic Client/Server Model: Characteristics
 There are processes/tasks offering services (servers)

 There are processes/tasks that use services (clients)

 Clients and servers can be distributed across different nodes

Clients follow the usual request/reply interaction model with Clients follow the usual request/reply interaction model with
respect to using services

© 2009 Universität Karlsruhe (TH), Systemarchitektur 29

Client/Server Model

Client Server
Request

Reply

Client Server

Request

Reply

© 2009 Universität Karlsruhe (TH), Systemarchitektur 30

Kernel

Interconnection Medium

Remark:
Clients & servers imply a hierarchical order (layering)-
Sometimes roles might change

Kernel

Application Layering (1)

 Recall layers of the general architectural style
 Layering of a DB based client/server model

 User-interface layer

Processing layer

© 2009 Universität Karlsruhe (TH), Systemarchitektur 31

 Processing layer

 Data level

 This layering is found in many DS, using traditional
DB techniques and accompanying application

 Question: Where to implement each layer?

Example Layering

Client Server

Typically implemented at the client

© 2009 Universität Karlsruhe (TH), Systemarchitektur 32

 Organization of an Internet search engine into 3 different layers

 Similar organization: Decision support system for a broker

Typically implemented at the server

N-Tiered Architectures

 Single-tiered: old terminal/mainframe configuration

 Two-tiered: classical client/server configuration

 Client machine contains only the programs implementing
(part of) the user-interface level

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

(part of) the user interface level

 Server machine contains the rest, i.e. programs
implementing the processing and data level

 Three-tiered: each layer on a separate node

 …

Traditional Two-Tiered Architectures

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 34

 Alternative client-server organizations (a) – (e).

Three-Tiered Architectures

1-30

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

 An example of a server acting as a client in a three-tiered system
architecture

 A transaction monitor coordinates all separate transactions that
potentially need more than one data base server

Modern Client/Server Architecture

1-31

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

 Example of horizontal distribution of a Web service

Multiple Servers per DS

Server

Service

Client invocation

result Partition or
replication of
server data:

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

Server

Server

Client

invocation

result

Inform and
update Exam. partition:

www

Exam. replication
& partition: DNS

Server Architectures

 1 single threaded server per DS on node nx
- single point of failure
+ simple solution

 1 single threaded server per node, but n>1 servers
per DS
- maintaining consistency

Client Server

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

g y
+ improved availability

 1 multi-threaded server per DS
- …
+ …

 1 multi-threaded server per node, and n>1 servers
per DS

- …
+ …

 Further models?

Decentralized ArchitecturesDecentralized Architectures

39© 2009 Universität Karlsruhe (TH), Systemarchitektur

 Structured P2P
(More details in later lectures)

 Unstructured P2P
 Hybrid

Decentralized Architectures

Observation: There is a trend towards P2P systems

 Structured P2P: nodes are organized following a
specific distributed data structure (DHT)

 Unstructured P2P: nodes have randomly selected

Not in our focus

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

 Unstructured P2P: nodes have randomly selected
neighbors

 Hybrid P2P: some nodes are appointed special
functions in a well-organized fashion

Note:
In virtually all cases we are dealing with overlay
networks: data is routed over connections setup
between the nodes (cf. application-level multicasting)

List of P2P Systems

 Napster MP3 Sharing
 first hybrid P2P)
 (not a clean P2P, still a central server,
 but decentralized reources)

 Gnutella
File Sharing

G ute a
 First version an untructured P2P
 Self organizing, but not that scalable

 DHT based P2P
 Chord (Berkeley, MIT)
 CAN (Berkeley, ICSI/ICIR)
 Pastry (Rice, Microsoft)
 Freenet

 JXTA
© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

more details in
a future lecture

Napster

 First P2P killer application (1999-2001)
 Illegal exchange of MP3 music files
 Centralized Directory Servers (centralized index)

 Administration of node addresses and files at involved peers
 Lookup via central servers
 Servers build the web pages clients see
 MP3 files are distributed amongst the peers
 Actual MP3 or DVD downloads are done from client to client

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

Napster

Having obtained a top-level
page listing peers with copies

of music or other content
desired, a client can download
the files directly from the peer

Where can I find a copy of
“Eagles:Hotel California”?try 167 26 16 89 or

Got “Eagles”? Can I have a copy?
… no problem, dude

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

Data center builds the
pages users see when they

access Napster

Eagles:Hotel California ?… try 167.26.16.89 or
221.18.71.36

Napster Extensions

 OpenNap-network
 Multiple statically networked directory server

 Improved reliability and availability
 No single point of failure anymore

 Support for any file format

Ch Characteristics
 Scalability is limited by centralized directory servers
 Not a pure P2P system

 Analysis (April 2001)
 OpenNap ~ 80 directory server
 ~ 50 000 users online
 More than 10 000 000 files
 More than 55 TB data

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

Why did Napster go this way?

