
Distributed Systems Distributed Systems

3 Problems & Examples 3 Problems & Examples

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

Inherent Problems, DS Examples

April-27-2009

Summer Term 2009

System Architecture Group

Schedule of Today

 Inherent Problems

 Conceptual Problems

 Motivation by Examples

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

 HW Architetures

Inherent ProblemsInherent Problems

3© 2009 Universität Karlsruhe (TH), Systemarchitektur

Interaction Problem
?

?

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

 What to do if the server does not reply?
 Wait forever or wait only some limited time?
 Send request again?

 sometimes OK
 sometimes, severe DS error

 What can happen if client does not take the reply?
 In case of a synchronous reply, server is blocked forever!!

Basic Mechanism: Communication

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 5

 Three orthogonal design parameters for a simple IPC
 with or without buffering

 at sender and/or at receiver site

 with or without blocking
 sender and/or receiver

 reliable or unreliable

Potential Blocking of Sender

  sender buffer
 block sender at S1 if

buffer is full, or
 avoid blocking with a

trying send

S1

buffer is full

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 6

  receiver buffer
 block sender at S2 until

message is sent
 block sender at S3 until

message was received
at receiver’s site

 Block sender until
message was delivered
to the receiver process

S2 S3

S4

Potential Blocking of Receiver

  no receiver buffer
 block receiver at S3
 avoid blocking with

polling until message
has arrived

S3

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 7

  receiver buffer
 block receiver at S4 if

buffer is empty
 avoid blocking with

polling until buffer no
longer empty

S4

Communication & Reliability

How to deal with communication?
 Reliable communication

 Sender gets an information, that its message did
arrive at the receiver’s side

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 8

 Unreliable communication
 Sender has no guarantee whether its message did

arrive at the receiver’s side

How to combine reliability with the 2 previous discussed
IPC design parameters? (assignment, Ch.1 Tanenbaum)

Distributed Shared Memory Systems

 Pages of an address
space are distributed
over 4 machines

 Situation after CPU 1

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 9

references page 10

 Situation if page 10 is
read only and
replication is used

Question: Can we replicate read-write pages, too?

migrate

copy

False Sharing in a DSM

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 10

 False sharing between 2 loosely coupled KLTs

Conceptual ProblemsConceptual Problems

11© 2009 Universität Karlsruhe (TH), Systemarchitektur

 Phantom Deadlocks

 Clock Synchronization

 Causally Ordered Events

 Covered Channels

Phantom Deadlock

4 isolated views of drivers of the cars S,E,N,W result in:

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 12

S waits for E W waits for S N waits for W E waits for N

Time in DS

 Absence of a global time

 Every computer has its own local clock

Assume: these clocks have different times

Inherent Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 13

 Assume: these clocks have different times

How to solve this timing problem?

 Very expensive precise physical clocks per node

 Cheaper logical clocks established via software
protocols

Synchronization of Clocks

What‘s the time

Get local time

It‘s xyz o‘ clock

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 14

t = ? adjust your own clock
t („round trip delay“)

Problems:

 message transfer time is load dependant

 non symmetric message-transfer times

 how to get information about message transfer times?

Causal Inconsistent Observations

Desired: Observe origin before its impact

either raise or lower pressure

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 15

pipe
pump manometer

Depending on the value of the manometer
we‘ll accelerate or slow down the pump, but ...

Causal Inconsistent Observations

either raise or lower pressure

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

pipe
pump manometer

However, if  small hole in the pipe, what will happen?
Manometer will decrease 
we will accelerate the pump, and then ...

Causal Inconsistent Observations

either raise or lower pressure

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 17

pipe
pump manometer

The pipe hole will explode

Summary: Rules of Thumbs

 Trade-offs:
 Some challenges of DS provide conflicting requirements, e.g.

scalability and performance

 Separation of Concerns:
 Split problem into individual concerns and address each

Conceptual Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 18

p p
problem separately

 End-to End argument:
 Often a reliable communication can only be implemented at

application level

 Policy v. Mechanism:
 System architects should implement base mechanisms that

allow flexible policies AVOID: BUILT-IN POLICIES

Motivation by ExampleMotivation by Example

Motivation

19© 2009 Universität Karlsruhe (TH), Systemarchitektur

Air Traffic Control
(slides from K. Birman,
chief architect of ISIS &
author of “Reliable DS”)

Air Traffic Control using Web Techn.

