
Distributed Systems Distributed Systems

2 Characteristics 2 Characteristics

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

Goals & Challenges, Types of DS

April-22-2009

Summer Term 2009

System Architecture Group

Schedule of Today

 Fundamentals

 Inherent Characteristics of a DS

 DS Goals & Challenges

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

g

 Types of DS

FundamentalsFundamentals

3© 2009 Universität Karlsruhe (TH), Systemarchitektur

Review: Terminology
 Program is the code you type in

 Process is what you get when you run it as a single activity
 Task is what you get when you run it as multiple activities

 Message is used to do IPC between processes/tasks. Arbitrary size.
 Packet is a fragment of a message that might travel on the wire.

Variable size but limited, usually to 1400 bytes or less.
P t l i l ith b hi h t t d thi Protocol is an algorithm by which processes cooperate to do something
using message exchanges.

 Network is the infrastructure that links the computers, workstations,
terminals, servers, etc.
 It consists of routers
 They are connected by communication links

 Network application is one that fetches needed data from servers over
the network

 Distributed system is a more complex application designed to run on a
network. Such a system has multiple processes/tasks that cooperate
to do something.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

Network~“mostly reliable” Post Office

Why isn’t it totally reliable?

 Links can corrupt messages
 Rare in high quality ones on the Internet

“backbone”
 More common with wireless connections, cable

modems ADSLmodems, ADSL

 Routers can get overloaded
 When this happens they drop messages
 As we’ll see, this is very common

 But protocols that retransmit lost packets can
increase reliability

How do DSs differ from Network Appl.?

 DSs may have many components but are
often designed to mimic a single, non-
distributed process running at a single place.

 “State” is spread around in a DS State is spread around in a DS
 Networked application is free-standing and

centered around the user or computer where it
runs, e.g. your “web browser”

 A DS is spread out, decentralized, e.g. the “air
traffic control system”

What about the Web?

 Your web browser is independent: it fetches the data
you have requested when you have asked for it.

 Web servers don’t keep track of who is using them.
Each request is self-contained and treated
independently of all othersindependently of all others.
 Cookies don’t count: they sit on your machine

 And the database of account info doesn’t count either… this is
“ancient” history, nothing recent

 Web has 2 network applications that talk to each other
1. The browser on your machine

2. The web server it happens to connect with… which has a
database “behind” it

What about the Web?

Cookie identifies this
user, encodes past

preferences

Database
Web browser with

stashed cookies

preferences

HTTP request

Web servers are kept current by the
database but usually don’t talk to it

when your request comes in

What about the Web?

Web servers immediately
forget the interaction

Reply updates cookie

What about the Web?

Web servers have no
memory of the interaction

Purchase is a “transaction”
on the database

What about the Web?

 But… the data center that serves your
request may be a complex DS
 Many servers and perhaps multiple physical sites

 Opinions about which clients should talk to which
servers

 Data replicated for load balancing and high
availability

 Complex security and administration policies

 So: we have a “networked application” talking
to a DS

Other Examples of DSs

 Air traffic control system with workstations
for the controllers

 Banking/brokerage trading system that
coordinates trading (risk management) atcoordinates trading (risk management) at
multiple locations

 Factory floor control system that monitors
devices and reschedules work as they go
on/offline

Is the Web “reliable”?

 We want to build DSs that can be relied upon to do
the correct thing and to provide services according to
the user’s expectations

 Not all systems need reliability
If a web site doesn’t respond you just try again later If a web site doesn t respond, you just try again later

 If you end up with two wheels of brie, well, throw a party!

