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Why Replication?

Motivation

Replicated data at multiple sites can improve …

 Availability (by redundancy), e.g.
 if primary FS crashes, standby FS still works

 Performance, e.g.
 local access is faster with reduced communication delays
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 concurrent requests can be served by n>1 servers

 Scalability, e.g.
 prevents overloading a single server (size scalability)
 avoids communication latencies (geographic scalability)

 Fault tolerance 
 masks node crashes
 implies data consistency 



Example: DFS

client

Update to
local server

Update to 
repl. server

Motivation

When can the client continue?
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Update to 
repl. server

Design considerations:

 When to propagate updates?

 What to propagate?

 Who is initiative concerning propagation?

 How strict are the consistency requirements?

 Consistency Models



Object Replication (1)

 Organization of a distributed remote object 
shared by two different clients



Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle 

concurrent invocations



Object Replication (3)

a) A distributed system for replication-aware distributed objects

b) A distributed system responsible for replica management



Two Consistency Models  

 Data Centric Model 
 Defined consistency is experienced by all clients, i.e. we must 

provide a system wide consistent view on the data store
 All clients see same sequence of operations at each 

replica, hopefully with only minor delay 
 Without additional synchronization hard to achieve in DS

Consistency Models
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 Without additional synchronization hard to achieve in DS

 Client Centric Model 
 If there are no concurrent updates (or only few compared to 

number of reads) we can weaken consistency requirements

 Consistency of the data store only reflects one client’s view
 Different clients might see different sequences of 

operations at their replicas
 Relatively easy to implement



Data Centric Consistency Models

Process Process Process

Introduction

 Distributed Data Store (DDS)
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Clients point of view:
 The DDS is capable of storing an amount of data

D D S



Distributed Data Store 

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 11

Data Store’s point of view:
 General organization of a logical data store, physically distributed 

and/or replicated across multiple nodes

 The more date we replicate the more overhead we introduce in 
preserving DDS consistency

DDS



Consistency Models

Data-Centric Consistency Model  

 Consistency Model:
 Contract between processes (clients) and DDS

 Access rules for the processes

 Properties of the “read data”, e.g. 
d th fl t th l f th l t d t
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 do they reflect the value of the last update

 A consistency model restricts potential values of a read

 If  only few restrictions 
 model is easy to use, but
 its implementation is often inefficient

 If  strong restrictions 
 model is hard to use, but
 its implementation is efficient



Continuous ConsistencyContinuous Consistency
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Amin Vahdat, Haifeng Yu: “Design and 
Evaluation of a Conit-Based Continuous 

Consistency Model for Replicated Services”
ACM Trans. on Computer Systems, 2002

Read that paper till next Monday

Conit= Consistency Unit



Distributed Data Store 

Introduction
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 When every process can write to its local replica, we 
must propagate these writes ASAP to all other replicas

DDS



Distributed Data Store 

Introduction
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 When every process can write to its local replica, we have to propagate 
these writes ASAP to all other replicas

 When one site is the primary replica, all writes are sent to it, primary 
replica propagates updates from time to time to the other replicas

DDS



Distributed Data Store 

Introduction
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 When every process can write to its local replica, we have to propagate 
these writes ASAP to all other replicas

 When one site is the primary replica, all writes are sent to it, primary 
replica propagates updates from time to time to the other replicas

 When there is only one updating process, it is responsible for 
propagating all writes to all replicas whenever this is necessary

DDS



Haifeng & Amin’s Consistency Models

 Strong (pessimistic) Consistency Model
 One-copy serializability (Bernstein, Goodman, 

1984) imposes performance overhead and limits 
system availability
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 Weak (optimistic) Consistency Model
 Tolerate relaxed consistency (i.e. delayed 

propagation of updates)
 Requires less communication, resulting in 

improved overall performance and availability



How to Quantify Inconsistency?
numerical error

order error
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staleness

 Numerical error limits: 
1. Number of writes applied to a given replica, but not yet seen by others
2. Absolute or relative numerical deviation of a conit element

 Order error limits the difference concerning the ordering at the different 
replicas, e.g. not more than 2 out of order

 Staleness places a real-time bound on the delay of write propagation among 
replicas



Characteristics of Consistency Models
p(inconsistent access)

An inconsistent access is either 
 stale/dirty reads or
 conflicting writes
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strong
consistency

weak
consistency

Curves based on workload/network characteristics

performance



TACT Toolkit

 3 wide area applications
 Distributed bulletin board service
 Airline reservation system
 Replicated load distribution front ends to a web server
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 Algorithms to bound each of the previously 
mentioned consistency metrics
 Push approach based solely on local info helps to bound 

numerical errors
 A write commitment algorithm allows replicas to agree on a 

global total write order, enforcing bounds on order errors
 Staleness is maintained by a real-time vector



