Distributed Systems

14 Consistency

June-29-2009
Gerd Liefländer
System Architecture Group
Outline

- Motivation & Introduction
- Consistency Models
- Continuous Consistency Model
- Data-Centric Consistency Models
 - Strong Consistency
 - Weak Consistency
- (Eventual) Client Centric Consistency Models
 - Monotonic Reads/Writes
 - Read Your Writes/Writes Follow Reads
Motivation & Introduction
Why Replication?

Replicated data at multiple sites can improve …

- **Availability** (by redundancy), e.g.
 - if primary FS crashes, standby FS still works

- **Performance**, e.g.
 - local access is faster with reduced communication delays
 - concurrent requests can be served by \(n > 1 \) servers

- **Scalability**, e.g.
 - prevents overloading a single server (size scalability)
 - avoids communication latencies (geographic scalability)

- **Fault tolerance**
 - masks node crashes
 - implies data consistency
Example: DFS

Design considerations:

- When to propagate updates?
- What to propagate?
- Who is initiative concerning propagation?
- How strict are the consistency requirements?

⇒ Consistency Models
Object Replication (1)

- Organization of a distributed remote object shared by two different clients
Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.

b) A remote object for which an object adapter is required to handle concurrent invocations
Object Replication (3)

a) A distributed system for replication-aware distributed objects

b) A distributed system responsible for replica management
Two Consistency Models

- **Data Centric Model**
 - Defined consistency is experienced by all clients, i.e. we must provide a system wide consistent view on the data store
 - All clients see same sequence of operations at each replica, hopefully with only minor delay
 - Without additional synchronization hard to achieve in DS

- **Client Centric Model**
 - If there are no concurrent updates (or only few compared to number of reads) we can weaken consistency requirements
 - Consistency of the data store only reflects one client’s view
 - Different clients might see different sequences of operations at their replicas
 - Relatively easy to implement
Data Centric Consistency Models

- Distributed Data Store (DDS)

Clienets point of view:
- The DDS is capable of storing an amount of data
Introduction

Distributed Data Store

Data Store’s point of view:

- General organization of a logical data store, physically distributed and/or replicated across multiple nodes
- The more data we replicate the more overhead we introduce in preserving DDS consistency

Local copy

Distributed data store DDS
Data-Centric Consistency Model

- **Consistency Model:**
 - Contract between processes (clients) and DDS
 - Access rules for the processes
 - Properties of the “read data”, e.g.
 - do they reflect the value of the last update
 - A consistency model restricts potential values of a read
 - If ∃ only few restrictions ⇒
 - model is easy to use, but
 - its implementation is often inefficient
 - If ∃ strong restrictions ⇒
 - model is hard to use, but
 - its implementation is efficient
Continuous Consistency

Amin Vahdat, Haifeng Yu: “Design and Evaluation of a Conit-Based Continuous Consistency Model for Replicated Services”
ACM Trans. on Computer Systems, 2002
Read that paper till next Monday

Conit = Consistency Unit
When every process can write to its local replica, we must propagate these writes **ASAP** to all other replicas.
Distributed Data Store

- When every process can write to its local replica, we have to propagate these writes ASAP to all other replicas.
- When one site is the primary replica, all writes are sent to it, primary replica propagates updates from time to time to the other replicas.
When every process can write to its local replica, we have to propagate these writes ASAP to all other replicas.

When one site is the primary replica, all writes are sent to it, primary replica propagates updates from time to time to the other replicas.

When there is only one updating process, it is responsible for propagating all writes to all replicas whenever this is necessary.
Haifeng & Amin’s Consistency Models

- **Strong (pessimistic) Consistency Model**
 - One-copy serializability (Bernstein, Goodman, 1984) imposes performance overhead and limits system availability

- **Weak (optimistic) Consistency Model**
 - Tolerate relaxed consistency (i.e. delayed propagation of updates)
 - Requires less communication, resulting in improved overall performance and availability
How to Quantify Inconsistency?

