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Schedule of Today

 Motivation & Introduction
 Potential Problems with DSM
 Design of DSM

 Single versus Multiple Copy DSM
St t f DSM
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 Structure of DSM
 Synchronization Model
 Consistency Model
 Update Propagation

 Implementation of DSM
 Examples of DSM
 Literature
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See textbook Coulouris et al.: 
“Distributed Systems” Ch. 16 or 18
(depending on the edition)



Distributed Shared Memory

 Distributed Shared Memory (DSM) allows applications 
running on separate computers to share data or 
address ranges without the programmer having to 
deal with message passing

 Instead the underlying technology (HW or MW) will Instead the underlying technology (HW or MW) will 
send the messages to keep the DSM consistent (or 
relatively consistent) between computer nodes

 DSM allows applications that used to operate on the 
same computer to be easily adapted to operate on 
multiple computers
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What is a DSM?

 DSM is a special kind of a DDS, because this time 
main memory parts are distributed and shared

 Applications should see no difference between a local 
or remote memory access (except for further delays)

© 2009 Universität Karlsruhe, System Architecture Group 5

 Processes should see all writes by other processes 
(as fast as possible)

 DSM design and implementation must provide 
access transparency

 DSM is not suitable for all situations, e.g. client 
server applications



Motivation

Motivation
Why DSM? (compare: why shared memory in local systems?)

 Some programmers want one programming concept
for distributed applications without all this IPC stuff

What’s easier?

Sharing data no longer requires explicit IPC (even
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 Sharing data no longer requires explicit IPC (even 
though a DSM is based upon IPC)

 History has shown: Distributed applications based on 
application IPCs tend to have more program bugs 
and have larger code than DSM applications

 Shared memory was fastest collaboration in local 
systems, as long as there are only few conflicting 
operations



Why DSM?
 Better portability of distributed application programs

 Natural transition from sequential to distributed application

 Better performance of some applications
 Data locality, on-demand data movement, and larger RAMs 

reduce network traffic due to remote paging
 However, ping-pong paging due to false sharing etc. must
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 However, ping pong paging due to false sharing etc. must 
be avoided

 Flexible communication environment
 Sender and receiver must not know each other 
 No need that they do coexist at the same time

 Ease of process migration
 Migration is completed only by transferring the 

corresponding PCB (including its ASCB) to the destination



DSM Implementations

 Hardware 
 Mainly used by SMPs.  HW resolves LOAD and 

STORE commands by communicating with remote 
memory as well as local memory.

Paged virtual memory Paged virtual memory
 Pages of virtual memory get the same set of 

addresses for each program in the DSM system
 This only works for computers with common data 

and paging formats  
 This implementation does not put extra structure 

requirements on the program since it is just a 
series of bytes.
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DSM Implementations (2)

 Middleware
 DSM is provided by some languages and 

middleware without hardware or paging support
 For this implementation, the programming 

language, underlying system libraries, or 
middleware send the messages to keep the data 
synchronized between programs so that the 
programmer does not have to.

© 2009 Universität Karlsruhe, System Architecture Group 9



Typical Applications of DSM
 Multiple processes sharing 

 memory mapped files (already in MULTICS)
 large global data, e.g. matrices etc. in parallel 

numeric applications

 DSM has to track

Motivation
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 DSM has to track
 how many replicas currently exist and
 where the current replicas are mapped

 Some DSMs offer
 one copy of each read only page and of each 

read/write page 
 one copy of read/write page, but at least 

replicated read-only pages 



Efficiency of DSM 

 DSM systems can perform almost as well as 
equivalent message-passing programs for 
systems that run on N~ 10 or less nodes

Th f t th t ff t th There are many factors that affect the 
efficiency of a DSM, e.g.
 implementation

 design approach

 memory consistency model 
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Architecture of a DSM

Distributed Shared Memory Abstract Layer

Introduction
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physical
memory

Node 3
physical
memory local

memory
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Page Based DSM 
Introduction
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shared
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mapping
manager

mapping
manager
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distributed



Who is Sharing Memory in a DSM?

