
Distributed SystemsDistributed Systems

14 Consistency 14 Consistency

1© 2009 Universität Karlsruhe, System Architecture Group

June-29-2009
Gerd Liefländer

System Architecture Group

Outline

 Motivation & Introduction

 Consistency Models

 Continuous Consistency Model

C C d l

Overview

© 2009 Universität Karlsruhe, System Architecture Group 2

 Data-Centric Consistency Models
 Strong Consistency

 Weak Consistency

 (Eventual) Client Centric Consistency Models
 Monotonic Reads/Writes

 Read Your Writes/Writes Follow Reads

Motivation & IntroductionMotivation & Introduction

3© 2009 Universität Karlsruhe, System Architecture Group

Why Replication?

Motivation

Replicated data at multiple sites can improve …

 Availability (by redundancy), e.g.
 if primary FS crashes, standby FS still works

 Performance, e.g.
 local access is faster with reduced communication delays

© 2009 Universität Karlsruhe, System Architecture Group 4

 concurrent requests can be served by n>1 servers

 Scalability, e.g.
 prevents overloading a single server (size scalability)
 avoids communication latencies (geographic scalability)

 Fault tolerance
 masks node crashes
 implies data consistency

Example: DFS

client

Update to
local server

Update to
repl. server

Motivation

When can the client continue?

© 2009 Universität Karlsruhe, System Architecture Group 5

Update to
repl. server

Design considerations:

 When to propagate updates?

 What to propagate?

 Who is initiative concerning propagation?

 How strict are the consistency requirements?

 Consistency Models

Object Replication (1)

 Organization of a distributed remote object
shared by two different clients

Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle

concurrent invocations

Object Replication (3)

a) A distributed system for replication-aware distributed objects

b) A distributed system responsible for replica management

Two Consistency Models

 Data Centric Model
 Defined consistency is experienced by all clients, i.e. we must

provide a system wide consistent view on the data store
 All clients see same sequence of operations at each

replica, hopefully with only minor delay
 Without additional synchronization hard to achieve in DS

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 9

 Without additional synchronization hard to achieve in DS

 Client Centric Model
 If there are no concurrent updates (or only few compared to

number of reads) we can weaken consistency requirements

 Consistency of the data store only reflects one client’s view
 Different clients might see different sequences of

operations at their replicas
 Relatively easy to implement

Data Centric Consistency Models

Process Process Process

Introduction

 Distributed Data Store (DDS)

© 2009 Universität Karlsruhe, System Architecture Group 10

Clients point of view:
 The DDS is capable of storing an amount of data

D D S

Distributed Data Store

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 11

Data Store’s point of view:
 General organization of a logical data store, physically distributed

and/or replicated across multiple nodes

 The more date we replicate the more overhead we introduce in
preserving DDS consistency

DDS

Consistency Models

Data-Centric Consistency Model

 Consistency Model:
 Contract between processes (clients) and DDS

 Access rules for the processes

 Properties of the “read data”, e.g.
d th fl t th l f th l t d t

© 2009 Universität Karlsruhe, System Architecture Group 12

 do they reflect the value of the last update

 A consistency model restricts potential values of a read

 If only few restrictions
 model is easy to use, but
 its implementation is often inefficient

 If strong restrictions
 model is hard to use, but
 its implementation is efficient

Continuous ConsistencyContinuous Consistency

13© 2009 Universität Karlsruhe, System Architecture Group

Amin Vahdat, Haifeng Yu: “Design and
Evaluation of a Conit-Based Continuous

Consistency Model for Replicated Services”
ACM Trans. on Computer Systems, 2002

Read that paper till next Monday

Conit= Consistency Unit

Distributed Data Store

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 14

 When every process can write to its local replica, we
must propagate these writes ASAP to all other replicas

DDS

Distributed Data Store

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 15

 When every process can write to its local replica, we have to propagate
these writes ASAP to all other replicas

 When one site is the primary replica, all writes are sent to it, primary
replica propagates updates from time to time to the other replicas

DDS

Distributed Data Store

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 16

 When every process can write to its local replica, we have to propagate
these writes ASAP to all other replicas

 When one site is the primary replica, all writes are sent to it, primary
replica propagates updates from time to time to the other replicas

 When there is only one updating process, it is responsible for
propagating all writes to all replicas whenever this is necessary

DDS

Haifeng & Amin’s Consistency Models

 Strong (pessimistic) Consistency Model
 One-copy serializability (Bernstein, Goodman,

1984) imposes performance overhead and limits
system availability

© 2009 Universität Karlsruhe, System Architecture Group 17

 Weak (optimistic) Consistency Model
 Tolerate relaxed consistency (i.e. delayed

propagation of updates)
 Requires less communication, resulting in

improved overall performance and availability

How to Quantify Inconsistency?
numerical error

order error

© 2009 Universität Karlsruhe, System Architecture Group 18

staleness

 Numerical error limits:
1. Number of writes applied to a given replica, but not yet seen by others
2. Absolute or relative numerical deviation of a conit element

 Order error limits the difference concerning the ordering at the different
replicas, e.g. not more than 2 out of order

 Staleness places a real-time bound on the delay of write propagation among
replicas

