
Distributed SystemsDistributed Systems

15 Replication Management15 Replication Management

1© 2009 Universität Karlsruhe (TH), System Architecture Group

July 13 2009

Gerd Liefländer

System Architecture Group

Outline

 Replica-Server Placement

 Content Replication and Placement
 Permanent Replicas
 Server-Initiated Replicas
 Client Initiated Replicas

C t t Di t ib ti

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Content Distribution
 State versus Operation
 Pull versus Push Protocols
 Uni- versus Multicasting

 Consistency Protocols
 Primary-Based Protocols
 Replicated-Write Protocols
 Cache-Coherence Protocols
 Implementing Client-Centric Consistency

 Examples

Replica ManagementReplica Management

3© 2009 Universität Karlsruhe (TH), System Architecture Group

Placement Problem
Content Replication

Node Initiatives

Placement Problem

 Where to install replica servers?

 Find the appropriate (best) node(s) to place a
replica server that can host (part of) the DDS

Where and how to store the content of a DDS?

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

 Where and how to store the content of a DDS?

 Find best server for placing a content of the DDS

 Before we discuss content placement in a DS,
replication servers have to be installed

Replica-Server Placement

 Suppose  N>1 nodes

 Find the best k<N nodes to host the replicas

 Qiu’s solution:
 Measure the distance (in terms of delay or latency)

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

(y y)
 Take the host that minimizes the average distance between

clients and server

 Radoslavov’s solution:
 Take topology of the Internet as formed by autonomous

systems (AS)
 Place the server on a host with the largest number of

network interfaces, …

Replica-Server Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

 Choosing a proper cell size for server placement
 Goal: find well-suited clusters of nearby host and

chose one host among each cluster

Content Replication & Placement

Replica Placement

Relatively small number of
replicated server at some location

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 Logical organization of different kinds of replicas
of a DDS using three concentric rings

 Where to store which replicas and for how long?
 Static versus dynamic replicas

 Server or client initiated

Permanent Replicas
 Initial set of replicas

 Created and maintained by DDS-owner

 Writes are only allowed by DDS-owner

 Prefer strong consistency models

Replica Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 Often geographically distributed to improve
 performance
 reliability

 Examples:
 DNS-server: primary- and secondary server

Server-Initiated Replicas

Replica Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 Counting access requests from different clients sites
 Server Q installs an additional replica P if too many

request are counted from clients site C1 and C2

 Replicate total DDS or only parts of the DDS

Server-Initiated Replicas
 Dynamically installed replicas due to server contention


 Enhance performance and reliability
 Often not maintained by owner of DDS
 Placed close to mega-groups of clients

Replica Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

 Replicas are created close to the majority of (new)
clients whenever  demand “spikes”

 Only delete replica when demand significantly falls
below a low threshold

 Use weaker consistency models for server initiated
replicas than for permanent ones

Client-Initiated Replicas
 Dynamic installation by client’s actions, e.g.

 Temporary client caches
 DNS-caching server
 Web-browser

DDS Owner is not aware of those “replicas”

Replica Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

 DDS-Owner is not aware of those replicas

 Placed very close to a client

 Maintained by host (often the client)

 Especially useful when #reads >> #writes

Client-Initiated Replicas (Caches)

 Managing content of client caches is left to clients

 Problem: stale data in client’s cache
 Data are cached only for a limited amount of time

 Clients can rely on their local physical clock

Replica Placement

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Data have to be removed, if space in client’s cache is
needed for other data to be cached
 What replacement policy is appropriate?