- Numerical error limits:
 1. Number of writes applied to a given replica, but not yet seen by others
 2. Absolute or relative numerical deviation of a conit element

- Order error limits the difference concerning the ordering at the different replicas, e.g. not more than 2 out of order

- Staleness places a real-time bound on the delay of write propagation among replicas
Characteristics of Consistency Models

An inconsistent access is either
- stale/dirty reads or
- conflicting writes

Curves based on workload/network characteristics

p(inconsistent access)

strong consistency

weak consistency

performance
TACT Toolkit

- 3 wide area applications
 - Distributed bulletin board service
 - Airline reservation system
 - Replicated load distribution front ends to a web server

- Algorithms to bound each of the previously mentioned consistency metrics
 - Push approach based solely on local info helps to bound numerical errors
 - A write commitment algorithm allows replicas to agree on a global total write order, enforcing bounds on order errors
 - Staleness is maintained by a real-time vector
Example: Numerical Errors

- Absolute maximal deviations of conit values (e.g. stock market prices) of n replicas
 - Deviations of conit values is limited by 0.05 EURO, i.e. we regard a data store still consistent if the following holds, suppose we have n replicas at nodes N₁, N₂, ..., Nₙ: ∀ i,j ∈ [1,n], i ≠ j
 \[|\text{value}_i - \text{value}_j| \leq 0.05 \text{ Euro}\]

- Relative numerical deviations
 - A data store is still consistent as long as all conit values do not differ more than 0.5 %

- Numerical error can also be understood in number of updates having been applied to a replica at node Nᵢ, but not yet seen by other (n-1) replicas
 - A web cache might have not seen a batch of operations carried out by a web server
Order Deviations

- Some applications allow different orders of updates at the various replicas as long as the number of differences are limited.
 - Each update is tentatively done on some local replica awaiting global agreement from all other replicas.
 - As a consequence, some updates have to be rolled back and applied in a different order before becoming permanent.
Staleness Deviations

- Some applications can live with the fact that they use old conit values, as long as the values are not too old
 - Weather reports stay reasonable stable and accurate over some limited time, e.g. hours
 - In this case, the main server might collect a bunch of updates and propagate all of them in one update message to all replicas after some limited time interval (e.g. 2 hours)
Continuous Consistency

At vector time (0,4) replica B increments x by 2

B propagates to A a corresponding update message

Replica A receives 4,B: x ← x+2 and makes it permanent, adjusting its vector time
Continuous Consistency (2)

At replica A 3 tentative operations took place, bringing replica A's ordering deviation to 3.

At replica B 2 tentative operations took place, bringing replica B's order deviation to 2.
Replica A has not yet seen 1 operation at B bringing its numerical deviation to 1

The weight of this deviation can be expressed as the max. difference (5) between the committed values of A (2,0) and the not yet seen values having been updated at B (which results from y)

Similar considerations with replica B
Continuous Consistency (4)

(a) Two updates lead to update propagation

Example “Update propagation rule”: When deviation in the number of update operations per conit is >1, then propagate
Choosing the appropriate granularity for a conit
(b) No update propagation is needed (yet), although
2 update operations have been done on replica 1
(but not on the same conit)
Consistent Order of Operations
Operations on a DDS

- **read**: \(r_i(x) : b \) client \(P_i \) reads from data item \(x \), read returns value \(b \)

- **write**: \(w_i(x) : a \) client \(P_i \) writes to data item \(x \) setting it to the new value \(a \)

- **Operations not instantaneous**
 - Time of issue (when request is sent by client)
 - Time of execution (when request is executed at a replica)
 - Time of completion (when reply is received by client)
Introduction

Depending on the speed of the update propagation.
Consistency

- Updates & concurrency result in conflicting operations
- **Conflicting operations:**
 - Read-write conflict
 - Write-write conflict
- **Consistency:**
 - Conflicting operations must be executed in same order “everywhere”
 - Partial order: order of a single client’s operations must be maintained
 - Total order: interleaving of all clients’ conflicting operations
 - Program order must be maintained
 - Data coherence must be respected
Example

Process P1 (on node 1):
 ... x = 0;...