 When service launched, developers hoped to work
around legal limits on sharing media
 They reasoned: let client systems advertise “stuff”

 If some of that stuff happens to be music, that’s the
responsibility of the person who does it

 The directory system “helps clients advertise wares” but
doesn’t “endorse” the sharing of protected intellectual
property. Client who chooses to do so is violating the law

 They make their money on advertising they insert

 Judges saw it differently…
 “Napster’s clear purpose is to facilitate theft of intellectual

property…”

© 2009 Universität Karlsruhe (TH), Systemarchitektur 45

Technical Issues with Napster
 Many clients just aren’t accessible or if accessible only for a very

short time
 Firewalls can limit incoming connections to clients
 Many client systems come and go (churn)
 Round trip times to Nepal are slow…

 Clients might withdraw a file unexpectedly
 E.g. if low on disk space, or if they download something on top of a

song they aren’t listening to anymore

 Industry has attacked the service… and not just in court of law
 Denial of service assaults on core servers
 Some clients lie about content (e.g. serve Frank Sinatra in response

to download for Eminem)
 Hacking Napster “clients” to run the protocol in various broken

(disruptive) ways
 And trying to figure out who is serving which files, in order to sue

those people
© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Fundamental Problems?
 If we assume clients serve up the same stuff people download,

the number of sources for a less popular item will be very small
 Under assumption that churn is a constant, these less popular

items will generally not be accessible.
 But experiments show that clients fall into two categories:

 Well-connected clients that hang around
 Poorly-connected clients that also churn

hi f h i … this confuses the question
 One can have, some claim, as many electronic personas as one

has the time and energy to create. – Judith S. Donath.
 So-called “Sybil attack….”

 Attacker buys a high performance computer cluster
 It registers many times with Napster using a variety of IP addresses

(maybe 10’s of thousands of times)
 Thinking these are real, Napster lists them in download pages. Real

clients get poor service or even get snared
 Studies show that no p2p system can easily defend against Sybil

attacks!

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

Refined Napster

 Early Napster just listed anything. Later:
 Enhanced directory servers to probe clients, track their

health. Uses an automated reporting of download problems
to trim “bad sources” from list

 Ranks data sources to preferentially list clients who…
 Have been up for a long time, and

 Seem to have fast connections, and

 Appear to be “close” to the client doing the download (uses
notion of “Internet distance”)

 Implement parallel downloads and even an experimental
method for doing “striped” downloads (first block from
source A, second from source B, third from C, etc)
 Leverages asymmetric download/uplink speeds

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

Meanwhile, P2P took off

 By the time Napster was ruled illegal, it had 15
million users. 5 million of them joined in just a few
months!

 With Napster out of business, a vacuum arose
Some users teamed up to define an open standard called Some users teamed up to define an open standard called
“Gnutella” and to develop many protocol implementations

 Gnutella eliminates the servers
 Judge singled it out in deciding that Napster was illegal

 Also, a true peer-to-peer network seems harder to defeat than
one that is only partly peer-to-peer

 Credo: “All information should be free”

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

Unstructured P2P Architectures1

Unstructured P2P systems maintain a random graph

Basic principle: Each node is required to be able to
contact a randomly selected other node:
 Let each peer maintain a partial view of the network,

consisting of c other nodes

© 2009 Universität Karlsruhe (TH), Systemarchitektur 50

 Each node P periodically selects a node Q from its partial
view

 P and Q exchange information and exchange members of
their respective partial views

Observation: It turns out that –depending on the
exchange protocol- randomness, but also robustness
of the network can be maintained

1Unstructured P2P not in our focus

Gnutella Fundamentals

 User joins the network using a broadcast with
increasing TTL values
 “Is anyone out there?”

 Links itself to the first Gnutella node to respond

 To find content, protocol searches in a similar way
 Broadcasts “I’m looking for Eminem:WhackHer”

 Keeps increasing TTL value… eventually gives up if no
system respond

 Hopefully, popular content will turn up nearby

© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

“Self-Organized“ Overlay Network

© 2009 Universität Karlsruhe (TH), Systemarchitektur 52

I’m looking for
Sting:Fields of Gold

Search in Overlay-Network

TTL determines how far the search
will “flood” in the network. Here,

TTL of 2 reached 10 nodes

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

Download in Gnutella

Nodes with a copy send back a
message offering it. This basically

is a URL for the file

Download file from the first node
that offers a copy. Hopefully this is

a nearby source with good
connectivity…

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

Gnutellas Main Issues

 In experimental studies of the system
 Very high rates of join requests and queries are

sometimes observed

 Departures (churn) found to disrupt the Gnutella Departures (churn) found to disrupt the Gnutella
communication graph

 Requests for rare or misspelled content turn into
world-wide broadcasts
 Rare is… um… rare. Misspellings are common.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

Gnutella Protocol
 Peers are connected via TCP links
 Queries are flooded via the Gnutella network