Example: Numerical Errors

 Absolute maximal deviations of conit values (e.g. stock market 
prices) of n replicas
 Deviations of conit values is limited by 0.05 EURO, i.e. we regard a 

data store still consistent if the following holds, suppose we have n 
replicas at nodes N1, N2, …Nn:  i,j  [1,n], i  j

|valuei – valuej| 0.05 Euro
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 Relative numerical deviations
 A data store is still consistent as long as all conit values do not 

differ more than 0.5 %

 Numerical error can also be understood in number of updates 
having been applied to a replica at node Ni, but not yet seen by 
other (n-1) replicas
 A web cache might have not seen a batch of operations carried out 

by a web server



Order Deviations

 Some application allow different orders of updates at 
the various replicas as long as the number of 
differences are limited
 Each update is tentatively done on some local replica 

awaiting global agreement from all other replicas
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awaiting global agreement from all other replicas

 As a consequence some updates have to be rolled back and 
applied in a different order before becoming permanent



Staleness Deviations

 Some applications can live with the fact that they use 
old conit values, as long as the values are not too old
 Weather reports stay reasonable stable and accurate over 

some limited time, e.g. hours

I thi th i i ht ll t b h f
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 In this case, the main server might collect a bunch of 
updates and propagate all of them in one update message 
to all replicas after some limited time interval (e.g. 2 hours)



Continuous Consistency 
A B

<4,B> x:=x+2

x = 0; y = 0 x = 0; y = 0X = 2

<4,B> x:=x+2

X = 2
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 At vector time (0,4) replica B increments x by 2

 B propagates to A a corresponding update message

 Replica A receives 4,B: x  x+2 and makes it permanent, 
adjusting its vector time

= (0,0) =(0,4)vector clock A vector clock B

= (0,5) =(0,4)vector clock A vector clock B



Continuous Consistency (2)
A B

<4,B> x:=x+2

x = 2; y = 0

<4,B> x:=x+2
<8,A> y:=y+2

<12, A> y:=y+1

14 A *2

x = 2; y = 0x = 6; y = 3

<10,B> y:=y+5

x = 2; y = 5
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 At replica A 3 tentative operations took place, bringing replica A’s 
ordering deviation to 3

 At replica B 2 tentative operations took place, bringing replica B’s 
order deviation to 2

= (0,5) =(0,5)vector clock A vector clock B

= (9,5)vector clock A

= (13,5)vector clock A

= (15,5)vector clock A

<14,A> x:=y*2

=(0,11)vector clock B



Continuous Consistency (3)

Commited op with
permanent result 

A B

Tentative ops
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 Replica A has not yet seen 1 operation at B bringing its numerical deviation to 1

 The weight of this deviation can be expressed as the max. difference (5)
between the committed values of A (2,0) and the not yet seen values having 
been updated at B (which results from y)

 Similar considerations with replica B

after tentative ops

Numerical deviation 
concerning # of operations

Numerical deviation
Concerning maximal diff.



Continuous Consistency (4)
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 Choosing the appropriate granularity for a conit 
(a) Two updates lead to update propagation

 Example “Update propagation rule”: When deviation in the 
number of update operations per conit is >1, then propagate



Continuous Consistency (5)
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 Choosing the appropriate granularity for a conit 
(b) No update propagation is needed (yet), although 
2 update operations have been done on replica 1 
(but not on the same conit)



Consistent Order of OperationsConsistent Order of Operations
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Operations on a DDS

 read: ri(x):b client Pi reads from data item x, 
read returns value b

 write: wi(x):a client Pi writes to data item x
setting it to the new value a

Introduction
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 Operations not instantaneous
 Time of issue (when request is sent by client)

 Time of execution (when request is executed at a replica)

 Time of completion (when reply is received by client)



Example

time

P ( ) 2( ) 1

t1 t2 t3 t4 t5

Introduction

time interval 
too small
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P1

P2 r2(x):1

w1(x):2w1(x):1

r2(x):2r2(x):?