 Reliability is a growing requirement in “critical”
settings but these remain a small percentage of the
overall market for networked computers

 And as we’ve mentioned, it entails satisfying multiple
properties…

Reliability is a Broad Term (1)

 Fault-Tolerance: remains correct despite failures

 High or continuous availability: resumes service after
failures, doesn’t wait for repairs

 Performance: provides desired responsivenessp p

 Recoverability: can restart failed components

 Consistency: coordinates actions by multiple
components, so they mimic a single one

 Security: authenticates access to data, services

 Privacy: protects identity, locations of users

Reliability (2)

 Correct specification: the assurance that the system solves the
intended problem

 Correct implementation: the assurance that the system correctly
implements its specification

 Predictable performance: the guarantee that a DS achieves
desired levels of performance, e.g. data throughput from source
to destination, latencies measured for critical paths, requests
processed per second, etc.

 Timeliness: in systems subject to real-time constraints, the
assurance that actions are taken within the specified time
bounds, or are performed with a desired degree of temporal
synchronization between components

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

“Failure” also has Many Meanings

 Halting failures: component simply stops

 Fail-stop: halting failures with notifications

 Omission failures: failure with send/receive
messagemessage

 Network failures: network link breaks

 Network partition: network fragments into two or
more disjoint sub-networks

 Timing failures: action early/late; clock fails, etc.

 Byzantine failures: arbitrary malicious behavior

Examples of Failures

 My PC suddenly freezes up while running a text
processing program. No severe damage is done.
This is a halting failure

 A network file server tells its clients that it is A network file server tells its clients that it is
about to shut down, then goes offline. This is a
fail-stop failure. (The notification can be trusted)

 An intruder hacks the network and replaces some
parts with fakes. This is a Byzantine failure.

Technology Trends

400
500
600
700

CPU MIPS
Memory MB

Did the sudden growth in
in LAN speed give us the

Web?

Source: Scientific American, Sept. 1995

0
100
200
300
400

1985-
1990

1990-
1995

1995-
2000

2000-
2005

LAN Mbits
WAN Mbits
O/S overhead

Typical Latencies (milliseconds)

10

100

1000 Disk I/O

Ethernet
RPC

WAN, disk latencies are fairly
constant due to physical limitations

0,01

0,1

1

19
85

-19
90

19
90

-19
95

19
95

-20
00

20
00

-20
05

RPC
ATM
roundtrip
WAN
roundtrip

Note dramatic drop in LAN latencies over ATM:
This is the HW used in telephone systems

OS Latency: Expensive overhead on LAN

Reliability versus Performance

 Some think that more reliable means “slower”
 Indeed, it usually costs time to overcome failure
 For example, if a packet is lost, you probably need to resend

it, and may need to solicit the retransmission

B t f li ti f i bi t But for many applications, performance is a big part
of the application itself: too slow means “not reliable”

 Reliable systems thus must look for highest possible
performance

 ... but unlike unreliable systems, they can’t cut
corners in ways that make them flakey but faster

Discovery

 Consider the problem of discovering the right
server to connect with
 Your computer needs current map data for some

place, perhaps an amusement park
 Can think of it in terms of layers – the basic park layout,

overlaid with extra data from various services, such as
“length of the line for the Cyclone Coaster” or “options
for vegetarian dining near here”

Why is Discovery hard?

 Client has opinions
 You happen to like vegetarian food, but not spicy

food. So your search is partly controlled by client
goals

B i i i h h l i l But a given service might have multiple servers
(e.g. Amazon might have data centers in Europe
and in the US…) and may want your request to go
to a particular one

 Once we find the server name we need to map it
to an IP address

 And the Internet itself has routing “opinions” too

Other Things we might need

 Standard ways to handle
 Reliability, in all the senses we listed

 Life cycle management
 Automated startup of services, if someone asks for one

d it i ’t i b k tand it isn’t running; backup; etc…

 Automated migration and load-balancing, monitoring,
parameter adaptation, self-diagnosis and repair…

 Tools for integrating legacy applications with new,
modern ones

Concept of a Middleware Platform

 These are big software systems that automate many
aspects of application management and development

 In this course we will not discuss in detail
 CORBA: a stable and slightly outmoded platform focused on g y p

“objects”
 Web Services: the hot new “service oriented architecture”

 However, we want to find conceptual solutions,
useful for applications as well as middleware
applications

Layers: Modern Perspective
End-user applications

Built over and with…

Middleware platform

Internet and Web Standards (TCP, XML, etc)

Built over and with…

For Example

 Imagine a banking system with many programs,
one at each branch

 And suppose that only some can talk to others
d t fi ll d th t i tidue to firewalls and other restrictions, e.g.
 A can talk to B, B can talk to C, but A can’t talk to C

How to handle this?