 Assume a “private” network

 Web browser could easily show planes, natural for
controller interactions

 What “properties” would the system need?
Cl l d t k th t t j t d fli ht d t i Clearly need to know that trajectory and flight data is
current and consistent

 We expect it to give sensible advice on routing options
(e.g. do not propose dangerous routes)

 Continuous availability is vital: we need zero downtime

 Expect a soft form of real-time responsiveness

 Security and privacy also required (post 9/11!)

© 2009 Universität Karlsruhe (TH), Systemarchitektur 20

ATC Systems divide Country up

e.g. France
One major Design approach: “Divide an conquer”

© 2009 Universität Karlsruhe (TH), Systemarchitektur 21

Issues with Old Systems

 Overloaded computers that often crashed
 Attempt to build a replacement system failed (1994!!!)

 Getting slow as volume of air traffic rises

 Inconsistent displays a problem resulting inInconsistent displays a problem resulting in
 phantom planes

 missing planes

 stale information

 Some major outages recently (and some near-miss
stories associated with them)
 TCAS saved the day: collision avoidance system of last

resort… and it works….

© 2009 Universität Karlsruhe (TH), Systemarchitektur 22

ATC News

 The FAA1 recognized the need for further modernization of air traffic
control, and in July 1988, selected IBM to develop the new multi-
billion-dollar Advanced Automation System (AAS) for the Nation's en
route ATC centers. AAS would include controller workstations, called
"sector suites," that would incorporate new display, communications
and processing capabilities. The system would also include new

t h d d ft t b i th i t ffi t l tcomputer hardware and software to bring the air traffic control system
to higher levels of automation.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 23

This ASR-1 (Airport Surveillance Radar) antenna
was part of an air traffic system used beginning

in the early 1950s.

1Federal Aviation Administration

ATC News
 In December 1993, the FAA reviewed its order for the

planned AAS. IBM was far behind schedule and had major
cost overruns.

 In 1994 the FAA simplified its needs and picked new
contractors. The revised modernization program continued
under various project names Some elements met furtherunder various project names. Some elements met further
delays.

 In 1999, controllers began their first use of an early
version of the Standard Terminal Automation Replacement
System, which included new displays and capabilities for
approach control facilities. During the following year, FAA
completed deployment of the Display System
Replacement, providing more efficient workstations for en
route controllers.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 24

Concept of IBM’s 1994 System

 Replace video terminals with workstations

 Build a highly available RT-system that guarantees
no more than 3 seconds downtime per year

Off b f ll h Offer better user interface to ATC controllers, with
intelligent course recommendations and warnings
about future course changes that will be needed

© 2009 Universität Karlsruhe (TH), Systemarchitektur 25

ATC Architecture

NETWORK INFRASTRUCTURENETWORK INFRASTRUCTURE

DATABASEDATABASE

© 2009 Universität Karlsruhe (TH), Systemarchitektur 26

So… how to build it?

 In fact IBM project was just one of two at the
time; the French had one too
 IBM approach was based on lock-step replication

 Replace every major component of the system with a p y j p y
fault-tolerant component set

 Replicate entire programs (“state machine” approach)

 French approach used replication selectively
 As needed, replicate specific data items

 Program “hosts” a data replica but isn’t itself replicated

© 2009 Universität Karlsruhe (TH), Systemarchitektur 27

IBM: Independent Consoles… backed
by Ultra-Reliable Components

Radar processing system

Console

ATC
database

ATC database is really a high-
availability cluster

Radar processing system
is redundant

ATC
database

© 2009 Universität Karlsruhe (TH), Systemarchitektur 28

France: Multiple Consoles… but in
some ways they function like one

Console A
Radar updates sent

with hardware

Console B

Console C

ATC
database

ATC database only
sees one connection

with hardware
broadcasts

© 2009 Universität Karlsruhe (TH), Systemarchitektur 29

Different Emphasis

 IBM imagined pipelines of processing with replication
used throughout. “Services” did much of the work.