Depending on the speed 
of the update propagation



Consistency

 Updates & concurrency result in conflicting operations

 Conflicting operations:
 Read-write conflict

 Write-write conflict

Introduction
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 Consistency:
 Conflicting operations must be executed in same order “everywhere”

 Partial order: order of a single client’s operations must be maintained

 Total order: interleaving of all clients’ conflicting operations

 Program order must be maintained

 Data coherence must be respected



Example

Process P1 (on node 1): 
… x = 0;…

Process P2 (on node 2): 
… x = 1;…

Introduction
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Process P3 (on node 3):
… print(x); … print(x);…

Process P4 (on node 4):
… print(x); … print(x);…

 Do not accept: 01 and 10 together



Goals of Consistency Models  

Expectation:
An application programmer expects a behavior of a DDS
being similar to that of a

one copy data store
For sake of simplicity let’s assume reads and writes are

Consistency Models
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For sake of simplicity let s assume, reads and writes are

atomic
Goal:

Each process accessing shared data wants to read a value, that 
is as “up-to-date” as possible

Comment:
Ideally each read gets the value of the last write, however, due 
to propagation delays that is often not possible 



Data Centric Consistency ModelsData Centric Consistency Models
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Strong Ordering
Weak Ordering
Main Examples: 
DDB, DFS, DSM 

(in a later lecture)



Consistency Models

Data-Centric Consistency Models  

 Strong ordering:
 Strict consistency

 Linear consistency

 Sequential consistency
Impetus on 
individual operations
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 Causal consistency

 FIFO or PRAM consistency

 Weak ordering:
 Weak consistency

 Release consistency

 Entry consistency

Impetus on group of 
individual operations



Strict Consistency

Definition:
A DDS is strict consistent if every read on a data item
returns the value corresponding to the result of the
most recent write on x, regardless of the location of the
replica x or of the processes doing the reads or writes

Consistency Models
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p p g

Analysis:
1. In a single processor system strict consistency is for free, it’s 

the behavior of main memory with atomic reads and writes

2. However, in a DSM without the notion of a global time it is 
hard to determine what is the most recent write



Strict Consistency

R(x)a

Consistency Models
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Behavior of two processes, operating on the same data item x of a

a) strictly consistent DDS

b) DDS that is not strictly consistent

If time interval
is sufficient large



time

P1

P2 r(y)? r(y)?

w(y)2w(y)1

Strict Consistency Problems 

r(y)2

t1 t2 t3 t4 t5

Consistency Models
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Assumption: y = 0 is stored on node 2,
P1 and P2 are processes on node 1 and 2,

Due to message delays r(y) at 
t = t2 may result in 0 or 1 and at
t = t4 may result in 0, 1 or 2

Furthermore:  If y migrates to node 1 between t1 and t3+then r(y) issued at time t2 may even get value 2 
(i.e. “back to the future”).



time

P1

P2

P3

r(y)

iw(y)

iw(y)

r(x)

iw(y)

iw(x)

iw(x)*

Strict Consistency (3) 

Consistency Models
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P3

DDS r(y):0

iw(y)

w(y):1 w(y)2

iw(y)

r(x):2w(y)3

operations are interchangeableResult:
Global timing order of all distinguishable accesses remains preserved
Contemporary non conflicting accesses can be ordered arbitrarily 

w(x)2w(x)1

*Legend:
iw(xyz) is incrementing an integer xyz, having been initialized with 0.



Definition:
A DDS offers sequential consistency if all processes see
the same order of accesses to the DDS, whereby 

1. reads and writes of an individual process occur in their 

Sequential Consistency1

Consistency Models
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program order

2. reads and writes of different processes occur in some 
sequential order as long as interleaving of concurrent 
accesses is valid.

1Leslie Lamport 1979 to define the expected behavior of SMPs,
“How to Make a Multiprocessor Computer that Correctly Executes 
Multiprocessor Programs”, IEEE Transactions on Computers.



Sequential Consistency 

 Sequential consistency is weaker than strict consistency

 No global timing ordering is required

 Possible Implementation:
 Writes in same sequential order in all processes (they must agree 

h d )

Consistency Models
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upon the order)

 Each process sees all writes from all other processes

 Time to complete a write does no affect consistency (however, 
might affect the user)

 Before we do the next write we must have completed the 
previous one



Sequential Consistency (2)
time

P1

P2

w(x):a

w(x):b

Consistency Models
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P3

P4 r(x):a

r(x):a

r(x):b

r(x):b

1. Each process sees all accesses in the same order, 
even though  no strict consistency

2. With rubber band method you can establish a sequential order



Non-Sequential Consistent
time

P1

P2

w(x):a

w(x):b

Consistency Models
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P3

P4 r(x):a

r(x):a

r(x):b

r(x):b

violation



Sequential Consistency 

~write
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 Three concurrently-executing processes

~read



Sequential Consistency 
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 4 (out of 90) valid execution sequences for the processes of previous 
example

(a) First P1, then P2, then P3 …
(b) P1 starts, then P2 starts and completes, then P1 completes, then P3
(c) …

 Signature represents the concatenated printouts in order P1, P2, P3

P1 P2 P3



Summary: Sequential Consistency

 Any valid interleaving of read and write operations of 
concurrent processes at different sites is acceptable 
for a sequential consistent DDS, as long as all 
processes see the same interleaving of operations
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 Interesting problem:
How to achieve sequential consistency?