 In the distant past, people cooked up all sorts
of weird hacks

 Today, a standard approach is to build a
ti lrouting layer

 Inside the application, it would automatically
forward messages towards their destinations

 Thus A can talk to C (via B)

Once we have this…

 Now we can split our brains, in a good way:
 Above this routing layer, we write code as if

routing from anyone to anyone was automatic

 Inside the routing layer, we implement this Inside the routing layer, we implement this
functionality

 Below the routing layer we just do point-to-point
messaging where the bank permits it and we
never end up trying to send messages over links
not available to us

This Layering looks elegant!

 It lets us focus attention on issues in one
place and simplifies code as a result

 Also helpful when debugging…

 Platform architectures simply take the same
approach further

Inherent Characteristics of DSInherent Characteristics of DS

32© 2009 Universität Karlsruhe (TH), Systemarchitektur

Physical Distribution
Logical Distribution
Sharing of Resources
Heterogeneity
Real Parallelism
Failure Tolerance
Layered Software

Physical Distribution

 HW distribution (devices, computers)
 “Network” of autonomous computers

 Geographic distribution matches physical world

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

 Interconnected via
 physical communication links, e.g.

 Fiber optic

 (fast) Ethernet

 wireless interconnection, e.g. WLAN

Physical Distribution

 SW distribution:
 Tasks or processes with specific services enabling

 Decentralized computing
 Can reduce turnaround times

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 34

 Shared “expensive” resources

 Improved availability of whole DS

 Information/Data
 Distributed data base

 Replication enabling worldwide collaboration

Sharing Resources

 Sharing often done without clients’ knowledge
 sharing printer hidden by a spooler
 sharing files and/or directories hidden by the FS

 Why sharing?
 To reduce cost for HW resources

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

 To reduce cost for HW resources
 High quality printer
 High quality scanner
 …

 How to design sharing?
 Dependent on

 Range of validity
 Intensity of collaboration
 … others?

Sharing Services

 Service := software component that manages a
set of related resources and offers a set of
hopefully comfortable functions

 File service: store and retrieve persistently stored,
named data containers

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

named data containers

 Print service: print documents, photos etc.

 E-Commerce: sell or buy products via Internet
 amazon

 ebay

 …

Clients & Servers

 Client := user/process/task requesting a service
 Server := process/task on one or multiple machines

offering a specific service, e.g. file service

How do clients and servers typically interact?

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

 Clients synchronously request something via a
 Remote procedure call (RPC) or
 Remote method invocation (RMI) or
 “Internode”-IPC

 Typical client/server application
 Web browser
 Web server

Heterogeneity

 Heterogeneous HW & SW
 Networks

 Type of connection
 Technology
 Topography

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

 Processors
 Data representation
 32-bit, 64-bit
 Instruction Set

 OS
 API & execution environment
 Linux, Vista, …

Real Parallelism

 Concurrency occurs on different levels
 Multiple clients use a file server concurrently

 A file-server can be multi-threaded

 Increased synchronization requirement

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 39

 To solve concurrency problems in DS we need
 either a single instance with a

 centralized algorithm

 global state

 or distributed instances with a
 distributed algorithm

 set of local states

bottleneck
single point of failure

consistency problem

Failures & Failure Handling

 failures in (almost) all technical systems

 In DS we have to face different failure types, e.g.
 Partial failures

 some nodes still work whilst others are down

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

 Transient failures

 Handling of failures:

 detect, mask, tolerate

 recover after failures

 avoid, by providing enough redundancy

Detection of Failure

 Some failures are detectable, e.g.
 via checksums (integrity of data)
 sequence numbers (missing messages)

 Others are not (e.g. server-breakdown)

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

(g)
 How long do you wait until you assume that your

favorite server is down?