 Caches can be shared by more than one client 
improves the number of cache hits if clients access
the same part of the DDS

 Servers very close to clients may keep those data

Content DistributionContent Distribution

13© 2009 Universität Karlsruhe (TH), System Architecture Group

State versus Operations
Pull versus Push Protocols
Unicasting versus Multicasting

State versus Operations

Possibilities for propagation:
1. Propagate only a notification of an update

2. Transfer “updated or new data” from one copy to

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

another (e.g. complete files with version numbers)

3. Propagate update operations (including all
parameters) to other copies

gl1

Slide 14

gl1 Gerd Liefländer; 09.07.2007

Invalidation Notifications

 Updating node notifies all other replicas that a
specific part of the DDS has changed, i.e. that local
replicated data are no longer valid

 Invalidation notifications are relatively short, thus

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

needing only few network bandwidth

 These method works quite well when there are many
updates in relation to reads

 It is up to the replicas when they will update their
contents, e.g. only when clients access the updated
parts of the DDS

Propagate Notifications

 Propagate only a notification of an update (e.g. to
invalidate outdated replicas)

 Via a notification a local replica knows that an update
has taken place somewhere  local replica must be
updated before next read can take place

Update Propagation

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

updated before next read can take place

 Update of a local replica can be done lazily, i.e. you
might collect a set of invalidation notifications
 Typical for invalidation protocols

 Can include information which part of the DDS has been
updated

 Works best, when ratio of #reads/#write is low

Propagate Updated Data

 Propagate updated data from one replica to another
 Works well when tha ratio of reads/writes is high

 If many data have to be changed  too much overhead

 Again, you can collect u>1 updates before propagating

Update Propagation

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 An update message tells local replica how the DDS
has changed

 Often correlated with the push-model (i.e. server
initiated)

 Advantage:
 No additional communication needed to update

 Might be done asynchronously to all application processes

Propagate Update-Operation

 Sometimes also called “active replication”

 Replica gets a message telling what to do on what
data (part of the DDS)

 Advantages:

Update Propagation

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Advantages:
 Approach works well if size of parameters + operation is

small compared to updated data

 Disadvantage:
 Local operations must deliver the same result

Push Protocol

Push-/Pull-Protocols

 Server based protocol
 i.e. updates are propagated to all other replicas

(whether those replicas have asked for or not)

Often used between permanent replicas and

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

 Often used between permanent replicas and
server initiated replicas, i.e. to achieve a relatively
high degree of consistence (i.e. replicas stay in
close synchrony)

 Efficient if #reads >> #writes

 Whenever a rare update occurs propagate the
updated values ASAP to the companion replicas

Pull Protocol

 Client-based protocol

 Client (or other server) asks another server to
provide its updates

Push-/Pull-Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

 Used by client caches, e.g. when a client requests
a website, not having updated for a longer period
of time, it checks the original web site, whether
updates have been made in the mean time

 Efficient if #reads >> #writes

Pull versus Push Protocols

Push-based Pull-based

State of
server List of client replicas and caches None

Messages U d t (d ibl f t h d t l t) P ll d d t

Push-/Pull-Protocols

Less fault tolerant

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 Comparison between push-based and pull-based
protocols in case of multiple clients, single server
systems, (i.e. without any replicas)

g
sent Update (and possibly fetch update later) Pull and update

Response
time at client Immediate (or fetch-update time) Fetch-update time

Lease Protocol1

 Lease is a promise by a server to push updates to a
client for a specified time

 When a lease expires, client must pull updates from
the server

d d d

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 Lease duration can depend on
 Last time the data item has been updated, i.e. long leases

for data that has not been updated for a long period of time
 Frequency of updates
 State space overhead at server, if states space overhead is

too much, server lowers expiration time of new leases

1Duvvuri et al.: Adaptive Leases: A Strong Consistency Mechanism for the
World Wide Web”, IEEE Trans.Kow.Data Eng., 2003

Problem: Update Propagation

Source

Replicas

Update Propagation

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

update

Unicasting

Source

Replicas

Uni-/Multicasting

Update
message

Update
message

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

update

• With push based protocols avoidable overhead with
unicasting in a LAN

Update
message

Multicasting

Source

Replicas

Update
Message
(l)

Uni-/Multicasting

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

update

• In a LAN & with push-based protocol you use HW-supported multicast

(multicast)

Consistency ProtocolsConsistency Protocols

26© 2009 Universität Karlsruhe (TH), System Architecture Group

Continuous Consistency
Primary-Based Protocols
Replicated-Write Protocols
Cache-Coherence Protocols
Client-Centric Consistency

Limiting Numerical Deviation

 Focus on writes to a single data item x

 Idea: Each site si will keep track of a log Li of writes
that it has performed on its own replica of x