Process P2 (on node 2):
 ... x = 1;...

Process P3 (on node 3):
 ... print(x); ... print(x);...

Process P4 (on node 4):
 ... print(x); ... print(x);...

- Do not accept: 01 and 10 together
Goals of Consistency Models

Expectation:
An application programmer expects a behavior of a DDS being similar to that of a

one copy data store

For sake of simplicity let’s assume, reads and writes are

atomic

Goal:
Each process accessing shared data wants to read a value, that is as “up-to-date” as possible

Comment:
Ideally each read gets the value of the last write, however, due to propagation delays that is often not possible
Data Centric Consistency Models

- Strong Ordering
- Weak Ordering
- Main Examples:
 - DDB, DFS, DSM
 - (in a later lecture)
Data-Centric Consistency Models

- **Strong ordering:**
 - Strict consistency
 - Linear consistency
 - Sequential consistency
 - Causal consistency
 - FIFO or PRAM consistency

- **Weak ordering:**
 - Weak consistency
 - Release consistency
 - Entry consistency

Impetus on individual operations

Impetus on group of individual operations
Strict Consistency

Definition:
A DDS is *strict consistent* if every read on a data item returns the value corresponding to the result of the *most recent write on x*, regardless of the location of the replica x or of the processes doing the reads or writes.

Analysis:
1. In a single processor system strict consistency is for free, it’s the behavior of main memory with atomic reads and writes.
2. However, in a DSM without the notion of a global time it is hard to determine what is the *most recent write*.
Behavior of two processes, operating on the same data item x of a

a) strictly consistent DDS

b) DDS that is *not strictly consistent*
Assumption: $y = 0$ is stored on node 2, P_1 and P_2 are processes on node 1 and 2, Due to message delays $r(y)$ at $t = t_2$ may result in 0 or 1 and at $t = t_4$ may result in 0, 1 or 2

Furthermore: If y migrates to node 1 between t_1 and $t_3 + \varepsilon$ then $r(y)$ issued at time t_2 may even get value 2 (i.e. “back to the future”).
Strict Consistency (3)

Result:
Global timing order of all distinguishable accesses remains preserved
Contemporary *non conflicting* accesses can be ordered arbitrarily

Legend:
iw(xyz) is incrementing an integer xyz, having been initialized with 0.
Definition:
A DDS offers **sequential** consistency if **all processes see the same order of accesses to the DDS**, whereby

1. reads and writes of an individual process occur in their program order
2. reads and writes of different processes occur in some sequential order as long as interleaving of concurrent accesses is **valid**.

\(^1\)Leslie Lamport 1979 to define the expected behavior of SMPs, “How to Make a Multiprocessor Computer that Correctly Executes Multiprocessor Programs”, IEEE Transactions on Computers.
Sequential Consistency

- Sequential consistency is weaker than strict consistency
- No global timing ordering is required
- Possible Implementation:
 - Writes in same sequential order in all processes (they must agree upon the order)
 - Each process sees all writes from all other processes
 - Time to complete a write does not affect consistency (however, might affect the user)
 - Before we do the next write we must have completed the previous one
Sequential Consistency (2)

1. Each process sees all accesses in the same order, even though there is no strict consistency.

2. With rubber band method you can establish a sequential order.
Non-Sequential Consistent

Consistency Models
Sequential Consistency

<table>
<thead>
<tr>
<th>Process P1</th>
<th>Process P2</th>
<th>Process P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ← 1;</td>
<td>y ← 1;</td>
<td>z ← 1;</td>
</tr>
<tr>
<td>print(y, z);</td>
<td>print(x, z);</td>
<td>print(x, y);</td>
</tr>
</tbody>
</table>

- Three concurrently-executing processes
Sequential Consistency

- 4 (out of 90) valid execution sequences for the processes of previous example
 - (a) First P1, then P2, then P3 ...
 - (b) P1 starts, then P2 starts and completes, then P1 completes, then P3
 - (c) ...