 Can you improve your client-server protocol a little bit?

Challenge:
 Learn to handle or live with undetectable, but

assumed failures

Masking & Tolerance of Failures

 Some detectable failures can be masked, i.e.
the application has not to deal with

 Lost message just resend it at a lower layer
 How to decide that a message has been lost?

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

 How to decide that a message has been lost?

 Lost file take the file object from a replicated
file server

 Failures, that cannot be masked should be
reported to the application distributed
applications must be aware of error reports

Recovery

 Node break downs or losses of components often
show typical error symptoms:
 Computations are incomplete
 Permanent data stay inconsistent
 No periodic alive messages

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

 Two types or failures
 Transient failures

 Reinstall a consistent system state, e.g. via checkpoints,
forward/backward recovery, transaction models

 Permanent failures
 Replace or repair the incorrect component

 Recovery has to be taken into account already in the
design phase of a DS

Uncertainty Principle

 At the same instance of time two processes in a DS do
not always have the same view of the system’s state

 Typically a process in a DS has either
 an incomplete system state or it has

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

 an incomplete system state or it has
 a complete, but potentially outdated system state

 Due to the lack of a global physical time, it is hard to
determine, if two events occur at the same time, thus
we need algorithms that deliver a consistent snapshot
of the DS

DS Goals & ChallengesDS Goals & Challenges

Goals

45© 2009 Universität Karlsruhe (TH), Systemarchitektur

Transparency
Openness
Flexibility
Scalability
Security
Reliability
Performance

Transparency Description: … hides …

Access differences in data representation & resource access

Location where a resource is located

Migration that a resource (object) moves to another location

Distribution Transparency

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Different forms of transparency in a DS

Migration that a resource (object) moves to another location

Relocation that a resource is moved to another location

Replication that a resource is located at multiple nodes

Concurrency that a resource is shared by several competing users

Failure that failure and recovery of a resource might occur

Scaling the reconfiguration of the system with growing load

Degree of Transparency

 High degree of transparency is often preferable

 However, sometimes drawbacks:
 In a WAN you cannot hide latency completely due to

many intermediate routers & switches

f

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

 You want to decide how often a Web browser tries to
contact a broken Web server before switching to another
replicated web server

 In a DS that requires a high degree of consistent replicas,
updates on replicated data will take some time

 An employee of Siemens (Munich) that wants to print a
document prefers an overloaded printer nearby to a lazy
printer at Siemens (Nuremberg)

Openness

 In standard networks, specific rules are formalized
as network protocols

 Standardized interfaces and mechanisms
 Message types

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

g yp

 Interface definition language (IDL)

 Proper and complete specification
 Interoperability

 Portability

 Maintenance

Flexibility & Adaptability

 To achieve flexibility in an open DS use a
component based system architecture
 Add new system components (on the fly!)

 Update or replace old ones

 Install different versions of a system component to be

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

sta d e e t e s o s o a syste co po e t to be
adaptable

 Clean interfaces not restricted to top-most layer
enabling better adaptability, e.g.
 Clients of a web browser want to determine their private

caching policy
 How long should data be cached depending on

 Data type

 Session time …

Scalability
 Performance does not decrease significantly with more

and/or newer nodes in the DS
 consequence for a system architect:

 AvoidAvoid any form of a centralized approach unless you
cannot provide efficient distributed substitutes

C l i h b b l k

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 50

 Central resources might become a bottleneck:
 Components (single server)
 Tables (directories in DFS)
 Algorithms (deadlock detection)

Jochen Liedtke’s remarks:
 Symmetric systems tend to be scalable
 Simple, yet elegant systems tend to be efficient

