
Distributed SystemsDistributed Systems

17 DSM Examples17 DSM Examples

1© 2009 Universität Karlsruhe, System Architecture Group

July-22-2009
Gerd Liefländer

System Architecture Group

CaseCase StudiesStudies

IVY at Yale University
Mirage
Clouds
Munin
Mether

TreadMarks as separate PDF File

2© 2009 Universität Karlsruhe, System Architecture Group

Example DSM

 HW-SMPs
 DASH or PLUS NUMA architectures

 Paged virtual DSM
 Ivy 89
 Munin 91

Mi 89

Introduction

O f i

© 2009 Universität Karlsruhe, System Architecture Group 3

 Mirage 89
 Clouds 91
 Choices 90
 COOL 93
 Mether 89

 Middleware
 Orca 90
 TSpaces 98
 Linda 89

Our focus, i.e.
DSM ~ distributed virtual memory

Sequential Consistency in Ivy

 This model is page-based. A single segment is
shared between programs.

 The computers are equipped with a paged memory
management unit.

4

 The DSM restricts data access permissions
temporarily in order to maintain sequential
consistency.

 Permissions can be none, read-only, or read-write.

© 2009 Universität Karlsruhe, System Architecture Group

Sequential Consistency and Ivy

 If a program tries to do more than it has permission
for, a page fault occurs and the program is blocked
until the page fault is resolved

 Since this DSM is page-based, write-update is only

5

p g , p y
used if writes can be buffered

 Otherwise several consecutive updates to the same
memory location or adjacent memory locations would
result in several multicasts of the same page being
updated

© 2009 Universität Karlsruhe, System Architecture Group

System Model for Page-based DSM

Process accessing
paged DSM segment

6

Kernel

Pages transferred over network

Kernel redirects
page faults to
user-level
handler

© 2009 Universität Karlsruhe, System Architecture Group

Sequential consistency in Ivy

 If writes cannot be buffered, write-invalidate is used

 The invalidation message acts as requesting a lock
on the data

When one program is updating the data it has read

7

 When one program is updating the data it has read-
write permissions and everyone else has no
permissions on that page

 At all other times, all have read-only access to the
page

© 2009 Universität Karlsruhe, System Architecture Group

State Transitions w. Write-Invalidation

Single writer Multiple reader

R
PW writes;
none read

PR1, PR2,..PRn read;
none write

8

W
(invalidation)

RW
(invalidation)

Note: R = read fault occurs; W = write fault occurs.

© 2009 Universität Karlsruhe, System Architecture Group

Ivy: State transitions

 When a program tries to write to a page for which it
does not have read-write permission, a page fault
occurs.

 An invalidate message is sent to all other programs.

9

 This sets the page permissions for those programs
to none, and then the DSM system sets the page
permissions for the writing program to read-write and
unblocks it from the page fault.

 Two programs might request write access at close to
the same time.

© 2009 Universität Karlsruhe, System Architecture Group

Ivy: State transitions

 If a program attempts to read a page it does not
have permissions for a page fault occurs.

 The DSM system (on behalf of the reading program)
will send a message (with the latest sequence
number of its copy of the page) to the owner of the

10

page.
 If the page owner determines the reader’s sequence

number does not match its sequence number of the
page, it sends the whole page to the reader.

 It will then grant read access to the page. If the
current page owner determines it does not need to
access the page soon, it may transfer ownership to
another program.

© 2009 Universität Karlsruhe, System Architecture Group

Coordinator w. Associated Messages
Current ownerFaulting process

3. Page

11

Page Owner
no.

Central
Coordinator

1. page no., access (R/W) 2. requestor, page no., access

.........

© 2009 Universität Karlsruhe, System Architecture Group

Ivy: Invalidation Protocol

 A program must know who is the owner of the page
that it needs. For this, they contact the coordinator.

 The coordinator may be just another program in the
DSM system, or it may be a separate server.

When a page fault occurs due to inappropriate

12

 When a page fault occurs due to inappropriate
permissions, the message requesting access is
actually sent to the coordinator.

 The coordinator determines the page owner and
forwards the message requesting access to the page
owner. If the request is for a write page fault, the
page ownership is transferred by the coordinator to
the requester.

© 2009 Universität Karlsruhe, System Architecture Group

Ivy : Invalidation protocol

 For a write fault, the page’s previous owner
sends the page and the page’s copy set to
the new owner.