Characteristics of Consistency Models
p(inconsistent access)

An inconsistent access is either
 stale/dirty reads or
 conflicting writes

© 2009 Universität Karlsruhe, System Architecture Group 19

strong
consistency

weak
consistency

Curves based on workload/network characteristics

performance

TACT Toolkit

 3 wide area applications
 Distributed bulletin board service
 Airline reservation system
 Replicated load distribution front ends to a web server

© 2009 Universität Karlsruhe, System Architecture Group 20

 Algorithms to bound each of the previously
mentioned consistency metrics
 Push approach based solely on local info helps to bound

numerical errors
 A write commitment algorithm allows replicas to agree on a

global total write order, enforcing bounds on order errors
 Staleness is maintained by a real-time vector

Example: Numerical Errors

 Absolute maximal deviations of conit values (e.g. stock market
prices) of n replicas
 Deviations of conit values is limited by 0.05 EURO, i.e. we regard a

data store still consistent if the following holds, suppose we have n
replicas at nodes N1, N2, …Nn: i,j [1,n], i j

|valuei – valuej| 0.05 Euro

© 2009 Universität Karlsruhe, System Architecture Group 21

 Relative numerical deviations
 A data store is still consistent as long as all conit values do not

differ more than 0.5 %

 Numerical error can also be understood in number of updates
having been applied to a replica at node Ni, but not yet seen by
other (n-1) replicas
 A web cache might have not seen a batch of operations carried out

by a web server

Order Deviations

 Some application allow different orders of updates at
the various replicas as long as the number of
differences are limited
 Each update is tentatively done on some local replica

awaiting global agreement from all other replicas

© 2009 Universität Karlsruhe, System Architecture Group 22

awaiting global agreement from all other replicas

 As a consequence some updates have to be rolled back and
applied in a different order before becoming permanent

Staleness Deviations

 Some applications can live with the fact that they use
old conit values, as long as the values are not too old
 Weather reports stay reasonable stable and accurate over

some limited time, e.g. hours

I thi th i i ht ll t b h f

© 2009 Universität Karlsruhe, System Architecture Group 23

 In this case, the main server might collect a bunch of
updates and propagate all of them in one update message
to all replicas after some limited time interval (e.g. 2 hours)

Continuous Consistency
A B

<4,B> x:=x+2

x = 0; y = 0 x = 0; y = 0X = 2

<4,B> x:=x+2

X = 2

© 2009 Universität Karlsruhe, System Architecture Group 24

 At vector time (0,4) replica B increments x by 2

 B propagates to A a corresponding update message

 Replica A receives 4,B: x x+2 and makes it permanent,
adjusting its vector time

= (0,0) =(0,4)vector clock A vector clock B

= (0,5) =(0,4)vector clock A vector clock B

Continuous Consistency (2)
A B

<4,B> x:=x+2

x = 2; y = 0

<4,B> x:=x+2
<8,A> y:=y+2

<12, A> y:=y+1

14 A *2

x = 2; y = 0x = 6; y = 3

<10,B> y:=y+5

x = 2; y = 5

© 2009 Universität Karlsruhe, System Architecture Group 25

 At replica A 3 tentative operations took place, bringing replica A’s
ordering deviation to 3

 At replica B 2 tentative operations took place, bringing replica B’s
order deviation to 2

= (0,5) =(0,5)vector clock A vector clock B

= (9,5)vector clock A

= (13,5)vector clock A

= (15,5)vector clock A

<14,A> x:=y*2

=(0,11)vector clock B

Continuous Consistency (3)

Commited op with
permanent result

A B

Tentative ops

© 2009 Universität Karlsruhe, System Architecture Group 26

 Replica A has not yet seen 1 operation at B bringing its numerical deviation to 1

 The weight of this deviation can be expressed as the max. difference (5)
between the committed values of A (2,0) and the not yet seen values having
been updated at B (which results from y)

 Similar considerations with replica B

after tentative ops

Numerical deviation
concerning # of operations

Numerical deviation
Concerning maximal diff.

Continuous Consistency (4)

© 2009 Universität Karlsruhe, System Architecture Group 27

 Choosing the appropriate granularity for a conit
(a) Two updates lead to update propagation

 Example “Update propagation rule”: When deviation in the
number of update operations per conit is >1, then propagate

Continuous Consistency (5)

© 2009 Universität Karlsruhe, System Architecture Group 28

 Choosing the appropriate granularity for a conit
(b) No update propagation is needed (yet), although
2 update operations have been done on replica 1
(but not on the same conit)

Consistent Order of OperationsConsistent Order of Operations

29© 2009 Universität Karlsruhe, System Architecture Group

Operations on a DDS

 read: ri(x):b client Pi reads from data item x,
read returns value b

 write: wi(x):a client Pi writes to data item x
setting it to the new value a

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 30

 Operations not instantaneous
 Time of issue (when request is sent by client)

 Time of execution (when request is executed at a replica)

 Time of completion (when reply is received by client)

Example

time

P () 2() 1

t1 t2 t3 t4 t5

Introduction

time interval
too small

© 2009 Universität Karlsruhe, System Architecture Group 31

P1

P2 r2(x):1

w1(x):2w1(x):1

r2(x):2r2(x):?