 Read: L. Lamport: “How to make a Multiprocessor 
Computer that Correctly Executes Multiprocessor 
Programs”, IEEE Trans. on Comp., Sept. 1979



Primary Backup Replication for Seq. Cons.

FEC RM

Primary

Backup

RM

passive
li ti
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1. Frontend sends write request with an unambiguous ID to primary server

2. Primary checks whether it already has performed the request

3. Primary fulfills write locally and stores the answer

4. Primary multicast the update to all other replicas. Backups send their Ack.

5. Having received all Ack. Primary sends back the answer to frontend

FEC

Backup
RM replication



“Write Through” Update Propagation

 Before performing a write operation a process first 
sends a completely sorted “update-message” via 
multicast to all replicas (incl. to itself)

 All processes agree on a order of update-operations if 
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p g p p
there are multiple “update-messages”

 All replicas will see the same sequence of updates, 
sequential consistency



Linear Consistency 

Consistency Models

Definition: 
A DDS is said to be linear consistent when each
operation has time-stamp TS and the following holds:

1. DDS is sequential consistent
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q

2. In addition, if 

TSOP1(x) < TSOP2(y), then 

OP1(x) should precede OP2(y)
(It’s assumed that the time stamps are precise enough)



Linear Consistency 

Assumption:
Each operation is assumed to receive a time stamp using a
globally available clock, but with only finite precision, e.g.
some loosely coupled synchronized local clocks.

Linear consistency is stronger than sequential one, i.e.

Consistency Models
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a linear consistent DDS is also sequentially consistent.

Corollar: With linear consistency no longer each valid 
interleaving of reads and writes is allowed, but
this ordering also must obey the order implied by 
the inaccurate time-stamps of these operations.

Linear consistency is harder to achieve (see Attiya and Welch: 
“Sequential Consistency versus Linearizability”, 
ACM Trans. Comp. Syst., May 1994)



Causal Consistency (1)

Definition:
A DDS is said to provide causal consistency if,
the following condition holds:

Writes that are potentially causally related* must be 

Consistency Models
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p y y
seen by all tasks in the same order.  Concurrent writes 
may be seen in a different order on different machines.

 If event B is potentially caused by event A, causality requires 
that everyone else also sees first A, and then B.



Definition:
write2 is potentially dependent on write1, when there 
is a read between these 2 writes which may have 
influenced write2 

Causal Consistency (2)

Consistency Models
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Corollary: 
If write2 is potential dependent on write1  the only valid 
and consistent sequence is: write1  write2.



Example: time

P1

P2 r(x):a

w(x):a

w(x):b

w(x):c
potential dependent

Causal Consistency (3)

Consistency Models
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P3 r(x):a r(x):c r(x):b

P4 r(x):a r(x):b r(x):c

Result: (causal consistent, but not sequentially consistent) 
P3 and P4 can see updates on the shared variable x in a 
different order, because w(x):b and w(x):c are concurrent



Causal Consistency (4)
Example: time

P1

P2 r(x):a

w(x):a

w(x):b

potential dependent

Consistency Models
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P3 r(x):a r(x):b

P4 r(x):b r(x):a

Violation of causal consistency



Causal Consistency (5)

Implementing causal consistency requires keeping track 
of which processes have seen which writes.

Construction and maintenance of a dependency graph,
E i hi h ti ll l t d

Consistency Models
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Expressing which operations are causally related 
(using vector time stamps)



FIFO or PRAM Consistency*

Definition:
DDS implements FIFO consistency, when all writes of
one process are seen in the same order by all other
processes, i.e. they are received by all other processes
in the order they were issued

Consistency Models
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Corrolar: 
Writes on different processes are concurrent

in the order they were issued.
However, writes from different processes may be seen
in a different order by different processes.

*Pipelined RAM see Lipton and Sandberg



Implementation of FIFO Consistency

Tag each write-operation of every process with:

(PID, sequence number)

Consistency Models
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Example:
Both writes are seen on processes P3 and P4 in a different order,
they still obey FIFO-consistency, but not causal consistency because 
write 2 is dependent on write1( r(x):1 can not be read by P3 or P4)

time

P1 w(x):1

FIFO or PRAM Consistency (2) 

Consistency Models
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P1

P2 r(x):1

w(x):1

w(x):2 w(x):3

P3

P4

r(x):1

r(x):2

r(x):2

r(x):1

potential dependent



FIFO Consistency (4)

Process P1 Process P2

x = 1;
if (y == 0) kill (P2);

y = 1;
if (x == 0) kill (P1);

Example: Two concurrent processes with variable x,y = 0;

Consistency Models
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Result:
With sequential consistency one might conclude:
Either P1 or P2 or no process is aborted.

