
Distributed SystemsDistributed Systems

16 Distributed Shared Memory16 Distributed Shared Memory

1© 2009 Universität Karlsruhe, System Architecture Group

July-15-2009
Gerd Liefländer

System Architecture Group

Schedule of Today

 Motivation & Introduction
 Potential Problems with DSM
 Design of DSM

 Single versus Multiple Copy DSM
St t f DSM

© 2009 Universität Karlsruhe, System Architecture Group 2

 Structure of DSM
 Synchronization Model
 Consistency Model
 Update Propagation

 Implementation of DSM
 Examples of DSM
 Literature

Distributed Shared MemoryDistributed Shared Memory

3© 2009 Universität Karlsruhe, System Architecture Group

See textbook Coulouris et al.:
“Distributed Systems” Ch. 16 or 18
(depending on the edition)

Distributed Shared Memory

 Distributed Shared Memory (DSM) allows applications
running on separate computers to share data or
address ranges without the programmer having to
deal with message passing

 Instead the underlying technology (HW or MW) will Instead the underlying technology (HW or MW) will
send the messages to keep the DSM consistent (or
relatively consistent) between computer nodes

 DSM allows applications that used to operate on the
same computer to be easily adapted to operate on
multiple computers

© 2009 Universität Karlsruhe, System Architecture Group 4

What is a DSM?

 DSM is a special kind of a DDS, because this time
main memory parts are distributed and shared

 Applications should see no difference between a local
or remote memory access (except for further delays)

© 2009 Universität Karlsruhe, System Architecture Group 5

 Processes should see all writes by other processes
(as fast as possible)

 DSM design and implementation must provide
access transparency

 DSM is not suitable for all situations, e.g. client
server applications

Motivation

Motivation
Why DSM? (compare: why shared memory in local systems?)

 Some programmers want one programming concept
for distributed applications without all this IPC stuff

What’s easier?

Sharing data no longer requires explicit IPC (even

© 2009 Universität Karlsruhe, System Architecture Group 6

 Sharing data no longer requires explicit IPC (even
though a DSM is based upon IPC)

 History has shown: Distributed applications based on
application IPCs tend to have more program bugs
and have larger code than DSM applications

 Shared memory was fastest collaboration in local
systems, as long as there are only few conflicting
operations

Why DSM?
 Better portability of distributed application programs

 Natural transition from sequential to distributed application

 Better performance of some applications
 Data locality, on-demand data movement, and larger RAMs

reduce network traffic due to remote paging
 However, ping-pong paging due to false sharing etc. must

© 2009 Universität Karlsruhe, System Architecture Group 7

 However, ping pong paging due to false sharing etc. must
be avoided

 Flexible communication environment
 Sender and receiver must not know each other
 No need that they do coexist at the same time

 Ease of process migration
 Migration is completed only by transferring the

corresponding PCB (including its ASCB) to the destination

DSM Implementations

 Hardware
 Mainly used by SMPs. HW resolves LOAD and

STORE commands by communicating with remote
memory as well as local memory.

Paged virtual memory Paged virtual memory
 Pages of virtual memory get the same set of

addresses for each program in the DSM system
 This only works for computers with common data

and paging formats
 This implementation does not put extra structure

requirements on the program since it is just a
series of bytes.

© 2009 Universität Karlsruhe, System Architecture Group 8

DSM Implementations (2)

 Middleware
 DSM is provided by some languages and

middleware without hardware or paging support
 For this implementation, the programming

language, underlying system libraries, or
middleware send the messages to keep the data
synchronized between programs so that the
programmer does not have to.