Depending on the speed
of the update propagation

Consistency

 Updates & concurrency result in conflicting operations

 Conflicting operations:
 Read-write conflict

 Write-write conflict

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 32

 Consistency:
 Conflicting operations must be executed in same order “everywhere”

 Partial order: order of a single client’s operations must be maintained

 Total order: interleaving of all clients’ conflicting operations

 Program order must be maintained

 Data coherence must be respected

Example

Process P1 (on node 1):
… x = 0;…

Process P2 (on node 2):
… x = 1;…

Introduction

© 2009 Universität Karlsruhe, System Architecture Group 33

Process P3 (on node 3):
… print(x); … print(x);…

Process P4 (on node 4):
… print(x); … print(x);…

 Do not accept: 01 and 10 together

Goals of Consistency Models

Expectation:
An application programmer expects a behavior of a DDS
being similar to that of a

one copy data store
For sake of simplicity let’s assume reads and writes are

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 34

For sake of simplicity let s assume, reads and writes are

atomic
Goal:

Each process accessing shared data wants to read a value, that
is as “up-to-date” as possible

Comment:
Ideally each read gets the value of the last write, however, due
to propagation delays that is often not possible

Data Centric Consistency ModelsData Centric Consistency Models

35© 2009 Universität Karlsruhe, System Architecture Group

Strong Ordering
Weak Ordering
Main Examples:
DDB, DFS, DSM

(in a later lecture)

Consistency Models

Data-Centric Consistency Models

 Strong ordering:
 Strict consistency

 Linear consistency

 Sequential consistency
Impetus on
individual operations

© 2009 Universität Karlsruhe, System Architecture Group 36

 Causal consistency

 FIFO or PRAM consistency

 Weak ordering:
 Weak consistency

 Release consistency

 Entry consistency

Impetus on group of
individual operations

Strict Consistency

Definition:
A DDS is strict consistent if every read on a data item
returns the value corresponding to the result of the
most recent write on x, regardless of the location of the
replica x or of the processes doing the reads or writes

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 37

p p g

Analysis:
1. In a single processor system strict consistency is for free, it’s

the behavior of main memory with atomic reads and writes

2. However, in a DSM without the notion of a global time it is
hard to determine what is the most recent write

Strict Consistency

R(x)a

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 38

Behavior of two processes, operating on the same data item x of a

a) strictly consistent DDS

b) DDS that is not strictly consistent

If time interval
is sufficient large

time

P1

P2 r(y)? r(y)?

w(y)2w(y)1

Strict Consistency Problems

r(y)2

t1 t2 t3 t4 t5

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 39

Assumption: y = 0 is stored on node 2,
P1 and P2 are processes on node 1 and 2,

Due to message delays r(y) at
t = t2 may result in 0 or 1 and at
t = t4 may result in 0, 1 or 2

Furthermore: If y migrates to node 1 between t1 and t3+then r(y) issued at time t2 may even get value 2
(i.e. “back to the future”).

time

P1

P2

P3

r(y)

iw(y)

iw(y)

r(x)

iw(y)

iw(x)

iw(x)*

Strict Consistency (3)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 40

P3

DDS r(y):0

iw(y)

w(y):1 w(y)2

iw(y)

r(x):2w(y)3

operations are interchangeableResult:
Global timing order of all distinguishable accesses remains preserved
Contemporary non conflicting accesses can be ordered arbitrarily

w(x)2w(x)1

*Legend:
iw(xyz) is incrementing an integer xyz, having been initialized with 0.

Definition:
A DDS offers sequential consistency if all processes see
the same order of accesses to the DDS, whereby

1. reads and writes of an individual process occur in their

Sequential Consistency1

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 41

program order

2. reads and writes of different processes occur in some
sequential order as long as interleaving of concurrent
accesses is valid.

1Leslie Lamport 1979 to define the expected behavior of SMPs,
“How to Make a Multiprocessor Computer that Correctly Executes
Multiprocessor Programs”, IEEE Transactions on Computers.

Sequential Consistency

 Sequential consistency is weaker than strict consistency

 No global timing ordering is required

 Possible Implementation:
 Writes in same sequential order in all processes (they must agree

h d)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 42

upon the order)

 Each process sees all writes from all other processes

 Time to complete a write does no affect consistency (however,
might affect the user)

 Before we do the next write we must have completed the
previous one

Sequential Consistency (2)
time

P1

P2

w(x):a

w(x):b

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 43

P3

P4 r(x):a

r(x):a

r(x):b

r(x):b

1. Each process sees all accesses in the same order,
even though no strict consistency

2. With rubber band method you can establish a sequential order

Non-Sequential Consistent
time

P1

P2

w(x):a

w(x):b

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 44

P3

P4 r(x):a

r(x):a

r(x):b

r(x):b

violation

Sequential Consistency

~write

© 2009 Universität Karlsruhe, System Architecture Group 45

 Three concurrently-executing processes

~read

Sequential Consistency

© 2009 Universität Karlsruhe, System Architecture Group 46

 4 (out of 90) valid execution sequences for the processes of previous
example

(a) First P1, then P2, then P3 …
(b) P1 starts, then P2 starts and completes, then P1 completes, then P3
(c) …

 Signature represents the concatenated printouts in order P1, P2, P3

P1 P2 P3

Summary: Sequential Consistency

 Any valid interleaving of read and write operations of
concurrent processes at different sites is acceptable
for a sequential consistent DDS, as long as all
processes see the same interleaving of operations

© 2009 Universität Karlsruhe, System Architecture Group 47

 Interesting problem:
How to achieve sequential consistency?