 The new owner performs the invalidation
h it i th d t it

13

when it receives the page and copy set – it
sends the invalidation message to the
members of the copy set (excluding the
previous owner who invalidate itself), thus
revoking their read access to no access.

© 2009 Universität Karlsruhe, System Architecture Group

Ivy: Invalidation protocol

 The coodinator may become a performance
bottleneck. There are a few alternatives:

 A fixed distributed page management where one
program will manage a set of pages for its lifetime
(even if it does not own them).

14

()

 A multicast-based management where the owner of a
page manages it, read and write requests are
multicast, only the owner answers.

 A dynamic distributed system where each program
keeps a set of the probable owner(s) of each page.

© 2009 Universität Karlsruhe, System Architecture Group

Updating probOwner pointers

B C D E

O nerO

15

A

OwnerOwner

(a) probOwner pointers just before process A takes a page fault for a page owned by E

© 2009 Universität Karlsruhe, System Architecture Group

Ivy: Dynamic distributed manager

 Initially each program receives each pages owner
and populates its probable ownership table.

 When an owner transfers ownership, it will update its
own probable ownership table with the new owner.
(This guarantees at least 2 programs know the

16

(This guarantees at least 2 programs know the
correct owner.)

 When a program receives an invalidation message for
a page, it updates its table to list the sender of that
message as the owner.

© 2009 Universität Karlsruhe, System Architecture Group

 When a program requests access to a page, it sends
the request to whoever is listed in its probable owner
table. When it receives the page, it will update its
probable owner table with the sender of the page.

 If a program that receives a request for access does

Ivy: Dynamic distributed manager

17

 If a program that receives a request for access does
not own the page, it will forward the request to
whoever is listed for the page in its probable owner
table. It will then update its probable owner table to
list the requester.

 Even if the requester does not become the new
owner, it is about to find out who the correct owner
is. By doing this the number of hops that a request
can take before reaching the correct owner is limited.

© 2009 Universität Karlsruhe, System Architecture Group

Updating probOwner pointers

B C D E

Owner

18

(b) Write fault: probOwner pointers after A's write request is forwarded

AOwner

© 2009 Universität Karlsruhe, System Architecture Group

Updating probOwner pointers

B C D E

OwnerOwner

19

(c) Read fault: probOwner pointers after A's read request is forwarded

A

Owner

© 2009 Universität Karlsruhe, System Architecture Group

Release Consistency and Munin

 Release consistency is weaker than sequential
consistency, but cheaper to implement.

 Release consistency reduces overhead. It relies on
the fact that programmers can use semaphores,

20

p g p ,
locks, and barriers to achieve enough consistency the
system may need.

© 2009 Universität Karlsruhe, System Architecture Group

Munin: Memory accesses

 Types of memory accesses:
 Competing accesses

 They may occur concurrently – there is no enforced
ordering between them.

21

 At least one is a write

 Non-competing or ordinary accesses
 All read-only access, or enforced ordering

© 2009 Universität Karlsruhe, System Architecture Group

Munin: Memory accesses

 Competing memory accesses are divided into
two categories:
 Synchronization accesses are concurrent and

contribute to synchronization. Examples include

22

y p
releasing a lock or a test-and-set operation.

 Non-synchronization accesses are concurrent but
do not contribute to synchronization.

© 2009 Universität Karlsruhe, System Architecture Group

Timeline in a DSM with read or write

23

P issues o

o performed with respect to P’ at time t

o performed (complete)

Real time

© 2009 Universität Karlsruhe, System Architecture Group

Timeline for performing a DSM read or write operation

Release Consistency

Requirements
 To achieve release consistency, the system must:

 Preserve synchronization with locks, etc.
 Gain performance by allowing asynchronous

24

p y g y
memory operations.

 Limit the overlap between memory operations.
 One must acquire appropriate permissions before

performing memory operations.
 All memory operations must be performed before

releasing memory.
 Acquiring permissions and releasing memory

© 2009 Universität Karlsruhe, System Architecture Group

Munin

 Munin forces programmers to use acquireLock,
releaseLock, and waitAtBarrier.

 Munin allows programmers to mark the way data is
shared. Munin optimizes DSM based on this.

These marks can also pair locks and data which

25

 These marks can also pair locks and data, which
guarantees the user has the data before accessing it.