© 2009 Universität Karlsruhe, System Architecture Group 9

Typical Applications of DSM
 Multiple processes sharing

 memory mapped files (already in MULTICS)
 large global data, e.g. matrices etc. in parallel

numeric applications

 DSM has to track

Motivation

© 2009 Universität Karlsruhe, System Architecture Group 10

 DSM has to track
 how many replicas currently exist and
 where the current replicas are mapped

 Some DSMs offer
 one copy of each read only page and of each

read/write page
 one copy of read/write page, but at least

replicated read-only pages

Efficiency of DSM

 DSM systems can perform almost as well as
equivalent message-passing programs for
systems that run on N~ 10 or less nodes

Th f t th t ff t th There are many factors that affect the
efficiency of a DSM, e.g.
 implementation

 design approach

 memory consistency model

© 2009 Universität Karlsruhe, System Architecture Group 11

Architecture of a DSM

Distributed Shared Memory Abstract Layer

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 12

Interconnection Media (Network)

CPU

CPU

Local
Memory

CPU

CPU

Local
Memory

DSM1 DSMk

Node 1
physical
memory

3

Node 2
physical
memory

Node 3
physical
memory local

memory

mapped

Page Based DSM
Introduction

© 2009 Universität Karlsruhe, System Architecture Group 13

6
shared
memory9

3 6 9 DSM

mapping
manager

mapping
manager

mapping
manager

centralized or
distributed

Who is Sharing Memory in a DSM?

 A multi-threaded task of KLTs, whose KLTs have
migrated to n>1 nodes of the DS
 Thread programmers know about the shared data and have

to avoid write/write conflicts as usual using critical sections

 Challenge: we have to provide that each KLT can do its

© 2009 Universität Karlsruhe, System Architecture Group 14

 Challenge: we have to provide that each KLT can do its
read- & write operations on shared data without too much
delay, i.e. the handling of a remote page fault should not
take significantly more time than handling a local page fault

 Multi-process applications that have one or more
data segments in common

 It is convenient when a programmer can specify how
specific parts of his segments are implemented with
respect to sharing

No Usage of DSM

 Typical client/server system applications do not profit
so much from DSM, because the clients often see the
resources offered by a server as an abstract data
type that can be used using RPC or RMI

© 2009 Universität Karlsruhe, System Architecture Group 15

 Furthermore, a server is often not interested that a
unknown (malicious) clients access its data, i.e. in
this case sharing might be too dangerous due to
security reasons

Basic Concept

CPU 1

CPU n
: Memory

CPU 1

CPU n
: Memory

CPU 1

CPU n
: Memory

Distributed Shared Memory
(exists only virtually)

Data = read(address); write(address, data);

address

© 2009 Universität Karlsruhe, System Architecture Group 16

Communication Network

MMU
Page Mgr

Node 0

MMU
Page Mgr

Node 1

MMU
Page Mgr

Node 2

…

 Local pager must know the current location of an unmapped page
 Local pager must know the location of a centralized super-pager
responsible for the tracking of all page/frame locations of the DSM

Potential Problems with DSMPotential Problems with DSM

17© 2009 Universität Karlsruhe, System Architecture Group

Main Issues

 Memory coherence and access synchronization
 Strict, Sequential, Causal, Weak, and Release Consistency models

 Data location and access
 Broadcasting, centralized data locator, fixed distributed data locator,

and dynamic distributed data locator

 Replacement strategy

© 2009 Universität Karlsruhe, System Architecture Group 18

p gy
 LRU or FIFO, and using secondary store or the memory space of other

nodes (COMA)

 Thrashing (due to false sharing, i.e. ping-pong effect)
 How to prevent a block from being exchanged back and forth between

two nodes over and over again

Granularity

Granularity = amount of data sent with each update
 If granularity is too small and a large amount of

contiguous data is updated, the overhead of sending
many small update-messages can reduce efficiency
 Fine (less false sharing but more network traffic, e.g. Fine (less false sharing but more network traffic, e.g.

object in Orca & Linda)

 If granularity is too large, a whole page (or more)
would be sent for an update to a single byte, thus
reducing efficiency
 Coarse (more false sharing but less network traffic, e.g.

page in Ivy)

© 2009 Universität Karlsruhe, System Architecture Group 19

Granularity Problem
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 20

byte
...

variable object 0.5 KB  page  64 KB ..