 Read: L. Lamport: “How to make a Multiprocessor
Computer that Correctly Executes Multiprocessor
Programs”, IEEE Trans. on Comp., Sept. 1979

Primary Backup Replication for Seq. Cons.

FEC RM

Primary

Backup

RM

passive
li ti

© 2009 Universität Karlsruhe, System Architecture Group 48

1. Frontend sends write request with an unambiguous ID to primary server

2. Primary checks whether it already has performed the request

3. Primary fulfills write locally and stores the answer

4. Primary multicast the update to all other replicas. Backups send their Ack.

5. Having received all Ack. Primary sends back the answer to frontend

FEC

Backup
RM replication

“Write Through” Update Propagation

 Before performing a write operation a process first
sends a completely sorted “update-message” via
multicast to all replicas (incl. to itself)

 All processes agree on a order of update-operations if

© 2009 Universität Karlsruhe, System Architecture Group 49

p g p p
there are multiple “update-messages”

 All replicas will see the same sequence of updates,
sequential consistency

Linear Consistency

Consistency Models

Definition:
A DDS is said to be linear consistent when each
operation has time-stamp TS and the following holds:

1. DDS is sequential consistent

© 2009 Universität Karlsruhe, System Architecture Group 50

q

2. In addition, if

TSOP1(x) < TSOP2(y), then

OP1(x) should precede OP2(y)
(It’s assumed that the time stamps are precise enough)

Linear Consistency

Assumption:
Each operation is assumed to receive a time stamp using a
globally available clock, but with only finite precision, e.g.
some loosely coupled synchronized local clocks.

Linear consistency is stronger than sequential one, i.e.

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 51

a linear consistent DDS is also sequentially consistent.

Corollar: With linear consistency no longer each valid
interleaving of reads and writes is allowed, but
this ordering also must obey the order implied by
the inaccurate time-stamps of these operations.

Linear consistency is harder to achieve (see Attiya and Welch:
“Sequential Consistency versus Linearizability”,
ACM Trans. Comp. Syst., May 1994)

Causal Consistency (1)

Definition:
A DDS is said to provide causal consistency if,
the following condition holds:

Writes that are potentially causally related* must be

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 52

p y y
seen by all tasks in the same order. Concurrent writes
may be seen in a different order on different machines.

 If event B is potentially caused by event A, causality requires
that everyone else also sees first A, and then B.

Definition:
write2 is potentially dependent on write1, when there
is a read between these 2 writes which may have
influenced write2

Causal Consistency (2)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 53

Corollary:
If write2 is potential dependent on write1 the only valid
and consistent sequence is: write1 write2.

Example: time

P1

P2 r(x):a

w(x):a

w(x):b

w(x):c
potential dependent

Causal Consistency (3)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 54

P3 r(x):a r(x):c r(x):b

P4 r(x):a r(x):b r(x):c

Result: (causal consistent, but not sequentially consistent)
P3 and P4 can see updates on the shared variable x in a
different order, because w(x):b and w(x):c are concurrent

Causal Consistency (4)
Example: time

P1

P2 r(x):a

w(x):a

w(x):b

potential dependent

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 55

P3 r(x):a r(x):b

P4 r(x):b r(x):a

Violation of causal consistency

Causal Consistency (5)

Implementing causal consistency requires keeping track
of which processes have seen which writes.

Construction and maintenance of a dependency graph,
E i hi h ti ll l t d

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 56

Expressing which operations are causally related
(using vector time stamps)

FIFO or PRAM Consistency*

Definition:
DDS implements FIFO consistency, when all writes of
one process are seen in the same order by all other
processes, i.e. they are received by all other processes
in the order they were issued

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 57

Corrolar:
Writes on different processes are concurrent

in the order they were issued.
However, writes from different processes may be seen
in a different order by different processes.

*Pipelined RAM see Lipton and Sandberg

Implementation of FIFO Consistency

Tag each write-operation of every process with:

(PID, sequence number)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 58

Example:
Both writes are seen on processes P3 and P4 in a different order,
they still obey FIFO-consistency, but not causal consistency because
write 2 is dependent on write1(r(x):1 can not be read by P3 or P4)

time

P1 w(x):1

FIFO or PRAM Consistency (2)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 59

P1

P2 r(x):1

w(x):1

w(x):2 w(x):3

P3

P4

r(x):1

r(x):2

r(x):2

r(x):1

potential dependent

FIFO Consistency (4)

Process P1 Process P2

x = 1;
if (y == 0) kill (P2);

y = 1;
if (x == 0) kill (P1);

Example: Two concurrent processes with variable x,y = 0;

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 60

Result:
With sequential consistency one might conclude:
Either P1 or P2 or no process is aborted.