With FIFO consistency both tasks may be aborted,

Assume:
P1 sees y via read(y):0 before P1 sees P2’s write(y):1 and
P2 sees x via read(x):0 before P2 sees P1’s write(x):1



Weak Consistency

Review: FIFO consistency reflects the correct sequence 
of all writes of each process 

Observation:
In many applications the exact sequence of 
i l ti i t th t i t t b t

Consistency Models
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single operations is not that important, but
programmers want to influence the impetus 
of a group of operations, e.g. updating a data 
record or a complete list of data items


Idea: Group relevant operations together in a 

“synchronized section” and synchronize after the 
last write respectively before the first read



Weak Consistency

 Every read or write operates only locally

 We introduce synchronization variables
 No relationship with normal variables

 Call synchronize() synchronizes the local copies
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 Each synchronize call serves as a synchronization 
event, i.e. it

1. broadcasts its local updates to all other participating 
processes at different nodes

2. collects all remote updates from the remote copies before 
starting a new synchronization section  successive reads 
read up-to-date values



Consistency Models

Weak Consistency 

Definition:
DDS implements weak consistency, if the following holds:

 Accesses to synchronization variables* obey 
sequential consistency

No new synchronize is allowed to be performed
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*Normal and synchronization variables, Dubois et al: Synchronization, 
coherence and event ordering in multiprocessors, Distr. Comp., 1993

 No new synchronize is allowed to be performed 
until all previous writes have been completed 
everywhere due to the current synchronize

 No data access (read or write) is allowed to be 
performed until all previous accesses to 
synchronization variables have been performed



Interpretation (1)

Consistency Models

 A synchronization variable S knows just one operation: 
synchronize(S) responsible for all local replicas of the DDS

 Whenever a process calls synchronize(S) its local updates 
will be propagated to all replicas of the DDS and all updates of 
the other processes will be applied to its local replica
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 All tasks see all accesses to synchronization-variables in the 
same order
 In other words, if task P1 calls synchronize(S1) at the same time 

that task P2 calls synchronize(S2), the effect will be the same as if 
either synchronize(S1) preceded synchronize(S2), or vice versa



Interpretation (2)

No data access allowed until all previous accesses
to synchronization-variables have been done

 By doing synchronize() before reading shared 
d t t k b f tti “ t d t l ”

Consistency Models
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data, a task can be sure of getting “up to date value”

 Unlike previous consistency models “weak 
consistency” forces the programmer to collect critical 
operations all together



Via synchronization you can enforce that you’ll get up-to-date 
values. Each process must synchronize if its writes should be 
seen by others.

Process requesting a read without a previous synchronization 
can get out-of-date values.

Example1: Weak Consistency

Consistency Models
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can get out of date values.

Example: time

P1

P2

P3

S

S

S

w(x):1 w(x):2

r(x):NIL r(x):2

r(x):1 r(x):2

r(x):2



time

P1

P2

sync1

sync3

Example2: Weak Consistency?

Consistency Models

w(x):1 w(x):2

w(x):3
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P3

sync2 r(x):2

r(x):Nil r(x):1

r(x):2P4

Assume: 
sync1 < sync2 < sync3 according to sequential consistency 

On all nodes this synchronization sequence can be observed



System with “No Weak Consistency”

w(x):1 w(x):2

Example: time

P1 S

Consistency Models
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r(x):1P2 S

Impossible to get an 
outdated value of x
at this point in time



Possible Implementation

Simple implementation:
 A central synchronization server determines the 

sequence of synchronization operations

 Per synchronize:

Consistency Models
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 Per synchronize:

 Local data copy broadcasts all updated variable 
values to the centralized sync-server

 Local data copy gets all update-values from all 
other data copies in the DDS

 Try to find a more distributed solution!!



Analysis: Weak Consistency 

Whenever synchronize() is called, DDS can not 
distinguish between:

A: begin of a synchronized section SS due to a 
sequence of successive reads

Consistency Models
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B: end of a synchronized section SS due to a 
previous sequence of writes 

 If we would distinguish between those two different 
synchronization events 

we might find more efficient solutions



Release Consistency

Idea:
Distinguish between memory accesses in front of a 
CS acquire() and behind of a CS release()

Design:
When an acquire() is done the calling process will

Consistency Models
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When an acquire() is done the calling process will 
be blocked until all its local data copies have been 
updated

When a release() is done, all the protected data
that have been updated within the CS have to be 
propagated to all replicas 



Release Consistency

w(x):1

r(x):2

w(x):2

Example: time

P1

P2

release(L)

release(L)

acquire(L)

acquire(L)

Consistency Models
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P3 r(x):1

Valid event sequence for release consistency,
even though P3 missed to use acquire and release