 A multi-threaded task of KLTs, whose KLTs have 
migrated to n>1 nodes of the DS
 Thread programmers know about the shared data and have 

to avoid write/write conflicts as usual using critical sections

 Challenge: we have to provide that each KLT can do its
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 Challenge: we have to provide that each KLT can do its 
read- & write operations on shared data without too much 
delay, i.e. the handling of a remote page fault should not 
take significantly more time than handling a local page fault

 Multi-process applications that have one or more 
data segments in common

 It is convenient when a programmer can specify how 
specific parts of his segments are implemented with 
respect to sharing



No Usage of DSM 

 Typical client/server system applications do not profit 
so much from DSM, because the clients often see the 
resources offered by a server as an abstract data 
type that can be used using RPC or RMI
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 Furthermore, a server is often not interested that a 
unknown (malicious) clients access its data, i.e. in 
this case sharing might be too dangerous due to 
security reasons



Basic Concept

CPU 1

CPU n
: Memory

CPU 1

CPU n
: Memory

CPU 1

CPU n
: Memory

Distributed Shared Memory
(exists only virtually)

Data = read(address); write(address, data);

address
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Communication Network

MMU
Page Mgr

Node 0

MMU
Page Mgr

Node 1

MMU
Page Mgr

Node 2

…

 Local pager must know the current location of an unmapped page 
 Local pager must know the location of a centralized super-pager 
responsible for the tracking of all page/frame locations of the DSM



Potential Problems with DSMPotential Problems with DSM
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Main Issues

 Memory coherence and access synchronization
 Strict, Sequential, Causal, Weak, and Release Consistency models  

 Data location and access
 Broadcasting, centralized data locator, fixed distributed data locator, 

and dynamic distributed data locator

 Replacement strategy
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p gy
 LRU or FIFO, and using secondary store or the memory space of other 

nodes (COMA)

 Thrashing (due to false sharing, i.e. ping-pong effect)
 How to prevent a block from being exchanged back and forth between 

two nodes over and over again



Granularity

Granularity = amount of data sent with each update
 If granularity is too small and a large amount of 

contiguous data is updated, the overhead of sending 
many small update-messages can reduce efficiency
 Fine (less false sharing but more network traffic, e.g. Fine (less false sharing but more network traffic, e.g. 

object in Orca & Linda)

 If granularity is too large, a whole page (or more) 
would be sent for an update to a single byte, thus 
reducing efficiency
 Coarse (more false sharing but less network traffic, e.g. 

page in Ivy)
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Granularity Problem 
Problems with DSM
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byte
...

variable object 0.5 KB  page  64 KB ..

Object O2

Object O3

1. False sharing

2. Thrashing (due to ping-pong) 
Object O1



Granularity in a Page-Based DSM

 Typical standard page size 4 KB might be too small to 
host a typical shared data object

 However, using super pages might not pay off
 Migrating a super page requires bandwidth and it might be 

difficult, to find a fitting memory hole for the super page
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 Furthermore, the larger the super page size the larger the 
potential internal fragmentation 

 In a DS there are some applications that might run 
faster when using smaller than 4KB pages

 A 4 KB page might contain too many different objects 
 false sharing, i.e. the ping-pong paging effect due 
to conflicting activities at different nodes



p1 p2

write(a,10)

Thrashing in Single Copy DSM 
Example:
 2 processes on different nodes sharing one page

Problems with DSM
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9a

( , )



p2

write(a,10)

Thrashing in Single Copy DSM

p1

Problems with DSM
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Instead of copying “10” from node 1 to
node 2 we migrate the complete page,
i.e. we handle a “remote page fault”

9a10a

migrate yellow page



p1 p2

write(a,10)
write(a,11)

Thrashing in Single Copy DSM
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 24

10

migrate yellow page back

a

( , )



p1 p2

write(a,10)
write(a,11)

Thrashing in a Single Copy DSM
Problems with DSM
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11a

( , )



p p

Example:
p1 only writes to object a, p2 only writes to object b, however, 
both objects are in the same mapping/migration unit (e.g. page).

Thrashing in Single Copy DSM
Problems with DSM
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p1 p2

write(a,10)

migrate page with a and b
for- and backwards

write(b,11)

95

Entities a and b may be 
completely independent



p1 p2

read(a)
write(a,11)

Example:
p1 reads a, p2 writes a, both nodes have replicas of a.

Thrashing in Multi Copy DSM
Problems with DSM
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( , )

9a

copy a from node2 to node1

9a’

What to do with the 
copy a’ on node 1?
It’s no longer valid!