With FIFO consistency both tasks may be aborted,

Assume:
P1 sees y via read(y):0 before P1 sees P2’s write(y):1 and
P2 sees x via read(x):0 before P2 sees P1’s write(x):1

Weak Consistency

Review: FIFO consistency reflects the correct sequence
of all writes of each process

Observation:
In many applications the exact sequence of
i l ti i t th t i t t b t

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 61

single operations is not that important, but
programmers want to influence the impetus
of a group of operations, e.g. updating a data
record or a complete list of data items

Idea: Group relevant operations together in a

“synchronized section” and synchronize after the
last write respectively before the first read

Weak Consistency

 Every read or write operates only locally

 We introduce synchronization variables
 No relationship with normal variables

 Call synchronize() synchronizes the local copies

© 2009 Universität Karlsruhe, System Architecture Group 62

 Each synchronize call serves as a synchronization
event, i.e. it

1. broadcasts its local updates to all other participating
processes at different nodes

2. collects all remote updates from the remote copies before
starting a new synchronization section successive reads
read up-to-date values

Consistency Models

Weak Consistency

Definition:
DDS implements weak consistency, if the following holds:

 Accesses to synchronization variables* obey
sequential consistency

No new synchronize is allowed to be performed

© 2009 Universität Karlsruhe, System Architecture Group 63

*Normal and synchronization variables, Dubois et al: Synchronization,
coherence and event ordering in multiprocessors, Distr. Comp., 1993

 No new synchronize is allowed to be performed
until all previous writes have been completed
everywhere due to the current synchronize

 No data access (read or write) is allowed to be
performed until all previous accesses to
synchronization variables have been performed

Interpretation (1)

Consistency Models

 A synchronization variable S knows just one operation:
synchronize(S) responsible for all local replicas of the DDS

 Whenever a process calls synchronize(S) its local updates
will be propagated to all replicas of the DDS and all updates of
the other processes will be applied to its local replica

© 2009 Universität Karlsruhe, System Architecture Group 64

 All tasks see all accesses to synchronization-variables in the
same order
 In other words, if task P1 calls synchronize(S1) at the same time

that task P2 calls synchronize(S2), the effect will be the same as if
either synchronize(S1) preceded synchronize(S2), or vice versa

Interpretation (2)

No data access allowed until all previous accesses
to synchronization-variables have been done

 By doing synchronize() before reading shared
d t t k b f tti “ t d t l ”

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 65

data, a task can be sure of getting “up to date value”

 Unlike previous consistency models “weak
consistency” forces the programmer to collect critical
operations all together

Via synchronization you can enforce that you’ll get up-to-date
values. Each process must synchronize if its writes should be
seen by others.

Process requesting a read without a previous synchronization
can get out-of-date values.

Example1: Weak Consistency

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 66

can get out of date values.

Example: time

P1

P2

P3

S

S

S

w(x):1 w(x):2

r(x):NIL r(x):2

r(x):1 r(x):2

r(x):2

time

P1

P2

sync1

sync3

Example2: Weak Consistency?

Consistency Models

w(x):1 w(x):2

w(x):3

© 2009 Universität Karlsruhe, System Architecture Group 67

P3

sync2 r(x):2

r(x):Nil r(x):1

r(x):2P4

Assume:
sync1 < sync2 < sync3 according to sequential consistency

On all nodes this synchronization sequence can be observed

System with “No Weak Consistency”

w(x):1 w(x):2

Example: time

P1 S

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 68

r(x):1P2 S

Impossible to get an
outdated value of x
at this point in time

Possible Implementation

Simple implementation:
 A central synchronization server determines the

sequence of synchronization operations

 Per synchronize:

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 69

 Per synchronize:

 Local data copy broadcasts all updated variable
values to the centralized sync-server

 Local data copy gets all update-values from all
other data copies in the DDS

 Try to find a more distributed solution!!

Analysis: Weak Consistency

Whenever synchronize() is called, DDS can not
distinguish between:

A: begin of a synchronized section SS due to a
sequence of successive reads

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 70

B: end of a synchronized section SS due to a
previous sequence of writes

 If we would distinguish between those two different
synchronization events

we might find more efficient solutions

Release Consistency

Idea:
Distinguish between memory accesses in front of a
CS acquire() and behind of a CS release()

Design:
When an acquire() is done the calling process will

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 71

When an acquire() is done the calling process will
be blocked until all its local data copies have been
updated

When a release() is done, all the protected data
that have been updated within the CS have to be
propagated to all replicas

Release Consistency

w(x):1

r(x):2

w(x):2

Example: time

P1

P2

release(L)

release(L)

acquire(L)

acquire(L)

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 72

P3 r(x):1

Valid event sequence for release consistency,
even though P3 missed to use acquire and release

Remark: Acquire is more than a lock (enter_critical_section), it waits
until all updates on protected data from other nodes are
done to its local store before it enters the critical section

Release Consistency

Definition:
A DDS offers release consistency if the
following three conditions hold:

1. Before a read or write operation on shared protected data is
performed, all operations needed to do the previous acquire

t h l t d f ll

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 73

must have completed successfully
 The local copies of the protected data are up to date, i.e. they

are consistent with their remote data

2. Before a release is allowed to be performed, all previous
(reads and) writes by the process must have been
completed and the updated values are sent to the replicas

3. Accesses to synchronization variables are FIFO consistent.

Release Consistency

Simplified implementation:

 Centralized coordinator:
 acquire() corresponds to lock CS

 Centralized coordinator knows about all locks

© 2009 Universität Karlsruhe, System Architecture Group 74

 Centralized coordinator knows about all locks

 release() sends all updated values to the coordinator
which forwards them to all other participants

Lazy Release Consistency*

Consistency Models

Problems with “eager” release consistency:
When a release is done, the process doing the release
pushes out all the modified data to all processes that
already have a copy and thus might potentially read
them in the future.