- Signature represents the concatenated printouts in order P1, P2, P3
Summary: Sequential Consistency

- Any *valid* interleaving of read and write operations of concurrent processes at different sites is acceptable for a sequential consistent DDS, as long as all processes see the same interleaving of operations.

- Interesting problem:

 How to achieve sequential consistency?

Primary Backup Replication for Seq. Cons.

1. Frontend sends write request with an unambiguous ID to primary server
2. Primary checks whether it already has performed the request
3. Primary fulfills write locally and stores the answer
4. Primary multicast the update to all other replicas. Backups send their Ack.
5. Having received all Ack. Primary sends back the answer to frontend
“Write Through” Update Propagation

- Before performing a write operation a process first sends a completely sorted “update-message” via multicast to all replicas (incl. to itself)
- All processes agree on a order of update-operations if there are multiple “update-messages”
- All replicas will see the same sequence of updates, ⇒ sequential consistency
Linear Consistency

Definition:
A DDS is said to be linear consistent when each operation has time-stamp TS and the following holds:

1. DDS is sequential consistent
2. In addition, if
 \[TS_{OP1}(x) < TS_{OP2}(y), \text{ then} \]
 \[O_{P1}(x) \text{ should precede } O_{P2}(y) \]
 (It’s assumed that the time stamps are precise enough)
Linear Consistency

Assumption:
Each operation is assumed to receive a time stamp using a globally available clock, but with only finite precision, e.g. some loosely coupled synchronized local clocks.

Linear consistency is stronger than sequential one, i.e. a linear consistent DDS is also sequentially consistent.

Corollary: With linear consistency no longer each valid interleaving of reads and writes is allowed, but this ordering also must obey the order implied by the inaccurate time-stamps of these operations.

Linear consistency is harder to achieve (see Attiya and Welch: “Sequential Consistency versus Linearizability”, ACM Trans. Comp. Syst., May 1994)
Causal Consistency (1)

Definition:
A DDS is said to provide causal consistency if, the following condition holds:

*W*rites that are potentially causally related must be seen by all tasks in the same order. Concurrent writes may be seen in a different order on different machines.

- If event B is potentially caused by event A, causality requires that everyone else also sees first A, and then B.
Definition:
write2 is potentially dependent on write1, when there is a read between these 2 writes which may have influenced write2

Corollary:
If write2 is potential dependent on write1 \Rightarrow the only valid and consistent sequence is: write1 \rightarrow write2.
Causal Consistency (3)

Example:

\[\begin{align*}
 P_1 & \quad w(x):a \quad \ldots \quad w(x):c \\
 P_2 & \quad r(x):a \quad \ldots \quad w(x):b \\
 P_3 & \quad r(x):a \quad \ldots \quad r(x):c \quad r(x):b \\
 P_4 & \quad r(x):a \quad \ldots \quad r(x):b \quad r(x):c \\
\end{align*} \]

Result: (causal consistent, but not sequentially consistent)
P3 and P4 can see updates on the shared variable x in a different order, because \(w(x):b \) and \(w(x):c \) are concurrent.
Causal Consistency (4)

Example:

- **P1**: \(w(x):a \)
 - Potential dependent

- **P2**:
 - \(r(x):a \)
 - \(w(x):b \)

- **P3**:
 - \(r(x):a \)

- **P4**:
 - \(r(x):b \)
 - \(r(x):a \)

Violation of causal consistency
Implementing causal consistency requires keeping track of which processes have seen which writes.

Construction and maintenance of a dependency graph, Expressing which operations are causally related (using vector time stamps)
FIFO or PRAM Consistency

Definition:
DDS implements *FIFO consistency*, when all writes of one process are seen in the same order by all other processes, i.e. they are received by all other processes in the order they were issued. However, writes from different processes may be seen in a different order by different processes.