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Propagation can use epidemic algorithms to spread
everywhere (at least after some time)

 If some server detects that a certain site does not
keep pace with all other sites it can propagate the
missing writes to that server

Primary-Based Protocols
Preliminaries:
 Each data item x of a DDS has an associated primary,

responsible for coordinating write operations on x

 Often (a larger subset of) the DDS is hosted on only
one primary server

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

one primary server

 A primary server can be installed as a

 fixed server, i.e. a specific remote server, i.e. most
of the updates are remote-writes

 dynamic server, i.e. the primary migrates to the
location of the next write

Remote-Write Protocols (1)

Consistency Protocols

fixed

Only
Caches

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

 Primary-based remote-write protocol with a fixed server to
which all read and write operations are forwarded

 Primary server will be a bottleneck (without caching)

 DDS = {primary server , backup server}, the other sites are
only caches

Remote-Write Protocols (2)

Consistency Protocols

Reads are local

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

 The principle of primary-backup protocol
 Write to primary, propagate updates to all replicas

Local-Write Protocols (1)

Consistency Protocols

Inconsistent concurren reads

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

 Primary-based local-write protocol in which a single copy is
migrated between processes (no replicas)

 Multiple successive writes are done localy, propagation to the other
replicas is done lazily, only eventual consistency is achievable

Local-Write Protocols (2)

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

 Primary-backup protocol in which the primary copy always
migrates to the process wanting to perform an update

 Reads can be done locally, however stale data can be read
 You can improve this solution, if before writing to data item x,

you invalidate all current replica of x

Replicated-Write Protocols

Preliminaries:

Writes take place at multiple replicas, i.e. no longer
restricted to happen on a static or dynamic primary

 Active replication

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

 Active replication
 Operation is forwarded to all replicas

 Majority voting
 Before reading or writing ask a subset of all replicas

Active Replication

 Execute the update operation on all replicas

Preconditions:
Identical sequence of updates on all replicas
(di t t i t d l)

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

(according to a strong consistency model):
 Via time stamps

 Via totally ordered multi-cast transport protocol

 Via a centralized coordinator (sequencer)
 adding sequence number per update-operation

 Via a distributed consensus algorithms

Problem with Active Replication

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 “Chained or hierarchical remote object invocations”
 Calling object C from replicated object B will take place as often

as an update to a replicated object B is done

Solution

 Suppose:  a centralized coordinator in one
of the replicated objects, e.g. in B0

 This special object forwards the call to a lower
object and receives its reply

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

object and receives its reply

 This special object B0 distributes this result from C
to all corresponding replicated objects Bi

Solution: Active Replication

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

a) Forwarding an invocation request from a replicated object.

b) Returning a reply to a replicated object.

Voting & Epidemic ProtocolsVoting & Epidemic Protocols

38© 2009 Universität Karlsruhe (TH), System Architecture Group

Voting Algorithms
Thomas Quorum
Clifford Quorum

Epidemic Algorithms
Anti Entropy
Gossiping

Quorum-Based Protocol (R.Thomas)

Preliminaries:
If a client wants to read or write, it first must request
and acquire permission of a majority of all servers.

Example:
A DFS with file F being replicated on N>1 file servers. If a
li t t t it t F it fi t h t t t (N/2 + 1)

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

client wants to write to F, it first has to contact (N/2 + 1)
servers, and get them to agree to do its intended update.

Once, they have agreed, file F gets a new version number vn
To read file F, client must contact at least (N/2+1) servers
and ask them to send the current version number of F.

 If all have same vn  file F represents the most recent version
 If not, take the newest version vn , and propagate this new

version to all stale servers

Example

 Suppose you have 5 replicas

 Client wants to read file F and contacts 3 of them

 All servers return the version number 8 for file F

Client can be sure that the other two replicas do not contain a

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

 Client can be sure that the other two replicas do not contain a
newer version of F (e.g. version no 9), because any successful
update from version 8 to 9 on any replica would had required
that at least 3 replicas had agreed to it before

8 9 7 8 8

Another Quorum-Based Protocol1

Gifford quorum scheme is a bit more general:

To read a file f a client must use a read-quorum, an
arbitrary assemble of Nr servers.