Th i t t ll if ll th t t hi ill

© 2009 Universität Karlsruhe, System Architecture Group 75

*Keleher, Cox, Zwaenepol: Lazy Release Consistency”,
19th Symp on Computer Architecture, ACM, 1992

There is no way to tell if all the target machines will
ever use any of these updated values in the future

above solution is a bit inefficient, too much overhead.

Lazy Release Consistency

With “lazy” release consistency nothing is done at a release().

However, at the next acquire() the processor
determines whether it already has all the data it
needs

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 76

needs.

Only when it needs updated data, it needs to send
messages to those places where the data have been
changed in the past.

Time-stamps help to decide whether a data is out-dated

Eager versus Lazy Release Consistency

© 2009 Universität Karlsruhe, System Architecture Group 77

Entry Consistency

Unlike release consistency, entry consistency requires
that every ordinary shared variable can be protected by
a distinct synchronization variable

Before a process can enter a critical section it has to
i ll d d h i ti i bl

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 78

acquire all needed synchronization variables

When an acquire is done on a synchronization variable,
only those ordinary shared variables guarded by that
synchronization variable are made consistent

A list of shared variables may be assigned to a
synchronization variable (to reduce overhead)

Entry Consistency*

Definition:
A DSM exhibits entry consistency if the following holds:

1. An acquire access of a sync-variable is not allowed to perform
with respect to a process until all updates to the guarded
shared data have been performed with respect to that process

2 Before an exclusive mode access to a sync-variable by a

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 79

*Bershad, Zerkauskas, Sawdon: “The Midway DSM System”,
Proceedings of the IEEE COMPCON Conf., 1993”,

2. Before an exclusive mode access to a sync variable by a
process is allowed to perform with respect to that process, no
other process may hold this sync-variable, not even in non-
exclusive mode

3. After an exclusive mode access to a sync-variable has been
performed, any other process’ next nonexclusive mode access
to that sync-variable may not be performed until it has
performed with respect to that variable’s owner

How to synchronize in Entry Consistency?

 Every synchronization variable has a current owner

 An owner may enter and leave critical sections protected by this
synchronization variable as often as needed without sending
any coordination message to the others

 A process wanting to get a synchronization variable has to send

© 2009 Universität Karlsruhe, System Architecture Group 80

 A process wanting to get a synchronization variable has to send
a message to the current owner.

 The current owner hands over the synchronization variable all
together with all updated values of its previous writes

 Multiple reads in the non-exclusive read modus are possible.

Entry Consistency

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 81

 A valid event sequence for entry consistency

Summary of Consistency Models

Consistency Description

Strict Absolute time ordering of all shared accesses matters.

Linearizability All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestamp

Sequential All processes see all shared accesses in the same order. Accesses are not ordered in time

Causal All processes see causally-related shared accesses in the same order.

FIFO Writes from every single process are seen in their true order by all processes. Writes from

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 82

a) Strong consistency models (no synchronization)
b) Weak consistency models (with explicit synchronization)

FIFO Writes from every single process are seen in their true order by all processes. Writes from
different processes may be seen in different order on each process.

(a)

Consistency Description

Weak Shared data can be counted on to be consistent only after a synchronization is done

Release Shared data are made consistent when a critical region is exited

Entry Shared data pertaining to a critical region are made consistent when a critical region is entered.

(b)

Coherence ~ versus Consistency Models

 Consistency models deal with right ordering of
operations of different processes on a set of data

 A coherence model deals with the right ordering of
concurrent writes to one single data item

© 2009 Universität Karlsruhe, System Architecture Group 83

 Sequential consistency is the most popular model for data
coherence

Client Centric ConsistencyClient Centric Consistency

84© 2009 Universität Karlsruhe, System Architecture Group

Motivation
Eventual Consistency
Monotonic Reads
Monotonic Writes
Read-your-Writes
Writes-follow-Reads

Client Centric Consistency

Motivation

Up to now:
 System wide consistent view on the DDS*

independent of number of involved processes
and potentially concurrent updates

© 2009 Universität Karlsruhe, System Architecture Group 85

 Atomic operations on DDS

 Processes can access local copies

 Updates have to be propagated, whenever it is
necessary to fulfill the requirements of the
consistency model (e.g. release consistency)

 weaker consistency models?
*DDS = Distributed Data Store

Client Centric Consistency

 Provides guarantees about ordering of operations only for a
single client, i.e.
 Effects of an operations depend on the client performing it
 Effects depend on the history of client’s operations
 Applied only when requested by the client
 No consistency guarantees for interleaved accesses of different

Motivation

© 2009 Universität Karlsruhe, System Architecture Group 86

 No consistency guarantees for interleaved accesses of different
clients

 Application:
 Rare and/or no concurrent updates of the data, e.g.