 Munin sends updates/invalidations when locks are
released. An alternative has the update/invalidation
sent when the lock is next acquired

© 2009 Universität Karlsruhe, System Architecture Group

Processes executing on a release-
consistent DSM
Process 1:

acquireLock(); // enter critical section
a := a + 1;
b := b + 1;
releaseLock(); // leave critical section

26

releaseLock(); // leave critical section

Process 2:
acquireLock(); // enter critical section
print ("The values of a and b are: ", a, b);
releaseLock(); // leave critical section

© 2009 Universität Karlsruhe, System Architecture Group

Munin: Sharing Annotations

 The following are options with Munin on the data
item level:

 Using write-update or write-invalidate.

 Whether several copies of data may exist.

27

 Whether to send updates/invalidate immediately.

 Whether a data has a fixed owner, and whether that data
can be modified by several at once.

 Whether the data can be modified at all.

 Whether the data is shared by a fixed set of programs.

© 2009 Universität Karlsruhe, System Architecture Group

Munin : Standard Annotations
 Read-only : Initialized, but not allow to be updated.

 Migratory : Programs access a particular data item in turn.

 Write-shared : Programs access the same data item, but write
to different parts of the data item.

Producer consumer : One program write to the data item A

28

 Producer-consumer : One program write to the data item. A
fixed set of programs read it.

 Reduction : The data is always locked, read, updated, and
unlocked

 Result : Several programs write to different parts of one data
item. One program reads it.

 Conventional : Data is managed using write-invalidate.

© 2009 Universität Karlsruhe, System Architecture Group

Other Consistency Models

 Casual consistency – The happened-before
relationship can be applied to read and write
operations.

 Pipelining RAM Programs apply write

29

 Pipelining RAM – Programs apply write
operations through pipelining.

 Processor consistency - Pipelining RAM plus
memory coherent.

© 2009 Universität Karlsruhe, System Architecture Group

Other Consistency Models

 Entry consistency – Every shared data item is
paired with a synchronization object.

 Scope consistency – Locks are applied
automatically to data objects instead of

30

automatically to data objects instead of
relying on programmers to apply locks.

 Weak consistency – Guarantees that previous
read and write operations complete before
acquire or release operations.

© 2009 Universität Karlsruhe, System Architecture Group

Mether System Program -
#include "world.h"
struct shared { int a,b; };

Program Writer:
main()
{

struct shared *p;

© 2009 Universität Karlsruhe, System Architecture Group 31

struct shared p;
methersetup(); /* Initialize Mether run-time */
p = (struct shared *)METHERBASE;

/* overlay structure on METHER segment */
p->a = p->b = 0; /* initialize fields to zero */
while(TRUE){ /* update structure fields */

p –>a = p –>a + 1;
p –>b = p –>b - 1;

}
} Continued on next slide...

Mether System Program

Program Reader:
main()
{

struct shared *p;
methersetup();

© 2009 Universität Karlsruhe, System Architecture Group 32

p = (struct shared *)METHERBASE;
while(TRUE) {

/* read the fields once every second */
printf("a = %d, b = %d\n", p –>a, p –>b);
sleep(1);

}
}

Literature
 B. Bershad et al: “The Midway DSM System, IEEE 1993

 N. Carreiro, D. Gelernter: “The S/Net’s Linda Kernel”, ACM
Trans. On Comp. Sys., 1986

 J. Cordsen: “Virtueller gemeinsamer Speicher”, PhD TU
Berlin, 1996

© 2009 Universität Karlsruhe, System Architecture Group 33

 M. Dubois et al.: “Synchronization, Coherence and Event
Ordering in Multiprocessors”, IEEE Computer, 1988

 K. Li: “Shared Virtual Memory on Loosley Coupled
Multiprocessors”, PhD Yale, 1986

 D. Mosberger: “Memory Consistency Models”, Tech.
Report, Uni. Of Arizona, 1993

 B. Nitzberg: “DSM: A Survey of Issues and Algorithms”,
IEEE Comp. Magazine, 1993

Appendix:Appendix:
Review Consistency ModelsReview Consistency Models

34© 2009 Universität Karlsruhe, System Architecture Group

Another Notation
See Colouris et al

Processes Accessing Shared Data

a := a + 1;
b := b + 1;

br := b;
ar := a;
if(ar ≥ br) then

print ("OK");

Process 1 Process 2

© 2009 Universität Karlsruhe, System Architecture Group 35

 a & b are initialized with 0
 Suppose, process 2 runs first, then process 1

 We expect that process1 always prints OK

 However, the update propagation of the DSM might send the
updates to process1 in reverse order, i.e. ar = k, but br =k+1