Object O2

Object O3

1. False sharing

2. Thrashing (due to ping-pong)
Object O1

Granularity in a Page-Based DSM

 Typical standard page size 4 KB might be too small to
host a typical shared data object

 However, using super pages might not pay off
 Migrating a super page requires bandwidth and it might be

difficult, to find a fitting memory hole for the super page

© 2009 Universität Karlsruhe, System Architecture Group 21

 Furthermore, the larger the super page size the larger the
potential internal fragmentation

 In a DS there are some applications that might run
faster when using smaller than 4KB pages

 A 4 KB page might contain too many different objects
 false sharing, i.e. the ping-pong paging effect due
to conflicting activities at different nodes

p1 p2

write(a,10)

Thrashing in Single Copy DSM
Example:
 2 processes on different nodes sharing one page

Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 22

9a

(,)

p2

write(a,10)

Thrashing in Single Copy DSM

p1

Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 23

Instead of copying “10” from node 1 to
node 2 we migrate the complete page,
i.e. we handle a “remote page fault”

9a10a

migrate yellow page

p1 p2

write(a,10)
write(a,11)

Thrashing in Single Copy DSM
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 24

10

migrate yellow page back

a

(,)

p1 p2

write(a,10)
write(a,11)

Thrashing in a Single Copy DSM
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 25

11a

(,)

p p

Example:
p1 only writes to object a, p2 only writes to object b, however,
both objects are in the same mapping/migration unit (e.g. page).

Thrashing in Single Copy DSM
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 26

p1 p2

write(a,10)

migrate page with a and b
for- and backwards

write(b,11)

95

Entities a and b may be
completely independent

p1 p2

read(a)
write(a,11)

Example:
p1 reads a, p2 writes a, both nodes have replicas of a.

Thrashing in Multi Copy DSM
Problems with DSM

© 2009 Universität Karlsruhe, System Architecture Group 27

(,)

9a

copy a from node2 to node1

9a’

What to do with the
copy a’ on node 1?
It’s no longer valid!

11

Remark:
Before writing to a data item in a replicated page, we must invalidate
all replicas
We must solve similar problems as with coherent caches in a SMP

Data Items Laid out over Pages

A B

page n + 1page n

C

© 2009 Universität Karlsruhe, System Architecture Group 28

p gpage n

 Danger of false sharing when process1 accesses data item A,
and process2 accesses data item B concurrently

 Danger of two page faults in case of data item C is located on
two different pages

Design of DSMDesign of DSM

29© 2009 Universität Karlsruhe, System Architecture Group

Single Copy versus Multiple Copy DSM
Structure of DSM

Synchronization Model
Consistency Model

Update Options

Two DSM Principles

 Single copy, i.e. without replication
 If entity = page,  implement remote paging,

i.e. instead of swapping to and from a local disk,
swap via network or from a (local/)remote disk

Architecture of a DSM

© 2009 Universität Karlsruhe, System Architecture Group 30

 Multiple copies, i.e. with replication
 If entity = page, no problems with replicated

read-only pages, but we must deal with
reader/writer-problems

1. Single copy for read-write pages
2. N>1 copies of read-write pages with additional owner

bit, i.e. we must enforce that all writes are done on all
copies in the same order

Structure of DSM

 Byte oriented
 Access to a part of a byte-oriented DSM

corresponds to an access to a virtual memory, e.g.
Ivy & Mether

Object oriented

© 2009 Universität Karlsruhe, System Architecture Group 31

 Object oriented
 DSM is a collection of objects
 Operations are the methods of the object type,

e.g. Orca serializes automatically all methods of
the same object

 Constant data
 No updates, but new versions

Synchronization Model

 To enable synchronization on byte-oriented DSM or
synchronized methods in object-oriented DSM we
have to provide solutions enabling mutual exclusion

 Centralized lock manager

© 2009 Universität Karlsruhe, System Architecture Group 32

 Token manager

 Distributed CS managers

Update PropagationUpdate Propagation

33© 2009 Universität Karlsruhe, System Architecture Group

Write-Update
Write-Invalidate

Write-Update

 Suppose a process has write permission for a page. It
updates a “data item” on it locally

 Updates are propagated via multicast to all replicas that
currently have a copy of this “data item”, i.e. the page

© 2009 Universität Karlsruhe, System Architecture Group 34

 Replica-managers update the corresponding data items in
order to allow as consistent reads as possible

 In practice you try to allow multiple writes to a page in a
row by the same process, otherwise too much overhead

 Furthermore, if possible you just propagate the updates
differences of the page to the other replicas