Design Rules improving Scalability

1. Do not require any node within the DS to hold the
complete system state

2. Allow nodes to make decisions based only upon
local information

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

local information

3. Design algorithms that can survive failures of
individual nodes

4. Make no assumptions about a global clock

Additional Scalability Problems

 DS designed for LANs often use synchronous IPC
 Delays due to message transfer ~ 100 µsec
 LAN is reliable & with efficient broadcast

 In global DS no efficient synchronous IPC

Scaling Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 52

 Delays due to message transfer ~ 100 msec
 WAN is unreliable & point-to-point

 Example: Locate a server in a network
 LAN: broadcast a server lookup, collect all positive replies,

take the best fitting one
 WAN: broadcasting is too inefficient (see Internet with its

billion users)

Techniques for Scalability (1)

FIRST NAME
LAST NAME
E-MAIL

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

G
E

R
D

Check form Process form

client server

client server

Scaling Techniques

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

FIRST NAME
LAST NAME
E-MAIL

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

Check form Process form

 Difference between having the server or the client check
whether the form has been filled completely …

 Security check done on the server side

Techniques for Scalability (2)

Scaling Techniques

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

 Dividing the DNS name space into disjoint zones,
domains in order to achieve improved performance

Further Techniques for Scalability

 Replication
 Web servers are replicated

 URLs contain the name of the corresponding replicated
server

 Replication is planned by server administration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

 Replication is planned by server administration

 Caching
 Local copy of a webpage at the client’s site

 Caching happens on demand & client can specify when
content is outdated

 Both techniques can lead to consistency problems

Security

Challenge: face intelligent, malicious attackers
all around the world

What has to be done?

 Maintain integrity of state

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 56

 Maintain integrity of state

 Maintain privacy of data

 Prevent unauthorized use of services

 Maintain availability of services, i.e.
implement robust systems

see other courses

Security (2)

Guiding principles:
 Design for security from the very first start

 Separate security policies from mechanisms

U t th ti ti d ti

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

 Use strong authentication and encryption

 Provide tight resource management

 Install a small trusted computing base (TCB)

 Rely on diversity

Ann N. Sovarel et al.: “Where’s the FEEB? The Effectiveness of Instruction Set
Randomization”

Reliability

 DS should improve availability (= fraction of
time during which the system is usable)
 Ideally: Boolean OR of component availabilities
 Worst case: Boolean AND

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

 Main techniques:
 Avoid simultaneous failure of critical components
 HW/SW-redundancy complicates consistency
 Avoid single points of failure whenever

possible

Whenever we present a solution, check its reliability

Reliability (2)

Fault tolerance: recover properly from failures
 Minimize loss of data and state
 Minimize impact on running applications
 Retain the system’s consistency

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 59

y y

In DS, fault tolerance is more complex due to
 Partial failure (distributed state)
 Both network and node failure
 Complex failure modes (Byzantine)

Performance

 High performance in a DS is not that easy

 Other requirements can conflict with, e.g.

 Transparency
Extra overhead needed

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 60

 Extra overhead needed

 Self Management & Migration
 Additional delay can occur (not occurred yesterday)

 Reliability
 Send additional messages to replicated server

 Install alive messages

User’s Performance Requirements

 Response time:
Users need fast, predictable responses,
 as few components as possible
 whenever possible, local IPC
 exchange only necessary information

h h

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 61

 Throughput:
Number of completed applications/time-unit
 the weakest system component dominates throughput
 prepare DS for future extensions

 Load balancing:
Automatically migrate load to nodes that
 are currently free or
 do less important work

Quality of Service

 If the functionality of a service is provided
how to guarantee its quality of service?

 Tackle the following problems:

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 62

 Performance

 Reliability

 Security
 e.g. no DOS (Denial Of Service) attacks

 Latency … and other real-time requirements

Replication and Caching

When replication or caching is used:

How to guarantee that users get the new(est) version
in case of proxy or client caching?