11

Remark:
Before writing to a data item in a replicated page, we must invalidate 
all replicas
We must solve similar problems as with coherent caches in a SMP 



Data Items Laid out over Pages

A B

page n + 1page n

C
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p gpage n

 Danger of false sharing when process1 accesses data item A, 
and process2 accesses data item B concurrently

 Danger of two page faults in case of data item C is located on
two different pages



Design of DSMDesign of DSM
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Single Copy versus Multiple Copy DSM
Structure of DSM

Synchronization Model
Consistency Model

Update Options



Two DSM Principles

 Single copy, i.e. without replication
 If entity = page,  implement remote paging, 

i.e. instead of swapping to and from a local disk, 
swap via network or from a (local/)remote disk

Architecture of a DSM
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 Multiple copies, i.e. with replication 
 If entity = page, no problems with replicated 

read-only pages, but we must deal with 
reader/writer-problems

1. Single copy for read-write pages
2. N>1 copies of read-write pages with additional owner 

bit, i.e. we must enforce that all writes are done on all 
copies in the same order



Structure of DSM

 Byte oriented
 Access to a part of a byte-oriented DSM 

corresponds to an access to a virtual memory, e.g. 
Ivy & Mether

Object oriented
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 Object oriented
 DSM is a collection of objects
 Operations are the methods of the object type, 

e.g. Orca serializes automatically all methods of 
the same object 

 Constant data
 No updates, but new versions



Synchronization Model

 To enable synchronization on byte-oriented DSM or 
synchronized methods in object-oriented DSM we 
have to provide solutions enabling mutual exclusion

 Centralized lock manager
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 Token manager

 Distributed CS managers



Update PropagationUpdate Propagation
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Write-Update
Write-Invalidate



Write-Update

 Suppose a process has write permission for a page. It 
updates a “data item” on it locally

 Updates are propagated via multicast to all replicas that 
currently have a copy of this “data item”, i.e. the page
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 Replica-managers update the corresponding data items in 
order to allow as consistent reads as possible

 In practice you try to allow multiple writes to a page in a 
row by the same process, otherwise too much overhead

 Furthermore, if possible you just propagate the updates 
differences of the page to the other replicas



Example Write-Update

time

a := 7;
b := 7;

if(b=8) then
   print("after");

if(a=7) then

    b := b+1;
...

updates
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time

if(b=a) then
   print("before");

time



Implementing Sequential Consistency
Write Update

Client wants to write:

new copynew copy
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a copy of
block

block
a copy of

block

1. Request block

2. Replicate block

3. Update block
3. Update block

new copy new copy new copy



Write-Invalidate

 Before writing to a data item the process multicast an 
invalidation message to all replicas that currently host 
that data item, announcing the upcoming update 

 As long as the process is writing, all other processes  
accessing that data item will be “blocked”
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accessing that data item, will be “blocked”

 Updates are sent whenever a process wants to read 
a data item that had been invalidated in the past

 Reading valid local data items occurs with no delay



Implementing Sequential Consistency
Write Invalidation

Client wants to write:

new copynew copy
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a copy of
block

block
a copy of

block

1. Request block

2. Replicate block

3. Invalidate block
3. Invalidate block



Implement “Consistent” DSM Implement “Consistent” DSM 
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Single Copy DSM
Multiple Copy DSM



Implement a Single Copy DSM

 Page based virtual memory management

 MMU with page-based address transformation

 Shared memory segment(s), i.e. its(their) 

Implementing a DSM
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y g ( ), ( )
virtual address range(s) can be mapped at 
different nodes

 Page is never mapped to more than one node



Implement a Single Copy DSM

 Local access:
  mapped page with presence bit = set in the corresponding 

local page-frame table (PFT)
 Perform read/write accesses only to local RAM

Remote access:

Implementing a DSM
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 Remote access:
 Presence bit in local PFT is empty
 Remote access  page fault

 Pager gets page from remote node
 Set presence bit

 Repeat memory access

 DSM is coherent if
 Page transfer operations are atomic
 No node crashed occur



Simple Map Protocol in a DSM
Single Copy DSM
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Mapping Protocol in a DSM
Implementing a DSMDistributed System Models
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Mapping Protocol in a DSM
Implementing a DSMDistributed System Models
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Summary Single Copy DSM

 Linear consistency if we use a central coordinator 
sequencing all accesses, however poor performance

 No concurrent read access to the same page 
 Ping-Pong paging between nodes occurs too often, e.g.

especially if code of different threads is located on the same 
f d b d k
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page in case of a distributed task

 False Sharing
 2 data objects in the same page used by different activities
 Mutual page stealing when threads write to that page

 What can we do?
 Reducing the consistency requirements
 Implement multiple copy DSM to support concurrent reads



Multi Multi CopyCopy DSMDSM
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Linear Consistency?