Example Write-Update

time

a := 7;
b := 7;

if(b=8) then
 print("after");

if(a=7) then

 b := b+1;
...

updates

© 2009 Universität Karlsruhe, System Architecture Group 35

time

if(b=a) then
 print("before");

time

Implementing Sequential Consistency
Write Update

Client wants to write:

new copynew copy

© 2009 Universität Karlsruhe, System Architecture Group 36

a copy of
block

block
a copy of

block

1. Request block

2. Replicate block

3. Update block
3. Update block

new copy new copy new copy

Write-Invalidate

 Before writing to a data item the process multicast an
invalidation message to all replicas that currently host
that data item, announcing the upcoming update

 As long as the process is writing, all other processes
accessing that data item will be “blocked”

© 2009 Universität Karlsruhe, System Architecture Group 37

accessing that data item, will be “blocked”

 Updates are sent whenever a process wants to read
a data item that had been invalidated in the past

 Reading valid local data items occurs with no delay

Implementing Sequential Consistency
Write Invalidation

Client wants to write:

new copynew copy

© 2009 Universität Karlsruhe, System Architecture Group 38

a copy of
block

block
a copy of

block

1. Request block

2. Replicate block

3. Invalidate block
3. Invalidate block

Implement “Consistent” DSM Implement “Consistent” DSM

39© 2009 Universität Karlsruhe, System Architecture Group

Single Copy DSM
Multiple Copy DSM

Implement a Single Copy DSM

 Page based virtual memory management

 MMU with page-based address transformation

 Shared memory segment(s), i.e. its(their)

Implementing a DSM

© 2009 Universität Karlsruhe, System Architecture Group 40

y g (), ()
virtual address range(s) can be mapped at
different nodes

 Page is never mapped to more than one node

Implement a Single Copy DSM

 Local access:
  mapped page with presence bit = set in the corresponding

local page-frame table (PFT)
 Perform read/write accesses only to local RAM

Remote access:

Implementing a DSM

© 2009 Universität Karlsruhe, System Architecture Group 41

 Remote access:
 Presence bit in local PFT is empty
 Remote access  page fault

 Pager gets page from remote node
 Set presence bit

 Repeat memory access

 DSM is coherent if
 Page transfer operations are atomic
 No node crashed occur

Simple Map Protocol in a DSM
Single Copy DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2

4 pages
mapped
to node 2

© 2009 Universität Karlsruhe, System Architecture Group 42

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

Frame
Number

Presence Bit

2
3
4
5

2
3
4
5

RAM2

1

1. Access 1 delivers page fault  2. Request to node2 
3. Delete presence bit of page 5 in node 2

2

0

3

&
4 pages
mapped
to node 1

Mapping Protocol in a DSM
Implementing a DSMDistributed System Models

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2 5

© 2009 Universität Karlsruhe, System Architecture Group 43

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

Frame
Number

Presence Bit

2
3
4
5

2
3
4
5

RAM2

4. Reply with page no. 5 having deleted PFT2 entry
6. Migrate that page into RAM1  7. Map into PFT1,

0

6

5

4

0

7

4 1

Mapping Protocol in a DSM
Implementing a DSMDistributed System Models

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2

© 2009 Universität Karlsruhe, System Architecture Group 44

4

5

6

7

VAS

4

3

0

1

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7
5
3

RAM1

Frame
Number

Presence Bit

2
3
4
5

2
3
4
5

RAM2

9. By migrating you deleted P5 10. Repeat access to page 5
11. Page fault commit message to node 2

00

9

10

Summary Single Copy DSM

 Linear consistency if we use a central coordinator
sequencing all accesses, however poor performance

 No concurrent read access to the same page
 Ping-Pong paging between nodes occurs too often, e.g.

especially if code of different threads is located on the same
f d b d k

© 2009 Universität Karlsruhe, System Architecture Group 45

page in case of a distributed task

 False Sharing
 2 data objects in the same page used by different activities
 Mutual page stealing when threads write to that page

 What can we do?
 Reducing the consistency requirements
 Implement multiple copy DSM to support concurrent reads

Multi Multi CopyCopy DSMDSM

46© 2009 Universität Karlsruhe, System Architecture Group

Linear Consistency?