 Each domain of DNS has an authority, that is allowed to update
its entries, i.e. no write-write conflicts

 Secondary DNS-server gets new name-bindings after a while
 A Webpage is only update by its webmaster

 Stale data can be accepted for a while

Eventual Consistency
Client Centric Consistency Models

Client
process

replica

Local and/or
remote accesses

© 2009 Universität Karlsruhe, System Architecture Group 87

DDS network

Goal: Weaker, i.e. less restricted consistency models

Idea: Data of DDS will become consistent after “some time”

Example: Eventual Consistency
Client Centric Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 88

 Mobile user accessing different replicas of a distributed database
crossing domain borders

 First ideas in Terry: “The Case for Non-transparent Replication:
Examples from Bayou”

Eventual Consistency

If updates do not occur for a long period of time, all replicas will
gradually become consistent

 Requirements:
 Few read/write conflicts
 No write/write conflicts, because “each data item” has an owner

who is the only subject being allowed to update that data item

Client Centric Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 89

y j g p

 Examples:
 DNS:

 No write/write conflicts
 Updates (e.g. new entries) are slowly (1 – 2 days) propagating

to all caches

 WWW:
 Few write/write conflicts (webmaster is the only writer)
 Mirrors eventually updated
 Cached copies (browser or Proxy) replaced

Implement Eventual Consistency

How to propagate updated data?

 Push model
 After a timeout/periodically send your updates to all other

replicas

Client Centric Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 90

 Pull-model
 After timeout/periodically try to get the newest data from all

replicas, e.g. web-cache

 Push-Pull model
 Mutual actualization between the replicas
 Example: DNS

 Notification message that zones have changed in DNS
 Via push updates from primary to secondary

4 Client Centric Consistency Models1

 Monotonic Reads

 Monotonic Writes

Read Your Writes

Client Centric Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 91

 Read Your Writes

 Writes Follow Reads

1Terry et al: “The Case for Non-transparent Replication:
Examples from Bayou”, IEEE Data Engineering, Vol. 21, 1998

Client Centric Consistency Models

Assumptions:

 DDS is physically distributed across different nodes

 A process P -accessing the DDS- always connects to
a local often the nearest replica

Client Centric Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 92

a local, often the nearest replica

 Each data item1 has one single owner, being the only
subject who is allowed to update this data

 no write/write conflicts

1Typical data item: file

Notation

 writes do not completely overwrite data item x

 xi[t] is the version of data x at time t at replica Li
(xi[t] = result of a sequence of earlier writes since
initialization)

Client Centric Consistency Models

A client centric consistent DDS guarantees that
at Lj all previous writes at Li have been updated

before the first write can take place at Lj

© 2009 Universität Karlsruhe, System Architecture Group 93

 According write-set is denoted as: WS(xi[t]), i.e. x
has taken into account at least all writes at Li until
time t

 WS(xi[t1]; xj[t2]) denotes all writes until t1 at replica Li

and all writes until t2 at Lj

Timeline Example

L1

w(x1[t1])

t1

WS(x1) r(x1)

t3

Client Centric Consistency Models

t

© 2009 Universität Karlsruhe, System Architecture Group 94

L2

Note:
In the above example we only regard one data item x
xi denotes its replica at note Li

w(x1[t2])WS(x1; x2)

r(x2)

t2 t4

propagate

Implement Client Centric Consistency

Naive Implementation (ignoring performance):
 Each write gets a globally unique identifier

 Identifier is assigned by the server that accepts this
write operation for the first time

Implementation of CCC

© 2009 Universität Karlsruhe, System Architecture Group 95

 For each client two sets of write identifiers are
maintained:

 Read-set(client C) := RS(C)
{write-IDs relevant for the reads of this client C}

 Write-set(client C) := WS(C)
{write-IDs having been performed by client C}

Monotonic Reads

Definition:
A DDS provides “monotonic-read” consistency
if the following holds:

Wh P l d h d th l

Monotonic Reads

© 2009 Universität Karlsruhe, System Architecture Group 96

Whenever a process P already has read the value
v of a data item x, then any successive read on x
by P at any location L will return the same value
v or a more recent one v’ (independently of the
replica at location L where this new read is done)

Note: At some other location L‘ another process P
concurrently might read: v(old) or v or v‘

Monotonic Reading

 Read operations performed by process P at two

time time

Monotonic Reads

© 2009 Universität Karlsruhe, System Architecture Group 97

 Read operations performed by process P at two
different local copies of data item x

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads,
suppose x is a vector consisting of 2 entries, i.e.
x = <x[1], x[2]> and
x1 changed x[1], whereas x2 has changed x[2]
(the second read only reflects changes made to x[2])