 French imagined selectively replicated data, for
example “list of planes currently in sector A.17”
 E.g. controller interface programs could maintain replicas of

certain data structures or variables with system-wide value

 Programs did computing on their own helped by databases

© 2009 Universität Karlsruhe (TH), Systemarchitektur 30

Other Technologies Used

 Both used standard off-the-shelf workstations (easier
to maintain, upgrade, manage)
 IBM proposed their own software for fault-tolerance and

consistent system implementation
 French used ISIS software developed at Cornell

 Both developed fancy graphical user interface much
like the Web, pop-up menus for control decisions etc.

 Both used state-of-the-art “cleanroom” development
techniques

© 2009 Universität Karlsruhe (TH), Systemarchitektur 31

IBM Project: Another Fiasco

 IBM was unable to implement their fault-tolerant
software architecture

 Problem was much harder than they expected.
 Even a non-distributed interface turned out to be very hard,

major delays scaled back goalsmajor delays, scaled back goals

 And performance of the replication scheme turned out to be
terrible for reasons they didn’t anticipate

 The French project was a success and never
even missed a deadline… In use today.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 32

Where did IBM go wrong?

 Their software “worked” correctly
 The replication mechanism wasn’t flawed,

although it was much slower than expected

 But somehow it didn’t fit into a comfortableBut somehow it didn t fit into a comfortable
development methodology
 Developers need to find a good match between

their goals and the tools they use
 IBM never reached this point

 The French approach matched a more
standard way of developing applications

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

The French ATC System

 Teams of 3-5 air traffic controllers on a cluster of
desktop consoles

 50-200 of these console clusters in an air traffic
control center

R d I Radar Image
 Weather Alert
 Track Updates
 Updates to Flight Plans
 Console to Console State Updates
 System Management and Monitoring
 ATC center to center Updates

 Multicast ubiquitous…

© 2009 Universität Karlsruhe (TH), Systemarchitektur 34

Two Kinds of Multicast

 Virtually Synchronous Multicast: very
reliable, not particularly fast

 Unreliable Multicast: very fast not Unreliable Multicast: very fast, not
particularly reliable

 Nothing in between!

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

Two Kinds of Subsystems

 Category 1: Complete reliability (virtual
synchrony) e.g: routing decisions

 Category 2: Careful application design
+ natural hardware properties +
management policies. e.g: radar

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

Multicast in the French ATC

 Engineering Lessons:
 Structure application to tolerate partial failures
 Exploit natural hardware properties

C li t d t ? Can we generalize to modern systems?

 Research Direction: Time-Critical Reliability
 Can we design communication primitives that

encapsulate these lessons?

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

Anatomy of Cloned Service

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

RACS

Updates
multicast to
whole group

Queries
unicast to

single nodes

Examples of Mission-Critical Appl.

 Banking, stock markets, stock brokerages

 Heath care, hospital automation

 Control of power plants, electric grid

T l i i i f Telecommunications infrastructure

 Electronic commerce and electronic cash on the Web
(very important emerging area)

 Corporate “information” base: a company’s memory
of decisions, technologies, strategy

 Military command, control, intelligence systems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 39

We depend on Reliable DS

 If these critical systems don’t work
 when we need them

 correctly

 fast enough

 securely and privately

 ... then revenue, health and safety, and
national security may be at risk!

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

Critical Needs of Critical Applications

 Fault-tolerance: many flavors
 Availability: System is continuously “up”

 Recoverability: Can restart failed components

 Consistency:
A ti t diff t l ti i t t ith h th Actions at different locations are consistent with each other.

 Sometimes use term “single system image”

 Automated Self-Management:
 Adaptivity
 Load Control

 Security, privacy, etc….:
 Vital, but not our topic in this course

© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

So what makes it hard?

 ATC example illustrated a core issue

 Existing platforms
 Lack automated management features

 Handle errors in ad-hoc inconsistent ways Handle errors in ad-hoc, inconsistent ways

 Offer one form of fault-tolerance mechanism
(transactions), and it isn’t compatible with high
availability

 Developers often forced to step outside of the
box… and might stumble.
 But why don’t platforms standardize such things?