 Each read should deliver the value of the
latest write operation

 Problem

© 2009 Universität Karlsruhe, System Architecture Group 47

 No synchronized exact global time
 No unambiguous sequence, if clock synchronization

is too coarse, but we can achieve linear consistency

 We must resolve read/write and write/write
conflicts between concurrent processes
 A memory access is far shorter than the minimal

time deviation

~ Strict Consistent DSM?

 Use a Single Copy DSM (see slides before)
 Whenever a page is accessed, it first must

migrate to the accessing node, but there are no
read/write or write/write conflicts

 However, many additional page migrations, e.g.

© 2009 Universität Karlsruhe, System Architecture Group 48

with concurrent reads from the same page

 How to know where a page is currently located?
 Every node must know the current location of each

mapped page or you use a central super pager
 Use a shadow page table
 Whenever the mapping of a page changes, you have

to change the corresponding page tables at all
involved nodes

~ Strict Consistent DSM?

 Where to migrate a page when there are
concurrent accesses?
 Need a consensus on the sequence of operations

(easy with a central coordinator, otherwise
additional overhead)

© 2009 Universität Karlsruhe, System Architecture Group 49

)

 Real parallel operations only on different pages

 No distinction between read/write(RW) & read-
only(RO) pages, no support for concurrent reads
from different RO-pages

Multi Copy DSM

 Assume: Non modifying code 

 Code pages are similar to Read-Only Pages,
i.e. their content will never change

 Once copied to the needed location, they can
stay their until application has finished
without any additional overhead

 Changes might only happen when a thread
migrates to another location

© 2009 Universität Karlsruhe, System Architecture Group 50

Multi Copy DSM

 In the following we focus on potentially shared read-
write data-pages
 To distinguish between READ-ONLY and READ-WRITE pages

there is a permanent control-bit PRW per page

If PRW Bit 1 it t READ ONLY ill If PRW-Bit ==1, a write to a READ-ONLY page will cause an
exception of type: address violation

 The very first time, a potentially READ-WRITE page is
mapped, it is initiated with a „temporal“ control-bit
TRW = 1, indicating that at the node where this page
is mapped, each process/KLT can write to this page

 TRW == 0 means, that at the involved node no write
access to P is temporarily allowed

© 2009 Universität Karlsruhe, System Architecture Group 51

Multi Copy Consistent DSM

 A remote read (to a non local page)  page fault
 Copy page from current page owner, i.e. don’t delete page at

owner’s RAM

 Prevent writes on both sides, set TRW=0, i.e. any new write 
page-fault exception

h d

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 52

 Whenever some node Lj tries to write to page P
 Copy P from the replica with TRW == 1, which must be the

one with the most recent writes
 Invalidate all replicas, i.e. delete their PFT entries & empty the

corresponding mapped page-frame.
 If there is no such replica with TRW==1 all replicas (also

your local one) are identical and up to date

 Set local TRW = 1 and repeat your write operation at Lj

Multi Copy Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2 5

0
0
0
0

0
0
0
0

Strict Consistent DSM

© 2009 Universität Karlsruhe, System Architecture Group 53

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

Frame Number

Presence Bit

2
3
4
5

2
3
4
5

RAM2

02 1

5
0
1
0
0

00

0
0
0
0

Readonly
Bit TRW

Implement Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2 5

0
0
0
0

0
0
0
0

Strict Consistent DSM

© 2009 Universität Karlsruhe, System Architecture Group 54

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

2
3
4
5

2
3
4
5

RAM2

02 1

5
0
0
0
0

0
1
0
0

00read

page fault request

1

reply with page 5

54 1 1repeat
read

Implement Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2 5

0
0
0
0

0
0
0
0

Strict Consistent DSM

© 2009 Universität Karlsruhe, System Architecture Group 55

4

5

6

7

VAS

4

3

0

1

0

1

0
2
4

1

1

1

0

6
2

7

3

RAM1

2
3
4
5

2
3
4
5

RAM2

02 1

5
0
1
0
0

0
1
0
0

00write 1

commit invalidation

5

invalidate request

repeat
write

2 100 10001000

Analysis of Linear Consistent DSM

Strict Consistent DSM

 How did we achieve ~strict consistency?