 1. approach:

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 63

 1. approach:
Whenever the server is updated, invalidate all caches,
e.g. you have to know them, i.e. some kind of a
statefull server

 2. approach:
Estimate, when cached information might be outdated
 you cannot always expect “up to date” data

Dependability1

Dependability includes:

 Correctness:
 DS should act as specified

S it

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 64

 Security:
 what location inside DS is the best protected one

 Failure tolerance:
 describe how system still runs in case of failures

1 Dependability = Verlässlichkeit

Typical DS Design Pitfalls1

False assumptions made by novice DS developers:

 Network is reliable

 Network is secure

 Network is homogeneous

 Topology does not change

Pitfalls

© 2009 Universität Karlsruhe (TH), Systemarchitektur 65

 Topology does not change

 Latency is zero

 Bandwidth is infinite

 Transport cost is zero

 Only one administrator

1 According to L. Peter Deutsch

Read: http://devlinux.org/deutsch-interview.html

Types of DSTypes of DS

66© 2009 Universität Karlsruhe (TH), Systemarchitektur

Distributed Computing Systems

Distributed Information Systems

Distributed Pervasive Systems

Cluster Computing Systems

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 67

 Example of a cluster computing system

 Clusters tend to be homogeneous (HW & SW)

Grid Computing Systems

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 68

 Layered architecture for grid computing systems
(see: Foster et al: The Anatomy of the Grid, enabling
Scalable Virtual Organizations)

Grid Middleware

Transaction Processing Systems (1)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 69

 Example primitives for transactions

Transaction Processing Systems (2)

Characteristic properties of transactions:

 Atomic: To the outside world, the transaction
happens indivisibly

Consistent: The transaction does not violate

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 70

 Consistent: The transaction does not violate
system invariants.

 Isolated: Concurrent transactions do not
interfere with each other.

 Durable: Once a transaction commits, the
changes are permanent.

Transaction Processing Systems (3)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 71

 Simple example of a nested transaction

Transaction Processing Systems (4)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 72

 Role of a TP monitor in DSs

Enterprise Application Integration

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 73

 Middleware as a communication facilitator in enterprise
application integration

Distributed Pervasive Systems

Additional requirements for pervasive DS

 Embrace contextual changes
 Mobile & embedded small computing devices

B tt d l i l ti

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 74

 Battery powered, only wireless connection

 Need to discover their environment

 Encourage ad hoc composition

 Recognize sharing as the default

Home Systems

 Home networks with
 PCs, TV, video, game boys, …

 Smart phones, PDAs

 Kitchen ~ or cleaning robots, …

 Surveillance camera

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 75

Surveillance camera

 Control units for lights, sun protection, …

 Need for self configuration & management
 See Universal Plug and Play standard (UPnP)

 How to update without manual intervention

 Personal space supported by recommenders

Electronic Health Care Systems (1)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 76

 Monitoring a person in a pervasive electronic health care system,
using
 (a) a local hub collecting data that are offloaded from time to time to

a larger storage device (hub can also manage the BAN)

 (b) a continuous wireless connection, BAN is hooked up to an external
network

(BAN)

Electronic Health Care Systems (2)

Prevent people from being hospitalized, yet still monitored

Personal HCS are often body-area network (BAN)

Problems of health care systems:

 Where and how should monitored data be stored?

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 77

 How can we prevent loss of crucial data?

 What infrastructure is needed to generate & propagate alerts?

 How can physicians provide online feedback?

 How can you install robustness of the monitoring system?

 What are security issues & how can proper policies be enforced?

Sensor Networks (1)

Questions concerning sensor networks:

 How do we (dynamically) set up an efficient tree
in a sensor network?

 How does aggregation of results take place? Can

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 78

 How does aggregation of results take place? Can
it be controlled?

 What happens when network links fail?

 How can we increase the lifetime of the sensors
whilst deceasing their energy amount?

Sensor Networks (2)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 79

 Organizing a sensor network database, while storing and
processing data (a) only at the operator’s site or …

Sensor Networks (3)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 80

 Organizing a sensor network database, while storing
and processing data … or (b) only at the sensors.