Remark: Acquire is more than a lock (enter_critical_section), it waits
until all updates on protected data from other nodes are 
done to its local store before it enters the critical section



Release Consistency

Definition:
A DDS offers release consistency if the
following three conditions hold:

1. Before a read or write operation on shared protected data is 
performed, all operations needed to do the previous acquire 

t h l t d f ll
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must have completed successfully
 The local copies of the protected data are up to date, i.e. they 

are consistent with their remote data

2. Before a release is allowed to be performed, all previous 
(reads and) writes by the process must have been 
completed and the updated values are sent to the replicas

3. Accesses to synchronization variables are FIFO consistent.



Release Consistency

Simplified implementation:

 Centralized coordinator:
 acquire() corresponds to lock CS

 Centralized coordinator knows about all locks
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 Centralized coordinator knows about all locks

 release() sends all updated values to the coordinator 
which forwards them to all other participants



Lazy Release Consistency*

Consistency Models

Problems with “eager” release consistency:
When a release is done, the process doing the release
pushes out all the modified data to all processes that
already have a copy and thus might potentially read
them in the future.

Th i t t ll if ll th t t hi ill
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*Keleher, Cox, Zwaenepol: Lazy Release Consistency”, 
19th Symp on Computer Architecture, ACM, 1992

There is no way to tell if all the target machines will
ever use any of these updated values in the future 

above solution is a bit inefficient, too much overhead.



Lazy Release Consistency

With “lazy” release consistency nothing is done at a release().

However, at the next acquire() the processor 
determines whether it already has all the data it 
needs
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needs. 

Only when it needs updated data, it needs to send
messages to those places where the data have been
changed in the past.

Time-stamps help to decide whether a data is out-dated



Eager versus Lazy Release Consistency
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Entry Consistency

Unlike release consistency, entry consistency requires
that every ordinary shared variable can be protected by
a distinct synchronization variable

Before a process can enter a critical section it has to
i ll d d h i ti i bl
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acquire all needed synchronization variables

When an acquire is done on a synchronization variable,
only those ordinary shared variables guarded by that
synchronization variable are made consistent 

A list of shared variables may be assigned to a
synchronization variable (to reduce overhead)



Entry Consistency*

Definition:
A DSM exhibits entry consistency if the following holds:

1. An acquire access of a sync-variable is not allowed to perform 
with respect to a process until all updates to the guarded 
shared data have been performed with respect to that process

2 Before an exclusive mode access to a sync-variable by a

Consistency Models
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*Bershad, Zerkauskas, Sawdon: “The Midway DSM System”, 
Proceedings of the IEEE COMPCON Conf., 1993”,

2. Before an exclusive mode access to a sync variable by a 
process is allowed to perform with respect to that process, no 
other process may hold this sync-variable, not even in non-
exclusive mode

3. After an exclusive mode access to a sync-variable has been 
performed, any other process’ next nonexclusive mode access 
to that sync-variable may not be performed until it has 
performed with respect to that variable’s owner



How to synchronize in Entry Consistency?

 Every synchronization variable has a current owner

 An owner may enter and leave critical sections protected by this 
synchronization variable as often as needed without sending 
any coordination message to the others

 A process wanting to get a synchronization variable has to send
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 A process wanting to get a synchronization variable has to send 
a message to the current owner. 

 The current owner hands over the synchronization variable all 
together with all updated values of its previous writes

 Multiple reads in the non-exclusive read modus are possible.



Entry Consistency 

Consistency Models
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 A valid event sequence for entry consistency



Summary of Consistency Models

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order.  Accesses are furthermore ordered 
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order.  Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO Writes from every single process are seen in their true order by all processes. Writes from

Consistency Models
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a) Strong consistency models (no synchronization)
b) Weak consistency models (with explicit synchronization)

FIFO Writes from every single process are seen in their true order by all processes. Writes from 
different processes may be seen in different order on each process.

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)



Coherence ~ versus Consistency Models

 Consistency models deal with right ordering of 
operations of different processes on a set of data

 A coherence model deals with the right ordering of 
concurrent writes to one single data item
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 Sequential consistency is the most popular model for data 
coherence



Client Centric ConsistencyClient Centric Consistency
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Motivation
Eventual Consistency
Monotonic Reads
Monotonic Writes
Read-your-Writes
Writes-follow-Reads



Client Centric Consistency

Motivation

Up to now:
 System wide consistent view on the DDS* 

independent of number of involved processes 
and potentially concurrent updates
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 Atomic operations on DDS

 Processes can access local copies

 Updates have to be propagated, whenever it is 
necessary to fulfill the requirements of the 
consistency model (e.g. release consistency)

  weaker consistency models?
*DDS = Distributed Data Store



Client Centric Consistency

 Provides guarantees about ordering of operations only for a 
single client, i.e.
 Effects of an operations depend on the client performing it
 Effects depend on the history of client’s operations
 Applied only when requested by the client
 No consistency guarantees for interleaved accesses of different

Motivation
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 No consistency guarantees for interleaved accesses of different 
clients

 Application:
 Rare and/or no concurrent updates of the data, e.g.