Interleaved Operations

br := b;
ar := a;
if(ar ≥ br) then

i t ("OK")

Time
Process 1

Process 2

a := a + 1;
b := b + 1;

read

© 2009 Universität Karlsruhe, System Architecture Group 36

print ("OK"); write

 Allowed interleaving with sequential consistency

Strict Consistency
 Wi(x, a): Processor i writes a on variable x.
 bRi(x): Processor i reads b from variable x.
 Any read on x must return the value of the most

recent write on x.
Strict Consistency NotStrict Consistency

© 2009 Universität Karlsruhe, System Architecture Group 37

Strict Consistency NotStrict Consistency

P1 P2 P3 P1 P2 P3

W2(x, a)

aR1(x)

aR3(x)

W2(x, a)

nilR1(x)

aR3(x)
aR1(x)

aR1(x)

Linear & Sequential Consistency
 Linear Consistency: Operations of each individual process

appear to all processes in the same order as they happen.
 Sequential Consistency: Operations of each individual

process appear in the same order to all processes.

Linear Consistency Sequential Consistency

© 2009 Universität Karlsruhe, System Architecture Group 38

Linear Consistency Sequential Consistency
P1 P2 P3

W2(x, a)

aR1(x)

bR1(x)

P4

aR4(x)

W3(x, b)

bR4(x)

P1 P2 P3

W2(x, a)

bR1(x)

aR1(x)

P4

bR4(x)

W3(x, b)

aR4(x)

FIFO and Processor Consistency

 FIFO Consistency: writes by a single process are visible to all
other processes in the order in which they were issued.

 Processor Consistency: FIFO Consistency + all write to the
same memory location must be visible in the same order.

FIFO Consistency Processor Consistency

© 2009 Universität Karlsruhe, System Architecture Group 39

FIFO Consistency Processor Consistency

P1 P2 P3

W2(x, b)

aR1(x)
0R1(x)

P1 P2 P3
W2(x, a)

W3(x, 1)
W3(x, 0)

W2(x, b)
W2(x, a)

W3(y, 1)
W3(y, 0)

P4 P4

1R1(x)

bR1(x)

aR1(x)
0R1(x)
bR1(x)

aR1(z)

W2(y, a) W3(z, a)

aR1(y)

1R1(x)

aR1(z) aR1(y)

W2(y, a)
W3(z, 1)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)
aR1(z)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)

aR1(z)

Causal Consistency

 Causally related writes must be visible to all processes in the same
order. Concurrent writes may be propagated in a different order.

Causal Consistency Not Causal Consistency
P1 P2 P3 P4 P3 P4

© 2009 Universität Karlsruhe, System Architecture Group 40

P1 P2 P3

bR4(x)
cR1(x)

P4 P1 P2 P3 P4
W2(x, a)

aR3(x)

W3(x, b)

bR1(x) cR4(x)

W2(x, c)

aR4(x)aR3(x)

aR1(x)

W2(x, a)

aR3(x)

W3(x, b)

bR1(x)

bR4(x)

aR4(x)

Weak Consistency
 Accesses to synchronization variables must obey sequential

consistency.
 All previous writes must be completed before an access to a

synchronization variable.
 All previous accesses to synchronization variables must be

completed before access to non-synchronization variable.

© 2009 Universität Karlsruhe, System Architecture Group 41

Weak Consistency Not Weak Consistency
P1 P2 P3 P1 P2 P3

W2(x, a)
W2(x, b)

W2(y, c)

S2
S1

S3

bR4(x)
cR4(y)

cR4(y)
bR4(x)

W2(x, a)

W2(x, b)
W2(y, c)

S2

S1
S3

aR4(x)
cR4(y)

bR4(x)
cR4(y)

aR4(x)
NilR4(y)

bR4(x)

Release Consistency
 Access to acquire and release variables obey processor

consistency.
 Previous acquires requested by a process must be completed

before the process performs a data access.
 All previous data accesses performed by a process must be

completed before the process performs a release

© 2009 Universität Karlsruhe, System Architecture Group 42

completed before the process performs a release.

P1 P2 P3

aR3(x)

Acq1(L)
W1(x, a)

W1(x, b)
Rel1(L)

Acq2(L)

Rel2(L)

bR2(x)

bR2(x)