 Only one process/node can write to the same
page at the same instant of time

© 2009 Universität Karlsruhe, System Architecture Group 56

 Only works efficiently when writes are rare
and multiple writes at one side are collected,
otherwise ping-pong paging

Sequential Consistent DSM

 Problem
 No linkage between real time and operations

 Find some sequential ordering of the operations on all nodes

 Ordering might conflict with application, e.g. a process
awaiting a certain value of a coordination variable

© 2009 Universität Karlsruhe, System Architecture Group 57

 Implementation
 Write operations have to be visible in all processes in the

same order

 Duration of a write

 Example: Forge the latest write in the next write

 Add an owner flag per PFT entry

Implement Sequential Consistent DSM

Sequential Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2

0
1
2 5

0
0
0
0

0

0

0

0

0
0
1
0

1
1
0
1

© 2009 Universität Karlsruhe, System Architecture Group 58

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

Frame Number

Presence Bit

2
3
4
5

2
3
4
5

RAM2

02 1

5
0
1
0
0

00

0

0

0

0

Readonly Bit

1
1
1
0

01

0
0
0
1

Owner Bit
 each node = owner of its
4 present pages

Implement Sequential Consistent DSM

Sequential Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2
3

0
1
2
3

5

0
0
0
0

0

0

0

0

1
1
0
1

0
0
1
0

© 2009 Universität Karlsruhe, System Architecture Group 59

4

5

6

7

VAS

3

0

0

0

1

PFT1

0
2
4

1

1

1

0

PFT2

6
2

7

3

RAM1

3
4
5

3
4
5

RAM2

02 1

0
1
0
0

00

0

0

0

0

0
0
0
1

1
1
1
0

01read

page fault request

 owner dos not change its PFT
 new replica is not owner, i.e. its owner bit is not set

reply with page 5

10054 1 1 0repeat
read

Implement Sequential Consistent DSM

Sequential Consistent DSM

0

1

2

3

2
1

5

1

1

0

1

5

0

0

1

0

4

5
1
0

MAPPING on NODE 1 MAPPING on NODE 2

0
1
2
3

0
1
2
3

5

0
0
0
0

0

0

0

0

1
1
0
1

0
0
1
0

© 2009 Universität Karlsruhe, System Architecture Group 60

4

5

6

7

VAS

3

0

0

0

1

0
2
4

1

1

1

0

6
2

7
5
3

RAM1

3
4
5

3
4
5

RAM2

02 1

0
1
0
0

00

0

0

0

0

0
0
0
1

1
1
1
0

01write

request for new ownership

 Change old owners read only bit and owner flag
 Give ownership to writer

4 1 1 0repeat
write

01

commit deletion of ownership

10

Drawbacks Sequential Consistent DSM

Sequential Consistent DSM

 What to do when 2 concurrent writes are initiated?
 See assignments

 Overhead per access still expensive
 Per first read you must copy remote page to target

© 2009 Universität Karlsruhe, System Architecture Group 61

y py p g g

 Per write on a not-owner node you must delete the
ownership of the owner node and shift it to the writer node,
having copied the page before

 How to propagate the updates of the owner’s side to
all other outdated copies?

 How to prevent from reading staled data?

Implementing Sequential Consistency
Replicated and Migrating Data Blocks

Processor Processor

Node 1

Processor

Node 2 Node 3

Duplicate

© 2009 Universität Karlsruhe, System Architecture Group 62

memory

cache

x

y
memory

cache

m

n
memory

cache

a

b

mbx x
Duplicate

Then what if Node 2 updates x?