 Each read should deliver the value of the 
latest write operation

 Problem
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 No synchronized exact global time
 No unambiguous sequence, if clock synchronization 

is too coarse, but we can achieve linear consistency

 We must resolve read/write and write/write 
conflicts between concurrent processes
 A memory access is far shorter than the minimal 

time deviation



~ Strict Consistent DSM?

 Use a Single Copy DSM (see slides before)
 Whenever a page is accessed, it first must 

migrate to the accessing node, but there are no 
read/write or write/write conflicts

 However, many additional page migrations, e.g. 
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with concurrent reads from the same page

 How to know where a page is currently located?
 Every node must know the current location of each 

mapped page or you use a central super pager
 Use a shadow page table
 Whenever the mapping of a page changes, you have 

to change the corresponding page tables at all 
involved nodes



~ Strict Consistent DSM?

 Where to migrate a page when there are 
concurrent accesses? 
 Need a consensus on the sequence of operations 

(easy with a central coordinator, otherwise 
additional overhead)
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)

 Real parallel operations only on different pages

 No distinction between read/write(RW) & read-
only(RO) pages, no support for concurrent reads 
from different RO-pages



Multi Copy DSM

 Assume: Non modifying code 

 Code pages are similar to Read-Only Pages, 
i.e. their content will never change 

 Once copied to the needed location, they can 
stay their until application has finished 
without any additional overhead

 Changes might only happen when a thread 
migrates to another location
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Multi Copy DSM

 In the following we focus on potentially shared read-
write data-pages
 To distinguish between READ-ONLY and READ-WRITE pages 

there is a permanent control-bit PRW per page

If PRW Bit 1 it t READ ONLY ill If PRW-Bit ==1, a write to a READ-ONLY page will cause an 
exception of type: address violation

 The very first time, a potentially READ-WRITE page is 
mapped, it is initiated with a „temporal“ control-bit 
TRW = 1, indicating that at the node where this page 
is mapped, each process/KLT can write to this page

 TRW == 0 means, that at the involved node no write 
access to P is temporarily allowed 
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Multi Copy Consistent DSM

 A remote read (to a non local page)  page fault 
 Copy page from current page owner, i.e. don’t delete page at 

owner’s RAM

 Prevent writes on both sides, set TRW=0, i.e. any new write 
page-fault exception

h d

Consistency Models
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 Whenever some node Lj tries to write to page P 
 Copy P from the replica with TRW == 1, which must be the 

one with the most recent writes
 Invalidate all replicas, i.e. delete their PFT entries & empty the 

corresponding mapped page-frame. 
 If there is no such replica with TRW==1 all replicas (also 

your local one) are identical and up to date

 Set local TRW = 1 and repeat your write operation at Lj



Multi Copy Consistent DSM
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Implement Consistent DSM
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Implement Consistent DSM
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Analysis of Linear Consistent DSM

Strict Consistent DSM

 How did we achieve ~strict consistency?

 Only one process/node can write to the same 
page at the same instant of time
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 Only works efficiently when writes are rare 
and multiple writes at one side are collected, 
otherwise ping-pong paging



Sequential Consistent DSM

 Problem
 No linkage between real time and operations

 Find some sequential ordering of the operations on all nodes

 Ordering might conflict with application, e.g. a process 
awaiting a certain value of a coordination variable
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 Implementation
 Write operations have to be visible in all processes in the 

same order

 Duration of a write

 Example: Forge the latest write in the next write

 Add an owner flag per PFT entry



Implement Sequential Consistent DSM

Sequential Consistent DSM
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5

2
3
4
5

RAM2

02 1

5
0
1
0
0

00

0

0

0

0

Readonly Bit

1
1
1
0

01

0
0
0
1

Owner Bit
 each node = owner of its 
4 present pages



Implement Sequential Consistent DSM

Sequential Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0
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0
1
2
3

0
1
2
3

5

0
0
0
0

0

0

0

0

1
1
0
1

0
0
1
0
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0

0
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PFT1

0
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1
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1