To write a file F at least N servers = the write quorum

Consistency Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

To write a file F, at least Nw servers the write quorum
is required. The following must hold:

1. NR +NW > N

2. NW > N/2

1. Is used to prevent read-write conflicts

2. Is used to prevent write-write conflicts
1D. Gifford: “Weighted Voting for Replicated Data”, 7. SOSP, 79

Quorum-Based Protocols

Consistency Protocols

H

Nw = 6

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

 Three examples of Clifford’s voting algorithm:
a) A correct choice of read and write set

b) A bad choice that may lead to write-write conflicts, because Nw is
too small (violation of rule 2)

c) A correct choice, known as the ROWA protocol (read one, write all)

Epidemic Protocols

Epidemic Protocols

 To implement eventual consistency you can use
epidemic protocols

 No guarantees for absolute consistency, but after
some time epidemic protocols tend to have

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

propagated all updates to all replicas

 To avoid write/write conflicts it is assumed that each
update for a specific data item x is always done on a
specific replica (static primary per data item) or by a
specific process (owner)

 Goal: update all replicas or in other words: infect as
many servers as fast as possible

Measures for Quality of Epidemics

 Propagation time required to propagate an updated
data item to all replicas

 Network traffic generated in propagating the updates

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

Epidemic Protocols

Epidemic Protocols

Notions:

 An infectious server is a server with an up-to-date
replica that is willingly to contact other servers in
order to propagate its up-to-date values

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 A susceptible server is a server that has not yet
been updated, i.e. its content might be stale, i.e. it
is not yet infectious

 A removed server is a server that does no longer
want to contact other servers for updating new
information

Anti-Entropy Protocol

Each server P periodically picks another server Q at
random to exchange updates with Q:

 3 approaches how to propagate updates:
o P only pushes its own updates to Q (i.e. pure push model)

l ll d f Q (ll d l)

Epidemic Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

o P only pulls in new updates from Q (i.e. pure pull model)

o P and Q exchange to each other their updates (i.e.
push-pull approach)

Performance of anti-entropy approach:
o It can be shown that all servers are updated as long as

algorithm starts with at least one infectious server

o Performance can be improved with n>1 infectious servers

Implementation Problem

 How to determine which replica is up-to-date and
which one is stale?

 Exchange complete data base and compare

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 Exchange checksums and …

 Exchange update-logs and …

Analysis: Anti-Entropy Protocol

Pure push model:

o Suppose already many servers are infectious 

o It is quite probable that a random choice of Q will
get an already infectious server 

Epidemic Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

get an already infectious server 

o It might take some time until the last server is
updated

Pure pull model or push/pull model?
o …

Gossip1 Protocols

Rumor spreading or gossiping works as follows:

If server P has been updated (with a new value for
data item x), it contacts another arbitrary server Q
and pushes its new update of x to Q

Epidemic Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

and pushes its new update of x to Q

However, if Q got this update already by some other
server, P is so much disappointed, that it will stop
gossiping with a probability 1/k

1works excellent in daily life

Gossip Protocols

Although gossiping really works quite well on average,
you cannot guarantee that every server will be updated.

Demers showed, that in a DDS with a “large” number
of replicas, the fraction s of servers remaining ignorant
towards an update, i.e. are still susceptible is:

Epidemic Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

p , p

s = e-(k+1)(1-s)

Example: k =1  20 % will miss the rumor
k =2  only 6% will miss the rumor

Analysis of Epidemic Protocols

Advantages:

 Scalability,Scalability, due to limited number of update messages

Disadvantage:

Epidemic Protocols

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 Spreading the deletion of data is a problem (due to an
unwanted side effect):

 Suppose, you have deleted on server S data item x, but you
may receive again an old copy of data item x from some
other server Q due to still ongoing gossiping