 Each domain of DNS has an authority, that is allowed to update 
its entries, i.e. no write-write conflicts

 Secondary DNS-server gets new name-bindings after a while 
 A Webpage is only update by its webmaster

 Stale data can be accepted for a while



Eventual Consistency
Client Centric Consistency Models

Client
process

replica

Local and/or 
remote accesses

© 2009 Universität Karlsruhe, System Architecture Group 87

DDS network

Goal: Weaker, i.e. less restricted consistency models 

Idea: Data of DDS will become consistent after “some time”



Example: Eventual Consistency
Client Centric Consistency Models
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 Mobile user accessing different replicas of a distributed database 
crossing domain borders

 First ideas in Terry: “The Case for Non-transparent Replication: 
Examples from Bayou”



Eventual Consistency

If updates do not occur for a long period of time, all replicas will 
gradually become consistent

 Requirements:
 Few read/write conflicts
 No write/write conflicts, because “each data item” has an owner

who is the only subject being allowed to update that data item

Client Centric Consistency Models
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y j g p

 Examples:
 DNS:

 No write/write conflicts
 Updates (e.g. new entries) are slowly (1 – 2 days) propagating 

to all caches

 WWW:
 Few write/write conflicts (webmaster is the only writer)
 Mirrors eventually updated
 Cached copies (browser or Proxy) replaced



Implement Eventual Consistency

How to propagate updated data?

 Push model
 After a timeout/periodically send your updates to all other 

replicas

Client Centric Consistency Models
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 Pull-model
 After timeout/periodically try to get the newest data from all 

replicas, e.g. web-cache

 Push-Pull model
 Mutual actualization between the replicas
 Example: DNS

 Notification message that zones have changed in DNS
 Via push updates from primary to secondary



4 Client Centric Consistency Models1

 Monotonic Reads

 Monotonic Writes

Read Your Writes

Client Centric Consistency Models
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 Read Your Writes

 Writes Follow Reads

1Terry et al: “The Case for Non-transparent Replication: 
Examples from Bayou”, IEEE Data Engineering, Vol. 21, 1998



Client Centric Consistency Models

Assumptions:

 DDS is physically distributed across different nodes

 A process P -accessing the DDS- always connects to 
a local often the nearest replica

Client Centric Consistency Models
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a local, often the nearest replica

 Each data item1 has one single owner, being the only 
subject who is allowed to update this data 

 no write/write conflicts

1Typical data item: file



Notation

 writes do not completely overwrite data item x

 xi[t] is the version of data x at time t at replica Li 
(xi[t] = result of a sequence of earlier writes since 
initialization)

Client Centric Consistency Models

A client centric consistent DDS guarantees that
at Lj all previous writes at Li have been updated 

before the first write can take place at Lj
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 According write-set is denoted as: WS(xi[t]), i.e. x 
has taken into account at least all writes at Li until 
time t

 WS(xi[t1]; xj[t2]) denotes all writes until t1 at replica Li

and all writes until t2 at Lj



Timeline Example

L1

w(x1[t1])

t1

WS(x1) r(x1)

t3

Client Centric Consistency Models

t
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L2

Note:
In the above example we only regard one data item x
xi denotes its replica at note Li

w(x1[t2])WS(x1; x2)

r(x2)

t2 t4

propagate



Implement Client Centric Consistency

Naive Implementation (ignoring performance):
 Each write gets a globally unique identifier 

 Identifier is assigned by the server that accepts this 
write operation for the first time

Implementation of CCC
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 For each client two sets of write identifiers are 
maintained:

 Read-set(client C) := RS(C)
{write-IDs relevant for the reads of this client C}

 Write-set(client C) := WS(C)
{write-IDs having been performed by client C}



Monotonic Reads

Definition:
A DDS provides “monotonic-read” consistency
if the following holds:

Wh P l d h d th l

Monotonic Reads
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Whenever a process P already has read the value 
v of a data item x, then any successive read on x 
by P at any location L will return the same value 
v or a more recent one v’ (independently of the 
replica at location L where this new read is done)

Note: At some other location L‘ another process P 
concurrently might read: v(old) or v or v‘



Monotonic Reading

 Read operations performed by process P at two

time time

Monotonic Reads
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 Read operations performed by process P at two 
different local copies of data item x