Implementing Sequential Consistency
Read/Write Request

Unused

Read
(Read a copy from the onwer)

ReplacementReplacement

Replacement

Replacement

© 2009 Universität Karlsruhe, System Architecture Group 63

Writable

Read only Nil

Read-owned

Read
(Read from memory and get an ownership)

Write
(invalidate others if they have a copy

and get an ownership)

Write
(invalidate others if they have a copy)

Write
(invalidate others if they have a copy

and get an ownership)

Write invalidate

Write invalidate

Write invalidate

Replacement

Implementing Sequential Consistency
Locating Data –Fixed Distributed-Server Algorithms

Address Owner

0 P0

1 P0

2 P2

Address Owner

6 P2

7 P1

8 P2

Address Owner

3 P1

4 P2

5 P0

Processor 0 Processor 1 Processor 2

© 2009 Universität Karlsruhe, System Architecture Group 64

Addr0
writable

Addr1
read owned

Addr5
writable

Addr3
read owned

Addr7
writable

Addr2
read owned

Addr6
writable

Addr8
read owned

Addr4
read owned

Read addr2

Addr2
read only

Location search

Read request

Block replication

Implementing Sequential Consistency
Locating Data – Dynamic Distributed-Server Algorithms

Address Probable

0 P0

1 P0

Address Probable

2 P2

7 P1

Address Probable

3 P1

4 P2

Processor 0 Processor 1 Processor 2

p1

 Breaking the chain of nodes:
 When the node receives an

invalidation
 When the node relinquishes

© 2009 Universität Karlsruhe, System Architecture Group 65

2 P2

Addr0
writable

Addr1
read owned

Addr5
writable

Addr3
read owned

Addr7
writable

Addr2
read owned

Addr8
read owned

8 P25 P0

Addr4
read owned

Read addr2

Addr2
read owned

Addr2
read only

Location search

Read request

Block replication

p1
q

ownership
 When the node forwards a

fault request

 The node points to a new
owner

Replacement Strategy

 Which block to replace
 Non-usage based (e.g. FIFO)
 Usage based (e.g. LRU)
 Mixed of those (e.g. Ivy)

© 2009 Universität Karlsruhe, System Architecture Group 66

 Unused/Nil: replaced with the highest priority
 Read-only: the second priority
 Read-owned: the third priority
 Writable: the lowest priority and LRU used.

 Where to place a replaced block
 Invalidating a block if other nodes have a copy.
 Using secondary store
 Using the memory space of other nodes

Thrashing

 Thrashing:
 Two or more processes try to write the same shared block.
 An owner keeps writing its block shared by two or more reader

processes.
 The larger a block, the more chances of false sharing that causes

thrashing.

© 2009 Universität Karlsruhe, System Architecture Group 67

 Solutions:
 Allow a process to prevent a block from being accessed by other

processes, using a lock.
 Allow a process to hold a block for a certain amount of time.
 Apply a different coherence algorithm to each block.

 What do those solutions require users to do?

 Are there any perfect solutions?

Literature
 B. Bershad et al: “The Midway DSM System, IEEE 1993

 N. Carreiro, D. Gelernter: “The S/Net’s Linda Kernel”, ACM
Trans. On Comp. Sys., 1986

 J. Cordsen: “Virtueller gemeinsamer Speicher”, PhD TU
Berlin, 1996

© 2009 Universität Karlsruhe, System Architecture Group 68

 M. Dubois et al.: “Synchronization, Coherence and Event
Ordering in Multiprocessors”, IEEE Computer, 1988

 K. Li: “Shared Virtual Memory on Loosley Coupled
Multiprocessors”, PhD Yale, 1986

 D. Mosberger: “Memory Consistency Models”, Tech.
Report, Uni. Of Arizona, 1993

 B. Nitzberg: “DSM: A Survey of Issues and Algorithms”,
IEEE Comp. Magazine, 1993

Appendix:Appendix:
Review Consistency ModelsReview Consistency Models

69© 2009 Universität Karlsruhe, System Architecture Group

Another Notation
See Colouris et al

Processes Accessing Shared Data

a := a + 1;
b := b + 1;

br := b;
ar := a;
if(ar ≥ br) then

print ("OK");

Process 1 Process 2

© 2009 Universität Karlsruhe, System Architecture Group 70

 a & b are initialized with 0
 Suppose, process 2 runs first, then process 1

 We expect that process1 always prints OK

 However, the update propagation of the DSM might send the
updates to process1 in reverse order, i.e. ar = k, but br =k+1

Interleaved Operations

br := b;
ar := a;
if(ar ≥ br) then

i t ("OK")