 Solution: Introduce death certificates

Cache Coherence ProtocolsCache Coherence Protocols

52© 2009 Universität Karlsruhe (TH), System Architecture Group

Study of your own
Not examined

Cache-Coherence Protocols

 Cache = special replica

 Often controlled by clients instead of servers

 Multiple caches with more or less outdated data

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

 Two major design criteria

 Coherence detection

 Coherence implementation

Cache Coherence Detection

 How and when can you detect that there are
inconsistencies between the (primary) replica an one
of the client caches

 A client cache can check the server periodically (or
when its TTS has expired) whether the cached

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

when its TTS has expired) whether the cached
data is still valid

 Check during an access, e.g. within transactions
with rollback

 Checks after an access (e.g. transactions), i.e.
before committing a transaction. In case of
inconsistency just roll back the transaction

Cache-Coherence Approaches

 Cache = special replica

 Centralized primary replica

 Multiple caches with more or less outdated data

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

 Two major design criteria

 Coherence detection

 Coherence implementation

Cache Coherence Detection

 Consistency checks, i.e. check whether
cached data are still consistent

 Check before a new access

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 Check during an access, e.g. within transactions
with rollback

 Checks after an access (e.g. transactions)

Cache Coherence Implementation

 No replicas of shared data
 Invalidation

 Write access invalidates all cached entries

 Cache updates

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

 Cache updates
 Write access updates cached entries

 Via snooping or primary copy

Cache Enforcement Policy

1. No Caching of shared data. Shared data are only kept
at the primary servers, which maintain consistency
using one of the primary-based replication protocols

2 If caching of shared data is allowed

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

2. If caching of shared data is allowed
1. Invalidation notifications from the server to all

caches whenever a data item is updated
2. Propagate the update

Cache Enforcement Policy

 What to do when a process updates a cached data?

 In case of read-only caches the update operation is
written to the responsible server, which has to
propagate it to all replicas to some propagation rule

ll b d h d

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 In many cases a pull-based approach is used, i.e. a
cache detects that its data is stale and requests the
server for an update

 In case of a read/ write cache the process directly
update that data item x and forwards this update to
its server (immediately or lazily)

 Write-through or write-back caches

Implementing ClientImplementing Client--Centric Centric
ConsistencyConsistency

60© 2009 Universität Karlsruhe (TH), System Architecture Group

Naive Implementation

 Each write operation gets a globally unique
identifier

 For each site we keep 2 sets or writes

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

 Read set consists of all writes relevant for the read
operation performed by a client; per write you
also add where this write has taken place

 Write sets consists of all writes performed by the
client

Monotonic Read

 When client wants to read from a server, it compares
its own read set with the write set of the server

 If the server is not up to date, it first has to pull all
missing writes before handling the local read
Alt ti l th d i l f d d t

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

 Alternatively the read is only forwarded to a sever
that has already done all client’s writes

 Similarly, you can implement the other three client-
centric consistency protocols

 More efficient solution use vector time to eliminate
the large read & write sets

ExamplesExamples

63© 2009 Universität Karlsruhe (TH), System Architecture Group

Orca
Orca Language + Runtime System
Management of Shared Objects in Orca

Causally-Consistent Lazy Replication
Processing Read Operations
Processing Write operations
Update Propagation

Orca

Examples

OBJECT IMPLEMENTATION stack;
top: integer; # variable indicating the top
stack: ARRAY[integer 0..N-1] OF integer # storage for the stack
OPERATION push (item: integer) # function returning nothing
BEGIN

GUARD top < N DO
stack [top] := item; # push item onto the stack
top := top + 1; # increment the stack pointer

OD;

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 Simplified stack object in Orca, with internal data and 2 operations.

END;
OPERATION pop():integer; # function returning an integer
BEGIN

GUARD top > 0 DO # suspend if the stack is empty
top := top – 1; # decrement the stack pointer

RETURN stack [top]; # return the top item
OD;

END;
BEGIN

top := 0; # initialization
END;

Management of Shared Objects

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

 4 cases of a process P operating on an object O in Orca.

Causal-Consistent Lazy
Replication

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 General organization of a distributed data store.
Clients also handle consistency-related communication.

Processing Read Operations

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

 Performing a read operation at a local copy.

Processing Write Operations

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

 Performing a write operation at a local copy.