 TCP broadcast of ping and query messages

 Identify routing loops via pseudo-unique message
IDs (UUID)

UUID has 128 bits containing a timestamp pse do n mbe UUID has 128 bits, containing a timestamp, pseudo-number
and the MAC address

 Double UUIDs are possible, but not very probable
 Temporary buffering of UUIDs of already received messages
 Skip double messages

 Performance breakdown in August 2000 because
many low budget nodes have been overloaded

 Next Generation Gnutella with super peers

© 2009 Universität Karlsruhe (TH), Systemarchitektur 56

Super Peers

 Unstructured P2P tend to become less scalable due
to their indeterminism

 Often flooding the complete net is the only possibility

 Super peers i e specific management nodes

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

 Super peers, i.e. specific management nodes
maintain an index of all data items

 Super pees can also be used in Content Delivery
Networks (CDN), where each regular peer offers
resources (e.g. storage for hosting web pages)

 Super peer (~broker) can find an appropriate candidate
having enough capacity to store more web pages

Super-Peers

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

 A hierarchical organization of nodes into a super-peer
network (compare to clan/chief model)

StructuredStructured P2PP2P

59© 2009 Universität Karlsruhe (TH), Systemarchitektur

Research: Structured P2P Systems

 Universities were first to view P2P as an
interesting research area
 MIT Chord: “distributed hash table” DHT

 Berkeley Berkeley
 CAN: “Content addressable network”

 Tapestry (similar to Pastry)

 Rice Pastry, Chord alike protocol

 Cornell Kelips and Beehive (using replication)

 All systems separate the “indexing” problem
from actual storage of the data objects

© 2009 Universität Karlsruhe (TH), Systemarchitektur 60

Distributed Hash Tables (DHT)

 Idea is to support a simple index with API:
 Insert(key, value) – saves (key,value) tuple

 Lookup(key) – looks up key and returns value

 Implement it in a P2P network, not a server…
 Exactly how we implement it varies

 Normally, each P2P client has only a part of all the
tuples, i.e. it must route a query to the right place

Goal: Avoid flooding of the P2P system to find the
location of the desired object, file, etc. …

© 2009 Universität Karlsruhe (TH), Systemarchitektur 61

Distributed Indexing

Lookup(“Sting:Fields”) 
128.64.72.13

© 2009 Universität Karlsruhe (TH), Systemarchitektur 62

Abstraction of an index makes it look like a big server.
Implementation spreads the index over many peers.

But we can implement this one abstraction in many ways.

Insert(“Sting:Fields”,
128.64.72.13);

Some Details

 Keep in mind:

 There are lots of protocols that can solve this
problem: the protocol used is not part of the
problem statementp

 Some DHTs allow updates (e.g. if data moves, or
nodes crash). Others are write once.

 Most DHTs allow many tuples with the same key
and can return the whole list, or a random subset
of size k, etc

© 2009 Universität Karlsruhe (TH), Systemarchitektur 63

What should we insert in a DHT?

 Normally, we want to keep the values small…
like an IP address

 So the (key,value) pairs might tell us where to
look for something but probably not the actuallook for something but probably not the actual
thing

 Value could be (and often is) a URL

 Once we have the DHT running we can use it
to build a P2P file system

© 2009 Universität Karlsruhe (TH), Systemarchitektur 64

Structured P2P Example: Chord

Initially, the data item with key 5 is on node 7,
cause 7 is the largest id with id  5

A new node first gets its logical ID, e.g. 5

Then it does a lookup(ID 5) 

© 2009 Universität Karlsruhe (TH), Systemarchitektur 65

 Mapping of data items onto logical nodes in Chord
 Each data item has a key, each node has its logical id
 Both are “randomly hashed” (e.g. 120 or 160 bit long)

Then it does a lookup(ID=5) 
network address of succ(5) = 7
Contact node 7 and get its predecessor,
i.e. network address of 4

Copy all data items with key 5 from 7 to 5

Content Addressable Network (CAN)

 CAN deploys a d-dimensional Cartesian Coordinate
Space (ddCCS)

 Each node has a unique key = a point in the ddCCS
and an associated region

© 2009 Universität Karlsruhe (TH), Systemarchitektur 66

g

 Each data item has a key that belongs to one of the
regions

 Ratnasamy, S. et al.: "A Scalable Content-Adressable
Network", Proc. SIGCOMM ACM, 2001"
(slides in additional literature on our course site)

CAN: Simple Example

© 2009 Universität Karlsruhe (TH), Systemarchitektur 67

1

CAN: Simple Example

© 2009 Universität Karlsruhe (TH), Systemarchitektur 68

1 2

CAN: Simple Example

3

© 2009 Universität Karlsruhe (TH), Systemarchitektur 69

1

2

3

CAN: Simple Example

3

© 2009 Universität Karlsruhe (TH), Systemarchitektur 70

1

2

3

4