Time
Process 1

Process 2

a := a + 1;
b := b + 1;

read

© 2009 Universität Karlsruhe, System Architecture Group 71

print ("OK"); write

 Allowed interleaving with sequential consistency

Strict Consistency
 Wi(x, a): Processor i writes a on variable x.
 bRi(x): Processor i reads b from variable x.
 Any read on x must return the value of the most

recent write on x.
Strict Consistency NotStrict Consistency

© 2009 Universität Karlsruhe, System Architecture Group 72

Strict Consistency NotStrict Consistency

P1 P2 P3 P1 P2 P3

W2(x, a)

aR1(x)

aR3(x)

W2(x, a)

nilR1(x)

aR3(x)
aR1(x)

aR1(x)

Linear & Sequential Consistency
 Linear Consistency: Operations of each individual process

appear to all processes in the same order as they happen.
 Sequential Consistency: Operations of each individual

process appear in the same order to all processes.

Linear Consistency Sequential Consistency

© 2009 Universität Karlsruhe, System Architecture Group 73

Linear Consistency Sequential Consistency
P1 P2 P3

W2(x, a)

aR1(x)

bR1(x)

P4

aR4(x)

W3(x, b)

bR4(x)

P1 P2 P3

W2(x, a)

bR1(x)

aR1(x)

P4

bR4(x)

W3(x, b)

aR4(x)

FIFO and Processor Consistency

 FIFO Consistency: writes by a single process are visible to all
other processes in the order in which they were issued.

 Processor Consistency: FIFO Consistency + all write to the
same memory location must be visible in the same order.

FIFO Consistency Processor Consistency

© 2009 Universität Karlsruhe, System Architecture Group 74

FIFO Consistency Processor Consistency

P1 P2 P3

W2(x, b)

aR1(x)
0R1(x)

P1 P2 P3
W2(x, a)

W3(x, 1)
W3(x, 0)

W2(x, b)
W2(x, a)

W3(y, 1)
W3(y, 0)

P4 P4

1R1(x)

bR1(x)

aR1(x)
0R1(x)
bR1(x)

aR1(z)

W2(y, a) W3(z, a)

aR1(y)

1R1(x)

aR1(z) aR1(y)

W2(y, a)
W3(z, 1)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)
aR1(z)

aR1(x)
0R1(x)
1R1(x)

bR1(x)

aR1(y)

aR1(z)

Causal Consistency

 Causally related writes must be visible to all processes in the same
order. Concurrent writes may be propagated in a different order.

Causal Consistency Not Causal Consistency
P1 P2 P3 P4 P3 P4

© 2009 Universität Karlsruhe, System Architecture Group 75

P1 P2 P3

bR4(x)
cR1(x)

P4 P1 P2 P3 P4
W2(x, a)

aR3(x)

W3(x, b)

bR1(x) cR4(x)

W2(x, c)

aR4(x)aR3(x)

aR1(x)

W2(x, a)

aR3(x)

W3(x, b)

bR1(x)

bR4(x)

aR4(x)

Weak Consistency
 Accesses to synchronization variables must obey sequential

consistency.
 All previous writes must be completed before an access to a

synchronization variable.
 All previous accesses to synchronization variables must be

completed before access to non-synchronization variable.

© 2009 Universität Karlsruhe, System Architecture Group 76

Weak Consistency Not Weak Consistency
P1 P2 P3 P1 P2 P3

W2(x, a)
W2(x, b)

W2(y, c)

S2
S1

S3

bR4(x)
cR4(y)

cR4(y)
bR4(x)

W2(x, a)

W2(x, b)
W2(y, c)

S2

S1
S3

aR4(x)
cR4(y)

bR4(x)
cR4(y)

aR4(x)
NilR4(y)

bR4(x)

Release Consistency
 Access to acquire and release variables obey processor

consistency.
 Previous acquires requested by a process must be completed

before the process performs a data access.
 All previous data accesses performed by a process must be

completed before the process performs a release

© 2009 Universität Karlsruhe, System Architecture Group 77

completed before the process performs a release.

P1 P2 P3

aR3(x)

Acq1(L)
W1(x, a)

W1(x, b)
Rel1(L)

Acq2(L)

Rel2(L)

bR2(x)

bR2(x)