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads, 
suppose x is a vector consisting of 2 entries, i.e.
x = <x[1], x[2]> and 
x1 changed x[1], whereas x2 has changed x[2]
(the second read only reflects changes made to x[2])



Systems with Monotonic Reads

 Distributed e-mail database with distributed 
and replicated user-mailboxes

 Emails can be inserted at any location

Monotonic Reads
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 However, updates are propagated in a lazy 
(i.e. on demand) fashion



Example: Non Monotonic Reads

Monotonic Reads

P1

S1

S2

incr(x):a r(x):a incr(x):b
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P2
r(x):b instead of a + b



Implement Monotonic Reads

Monotonic Reads

Basic Idea:
Client keeps a log of writes it has already seen, and 
makes sure that each replica he wants to read is up 
to date

h l b ll d ( d f
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 Each write gets a globally unique id (identifying 
operation and writer)

 Each replica keeps a log of writes that have occurred 
on that replica

 Each client keeps track of a set of write identifiers
 Read set:= {writes relevant to reads done by the client}



Implement Monotonic Reads

Monotonic Reads

 Read operation:

 Client hands its read-set to the server of the local 
replica, whenever it wants to read from it
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 Server checks the writes in this read set whether 
all of them have been done on its local replica

 If not yet done, the server retrieves all missing 
writes on its replica before it replies to the client’s 
read request



Implement Monotonic Reads

C S1
read RS={w1, w2}  

C S2
read

Client Centric Consistency Models

w2

w3 Update
propagation

RS={w1, w2, w3}

© 2009 Universität Karlsruhe, System Architecture Group 102

Assume: Client C has already read from S1 and S3 implying 2 read sets
When C wants to read from S2, C hands its current RS(C)={w1,w2} to S2

S2 controls whether all writes of RS(C) have taken place at S2

If not, S2 has to be updated before reading can be allowed!

C S3
read RS={w1}

w1

propagation



Analysis

Monotonic Reads

 The logs (read sets) can become very large

 To reduce space and time overhead:

 You can use the usual session semantics to clear 
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logs at the end of a session 

 before a client leaves the session, its session 
manager provides that all replicas are updated 
with all client’s writes



Monotonic Writes

Definition:
A DDS provides “monotonic-write” consistency if 
the following holds:

A write by a process P on a data item x is

Monotonic Writes
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A write by a process P on a data item x is 
completed before another write by the same 
process P can take place on that x.

Remark: Monotonic-writing ~ FIFO consistency

Only applies to writes from one client process P

Different clients may see the writes of process P in any 
order



Monotonic Writes

Monotonic Writes
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 The write operations performed by a single process P 
at two different replicas of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write 
consistency



Each client keeps a write-set = {all writes this 
client has previously performed}

 Write operation:

Implement Monotonic Writes (1)

Monotonic Writes

 Whenever a client C wants to perform a write on a 
local replica it hands its current write-set to the 
corresponding local server 

 This server checks whether all writes of C’s write 
set have been done yet

 If not, it contacts the other concerned server(s) to 
initiate the propagation of the missing writes
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Implement Monotonic Writes (2)

 Each write gets an unambiguous sequence number

 Each replica keeps newest sequence number
 Delay writes with a too high sequence number as long as all 

missing writes have been updated on the local copy

Monotonic Writes
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Read Your Writes

Definition:
A DDS provides “read your write” consistency if the
following holds:

The effect of a write operation by a process P on

Read your Writes
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The effect of a write operation by a process P on 
a data item x at a location L will always be seen 
by a successive read operation by the same 
process wherever this read will take place

Example of a missing read your write consistency:
Updating a website with an editor, if you want to view your 
updated website, you have to refresh it, otherwise the browser 
uses the old cached website content



Example: Read Your Writes

Read your Writes
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a) A DDS providing read-your-writes consistency

b) A DDS that does not



Writes Follow Reads

Definition:
A DDS provides “writes-follow-reads” consistency if 
the following holds:

Writes Follow Reads
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A write operation by a process P on a data item x
following a previous read by the same process is 
guaranteed to take place on the same or even a 
more recent value of x, than the one having been 
read before.



Writes Follow Reads

Writes Follow Reads

© 2009 Universität Karlsruhe, System Architecture Group 111

a) A writes-follow-reads consistent DDS

b) A DDS not providing writes-follow-reads 
consistency



Summary on Consistency Models

An appropriate consistency model depends on following trade-offs:

 Consistency and redundancy
 All replicas must be consistent
 All replicas must contain full state
 Reduced consistency → reduced reliability

Consistency Models
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 Consistency and performance
 Consistency requires extra work 
 Consistency requires extra communication
 May result in loss of overall performance

 Consistency and scalability
 Consistency requires extra work
 Consistency requires extra communication
 Strong consistency weakens scalability