0

PFT2

6
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7

3

RAM1

3
4
5

3
4
5

RAM2

02 1

0
1
0
0

00

0

0

0

0

0
0
0
1

1
1
1
0

01read

page fault request

 owner dos not change its PFT
 new replica is not owner, i.e. its owner bit is not set

reply with page 5

10054 1 1 0repeat
read



Implement Sequential Consistent DSM

Sequential Consistent DSM

0
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0
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4

5

6

7

VAS

3

0

0

0

1

0
2
4

1

1

1

0

6
2

7
5
3

RAM1

3
4
5

3
4
5

RAM2

02 1

0
1
0
0

00

0

0

0

0

0
0
0
1

1
1
1
0

01write

request for new ownership

 Change old owners read only bit and owner flag
 Give ownership to writer

4 1 1 0repeat
write

01

commit deletion of ownership

10



Drawbacks Sequential Consistent DSM

Sequential Consistent DSM

 What to do when 2 concurrent writes are initiated?
 See assignments

 Overhead per access still expensive
 Per first read you must copy remote page to target
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y py p g g

 Per write on a not-owner node you must delete the 
ownership of the owner node and shift it to the writer node, 
having copied the page before

 How to propagate the updates of the owner’s side to 
all other outdated copies?

 How to prevent from reading staled data?



Implementing Sequential Consistency
Replicated and Migrating Data Blocks

Processor Processor

Node 1

Processor

Node 2 Node 3

Duplicate
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memory

cache

x

y
memory

cache

m

n
memory

cache

a

b

mbx x
Duplicate

Then what if Node 2 updates x?



Implementing Sequential Consistency
Read/Write Request

Unused

Read
(Read a copy from the onwer)

ReplacementReplacement

Replacement

Replacement
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Writable

Read only Nil

Read-owned

Read
(Read from memory and get an ownership)

Write
(invalidate others if they have a copy

and get an ownership)

Write
(invalidate others if they have a copy)

Write
(invalidate others if they have a copy

and get an ownership)

Write invalidate

Write invalidate

Write invalidate

Replacement



Implementing Sequential Consistency
Locating Data –Fixed Distributed-Server Algorithms

Address Owner

0 P0

1 P0

2 P2

Address Owner

6 P2

7 P1

8 P2

Address Owner

3 P1

4 P2

5 P0

Processor 0 Processor 1 Processor 2
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Addr0
writable

Addr1
read owned

Addr5
writable

Addr3
read owned

Addr7
writable

Addr2
read owned

Addr6
writable

Addr8
read owned

Addr4
read owned

Read addr2

Addr2
read only

Location search

Read request

Block replication



Implementing Sequential Consistency
Locating Data – Dynamic Distributed-Server Algorithms

Address Probable

0 P0

1 P0

Address Probable

2 P2

7 P1

Address Probable

3 P1

4 P2

Processor 0 Processor 1 Processor 2

p1

 Breaking the chain of nodes:
 When the node receives an 

invalidation
 When the node relinquishes 
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2 P2

Addr0
writable

Addr1
read owned

Addr5
writable

Addr3
read owned

Addr7
writable

Addr2
read owned

Addr8
read owned

8 P25 P0

Addr4
read owned

Read addr2

Addr2
read owned

Addr2
read only

Location search

Read request

Block replication

p1
q

ownership
 When the node forwards a 

fault request

 The node points to a new 
owner 



Replacement Strategy

 Which block to replace
 Non-usage based (e.g. FIFO)
 Usage based (e.g. LRU)
 Mixed of those (e.g. Ivy )
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 Unused/Nil: replaced with the highest priority
 Read-only: the second priority
 Read-owned: the third priority
 Writable: the lowest priority and LRU used.

 Where to place a replaced block
 Invalidating a block if other nodes have a copy.
 Using secondary store
 Using the memory space of other nodes



Thrashing

 Thrashing:
 Two or more processes try to write the same shared block.
 An owner keeps writing its block shared by two or more reader 

processes.
 The larger a block, the more chances of false sharing that causes 

thrashing.
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 Solutions:
 Allow a process to prevent a block from being accessed by other 

processes, using a lock.
 Allow a process to hold a block for a certain amount of time.
 Apply a different coherence algorithm to each block. 

 What do those solutions require users to do?