Systems with Monotonic Reads

 Distributed e-mail database with distributed
and replicated user-mailboxes

 Emails can be inserted at any location

Monotonic Reads

© 2009 Universität Karlsruhe, System Architecture Group 98

 However, updates are propagated in a lazy
(i.e. on demand) fashion

Example: Non Monotonic Reads

Monotonic Reads

P1

S1

S2

incr(x):a r(x):a incr(x):b

© 2009 Universität Karlsruhe, System Architecture Group 99

P2
r(x):b instead of a + b

Implement Monotonic Reads

Monotonic Reads

Basic Idea:
Client keeps a log of writes it has already seen, and
makes sure that each replica he wants to read is up
to date

h l b ll d (d f

© 2009 Universität Karlsruhe, System Architecture Group 100

 Each write gets a globally unique id (identifying
operation and writer)

 Each replica keeps a log of writes that have occurred
on that replica

 Each client keeps track of a set of write identifiers
 Read set:= {writes relevant to reads done by the client}

Implement Monotonic Reads

Monotonic Reads

 Read operation:

 Client hands its read-set to the server of the local
replica, whenever it wants to read from it

© 2009 Universität Karlsruhe, System Architecture Group 101

 Server checks the writes in this read set whether
all of them have been done on its local replica

 If not yet done, the server retrieves all missing
writes on its replica before it replies to the client’s
read request

Implement Monotonic Reads

C S1
read RS={w1, w2}

C S2
read

Client Centric Consistency Models

w2

w3 Update
propagation

RS={w1, w2, w3}

© 2009 Universität Karlsruhe, System Architecture Group 102

Assume: Client C has already read from S1 and S3 implying 2 read sets
When C wants to read from S2, C hands its current RS(C)={w1,w2} to S2

S2 controls whether all writes of RS(C) have taken place at S2

If not, S2 has to be updated before reading can be allowed!

C S3
read RS={w1}

w1

propagation

Analysis

Monotonic Reads

 The logs (read sets) can become very large

 To reduce space and time overhead:

 You can use the usual session semantics to clear

© 2009 Universität Karlsruhe, System Architecture Group 103

logs at the end of a session

 before a client leaves the session, its session
manager provides that all replicas are updated
with all client’s writes

Monotonic Writes

Definition:
A DDS provides “monotonic-write” consistency if
the following holds:

A write by a process P on a data item x is

Monotonic Writes

© 2009 Universität Karlsruhe, System Architecture Group 104

A write by a process P on a data item x is
completed before another write by the same
process P can take place on that x.

Remark: Monotonic-writing ~ FIFO consistency

Only applies to writes from one client process P

Different clients may see the writes of process P in any
order

Monotonic Writes

Monotonic Writes

© 2009 Universität Karlsruhe, System Architecture Group 105

 The write operations performed by a single process P
at two different replicas of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write
consistency

Each client keeps a write-set = {all writes this
client has previously performed}

 Write operation:

Implement Monotonic Writes (1)

Monotonic Writes

 Whenever a client C wants to perform a write on a
local replica it hands its current write-set to the
corresponding local server

 This server checks whether all writes of C’s write
set have been done yet

 If not, it contacts the other concerned server(s) to
initiate the propagation of the missing writes

© 2009 Universität Karlsruhe, System Architecture Group 106

Implement Monotonic Writes (2)

 Each write gets an unambiguous sequence number

 Each replica keeps newest sequence number
 Delay writes with a too high sequence number as long as all

missing writes have been updated on the local copy

Monotonic Writes

© 2009 Universität Karlsruhe, System Architecture Group 107

Read Your Writes

Definition:
A DDS provides “read your write” consistency if the
following holds:

The effect of a write operation by a process P on

Read your Writes

© 2009 Universität Karlsruhe, System Architecture Group 108

The effect of a write operation by a process P on
a data item x at a location L will always be seen
by a successive read operation by the same
process wherever this read will take place

Example of a missing read your write consistency:
Updating a website with an editor, if you want to view your
updated website, you have to refresh it, otherwise the browser
uses the old cached website content

Example: Read Your Writes

Read your Writes

© 2009 Universität Karlsruhe, System Architecture Group 109

a) A DDS providing read-your-writes consistency

b) A DDS that does not

Writes Follow Reads

Definition:
A DDS provides “writes-follow-reads” consistency if
the following holds:

Writes Follow Reads

© 2009 Universität Karlsruhe, System Architecture Group 110

A write operation by a process P on a data item x
following a previous read by the same process is
guaranteed to take place on the same or even a
more recent value of x, than the one having been
read before.

Writes Follow Reads

Writes Follow Reads

© 2009 Universität Karlsruhe, System Architecture Group 111

a) A writes-follow-reads consistent DDS

b) A DDS not providing writes-follow-reads
consistency

Summary on Consistency Models

An appropriate consistency model depends on following trade-offs:

 Consistency and redundancy
 All replicas must be consistent
 All replicas must contain full state
 Reduced consistency → reduced reliability

Consistency Models

© 2009 Universität Karlsruhe, System Architecture Group 112

 Consistency and performance
 Consistency requires extra work
 Consistency requires extra communication
 May result in loss of overall performance

 Consistency and scalability
 Consistency requires extra work
 Consistency requires extra communication
 Strong consistency weakens scalability