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

Generalized End-to-End View?

 Low-level mechanisms should focus on speed,
not reliability

 The application should worry about
“ ti ” it d“properties” it needs

 OK to violate the E2E philosophy if E2E
mechanism would be much slower

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

E2E is visible in J2EE and .NET

 If something fails, these technologies report
timeouts, but
 they also report timeouts when nothing has failed

h th t ti t th d ’t t ll when they report timeouts, they don’t tell you
what failed

 they don’t offer much help to fix things up after
the failure, either

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

Example: Server Replication

 Suppose that our ATC needs a highly
available server.

 One option: “primary/backup”
 We run two servers on separate platforms We run two servers on separate platforms

 The primary sends a log to the backup

 If primary crashes, the backup soon catches up
and can take over

© 2009 Universität Karlsruhe (TH), Systemarchitektur 45

Split Brain Syndrome…

primary

backup

Clients initially connected to primary, which keeps
backup up to date. Backup collects the log

log

© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Split brain Syndrome…

primary

Transient problem causes some links to break but not all.
Backup thinks it is now primary, primary thinks backup is down

backup

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

Split brain Syndrome

primary

Some clients still connected to primary, but one has switched
to backup and one is completely disconnected from both

backup

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

Implications?

 Air Traffic System with a split brain could
malfunction disastrously!
 For example, suppose the service is used to

answer the question “is anyone flying in such-and-q y y g
such a sector of the sky”

 With the split-brain version, each half might say
“nope”… in response to different queries!

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

Can we fix this Problem?

 No, if we insist on an end-to-end solution
 We’ll look at this issue later in the class

 But the essential insight is that we need some
form of “agreement” on which machines are upform of agreement on which machines are up
and which have crashed

 Can’t implement “agreement” on a purely 1-to-1
(hence, end-to-end) basis.
 Separate decisions can always lead to inconsistency

 So we need a “membership service”… and this is
fundamentally not an end-to-end concept!

© 2009 Universität Karlsruhe (TH), Systemarchitektur 50

Can we fix this Problem?

 Yes, many options, once we accept this
 Just use a single server and wait for it to restart

 This is common today, but too slow for ATC

 Give backup a way to physically “kill” the primary,
e.g. unplug it
 If backup takes over… primary shuts down

 Or require some form of “majority vote”
 maintains agreement on system status

 Bottom line? You need to anticipate the
issue… and to implement a solution.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

HW ArchitecturesHW Architectures

52© 2009 Universität Karlsruhe (TH), Systemarchitektur

 Local versus Distributed Systems
 Range of DS
 Architectural Style

Local versus Distributed Systems

HW Models

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

 Orthogonal HW design parameters
 shared/private memory

 bus-based/switch-based interconnection

Switched Multiprocessor

HW Models

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

(a) Low scalability due to cost (crossbar)

(b) Low scalability due to switching latency
alternative approach: NUMA architecture

Bus-Based Multi-Computers

Local memory

CPU

Local memory

CPU

Local memory

CPU

HW Models

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

Network

 Similar to a bus-based multi-processor,
but hopefully with less network traffic

Homogeneous Multi-Computer

HW Models

© 2009 Universität Karlsruhe (TH), Systemarchitektur 56

 Grid (well suited to meet 2-dimensional problems,
e.g. analyzing photographs)

 Torus (~ Grid + interconnections of border nodes)
 Hypercube

Switched MC between MPPs (> 1000 CPUs) or Cluster of WSs

WAN Wide Area Network (e.g. Internet, worldwide)

MAN Metropolitan Area Network (within about 10-30 km)

Typical Range of DS

HW Models

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

LAN Local Area Network
(company or university, within about 1-3 km)

SANSAN Storey/Storage* Area Network
(within a room etc.)

*Stockwerk SAN = System Area Network

Preview

 SW Architectures

 Architectural Styles

 System Architectures
 Centralized SA
 Decentralized SA
 Hybrid SA

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

y

 SA versus Middleware
 Interceptors
 Approach to Adaptive Software

 Self Management in DS
 Feedback Control System
 Astrolabe
 Globule
 Jade