 Are there any perfect solutions?
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Another Notation
See Colouris et al



Processes Accessing Shared Data

a := a + 1;
b := b + 1;

br := b;
ar := a;
if(ar ≥ br) then

print ("OK");

Process 1 Process 2

© 2009 Universität Karlsruhe, System Architecture Group 70

 a & b are initialized with 0
 Suppose, process 2 runs first, then process 1

 We expect that process1 always prints OK

 However, the update propagation of the DSM might send the 
updates to process1 in reverse order, i.e. ar = k, but br =k+1



Interleaved Operations 

br := b;
ar := a;
if(ar ≥ br) then

i t ("OK")

Time
Process 1

Process 2

a := a + 1;
b := b + 1;

read
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print ("OK"); write

 Allowed interleaving with sequential consistency 



Strict Consistency
 Wi(x, a): Processor i writes a on variable x.
 bRi(x): Processor i reads b from variable x.
 Any read on x must return the value of the most 

recent write on x.
Strict Consistency NotStrict Consistency
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Strict Consistency NotStrict Consistency

P1 P2 P3 P1 P2 P3

W2(x, a)

aR1(x)

aR3(x)

W2(x, a)

nilR1(x)

aR3(x)
aR1(x)

aR1(x)



Linear & Sequential Consistency
 Linear Consistency: Operations of each individual process 

appear to all processes in the same order as they happen.
 Sequential Consistency: Operations of each individual 

process appear in the same order to all processes.

Linear Consistency Sequential Consistency
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Linear Consistency Sequential Consistency
P1 P2 P3

W2(x, a)

aR1(x)

bR1(x)

P4

aR4(x)

W3(x, b)

bR4(x)

P1 P2 P3

W2(x, a)

bR1(x)

aR1(x)

P4

bR4(x)

W3(x, b)

aR4(x)



FIFO and Processor Consistency

 FIFO Consistency: writes by a single process are visible to all 
other processes in the order in which they were issued.

 Processor Consistency: FIFO Consistency + all write to the 
same memory location must be visible in the same order.

FIFO Consistency Processor Consistency
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FIFO Consistency Processor Consistency

P1 P2 P3

W2(x, b)

aR1(x)
0R1(x)

P1 P2 P3
W2(x, a)

W3(x, 1)
W3(x, 0)

W2(x, b)
W2(x, a)

W3(y, 1)
W3(y, 0)

P4 P4

1R1(x)

bR1(x)

aR1(x)
0R1(x)
bR1(x)

aR1(z)

W2(y, a) W3(z, a)

aR1(y)

1R1(x)

aR1(z) aR1(y)

W2(y, a)
W3(z, 1)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)
aR1(z)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)

aR1(z)



Causal Consistency

 Causally related writes must be visible to all processes in the same 
order. Concurrent writes may be propagated in a different order.

Causal Consistency Not Causal Consistency
P1 P2 P3 P4 P3 P4

© 2009 Universität Karlsruhe, System Architecture Group 75

P1 P2 P3

bR4(x)
cR1(x)

P4 P1 P2 P3 P4
W2(x, a)

aR3(x)

W3(x, b)

bR1(x) cR4(x)

W2(x, c)

aR4(x)aR3(x)

aR1(x)

W2(x, a)

aR3(x)

W3(x, b)

bR1(x)

bR4(x)

aR4(x)



Weak Consistency
 Accesses to synchronization variables must obey sequential 

consistency.
 All previous writes must be completed before an access to a 

synchronization variable.
 All previous accesses to synchronization variables must be 

completed before access to non-synchronization variable.
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Weak Consistency Not Weak Consistency
P1 P2 P3 P1 P2 P3

W2(x, a)
W2(x, b)

W2(y, c)

S2
S1

S3

bR4(x)
cR4(y)

cR4(y)
bR4(x)

W2(x, a)

W2(x, b)
W2(y, c)

S2

S1
S3

aR4(x)
cR4(y)

bR4(x)
cR4(y)

aR4(x)
NilR4(y)

bR4(x)



Release Consistency
 Access to acquire and release variables obey processor 

consistency.
 Previous acquires requested by a process must be completed 

before the process performs a data access.
 All previous data accesses performed by a process must be 

completed before the process performs a release
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completed before the process performs a release.

P1 P2 P3

aR3(x)

Acq1(L)
W1(x, a)

W1(x, b)
Rel1(L)

Acq2(L)

Rel2(L)

bR2(x)

bR2(x)