Corrolar:
Writes on different processes are concurrent.

Pipelined RAM see Lipton and Sandberg
Implementation of FIFO Consistency

Tag each write-operation of every process with:

(PID, sequence number)
Example:
Both writes are seen on processes P3 and P4 in a different order, they still obey FIFO-consistency, but not causal consistency because write 2 is dependent on write 1 (⇒ r(x):1 can not be read by P3 or P4)
FIFO Consistency (4)

Example: Two concurrent processes with variable \(x, y = 0 \);

<table>
<thead>
<tr>
<th>Process P1</th>
<th>Process P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 1;)</td>
<td>(y = 1;)</td>
</tr>
<tr>
<td>if (y == 0) kill (P2);</td>
<td>if (x == 0) kill (P1);</td>
</tr>
</tbody>
</table>

Result:
With sequential consistency one might conclude:
Either P1 or P2 or no process is aborted.

With FIFO consistency both tasks may be aborted,

Assume:
P1 sees \(y \) via read(y):0 before P1 sees P2’s write(y):1 and
P2 sees \(x \) via read(x):0 before P2 sees P1’s write(x):1
Weak Consistency

Review: FIFO consistency reflects the correct sequence of all writes of each process

Observation:
In many applications the exact sequence of single operations is not that important, but programmers want to influence the impetus of a group of operations, e.g. updating a data record or a complete list of data items

⇒
Idea: Group relevant operations together in a "synchronized section" and synchronize after the last write respectively before the first read
Weak Consistency

- Every read or write operates *only locally*
- We introduce synchronization variables
 - No relationship with normal variables
 - Call `synchronize()` synchronizes the local copies
- Each synchronize call serves as a *synchronization event*, i.e. it
 1. broadcasts its local updates to all other participating processes at different nodes
 2. collects all remote updates from the remote copies before starting a new synchronization section \(\Rightarrow\) successive reads read up-to-date values
Weak Consistency

Definition:
DDS implements **weak** consistency, if the following holds:

- Accesses to synchronization variables* obey sequential consistency
- No new `synchronize` is allowed to be performed until *all previous writes* have been completed *everywhere due to the current synchronize*
- No data access (read or write) is allowed to be performed until all previous accesses to synchronization variables have been performed

*Normal and synchronization variables, Dubois et al: Synchronization, coherence and event ordering in multiprocessors, Distr. Comp., 1993
Interpretation (1)

- A synchronization variable S knows just one operation: \texttt{synchronize}(S) responsible for all local replicas of the DDS

- Whenever a process calls \texttt{synchronize}(S) its local updates will be propagated to all replicas of the DDS and all updates of the other processes will be applied to its local replica

- All tasks see all accesses to synchronization-variables in the same order

 - In other words, if task P1 calls \texttt{synchronize}(S1) at the same time that task P2 calls \texttt{synchronize}(S2), the effect will be the same as if either \texttt{synchronize}(S1) preceded \texttt{synchronize}(S2), or vice versa
Interpretation (2)

No data access allowed until all previous accesses to synchronization-variables have been done

- By doing `synchronize()` before reading shared data, a task can be sure of getting “up to date value”

- Unlike previous consistency models “weak consistency” forces the programmer to collect critical operations all together
Example 1: Weak Consistency

Via synchronization you can enforce that you’ll get up-to-date values. Each process must synchronize if its writes should be seen by others.

Process requesting a read without a previous synchronization can get out-of-date values.

Example:

```
<table>
<thead>
<tr>
<th>Time</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w(x):1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>w(x):2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r(x):NIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r(x):2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r(x):1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r(x):2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Example 2: Weak Consistency?

Assume:

\[\text{sync}_1 < \text{sync}_2 < \text{sync}_3 \] according to \textit{sequential consistency} \implies

On all nodes this synchronization sequence can be observed.
System with "No Weak Consistency"

Example:

Impossible to get an outdated value of x at this point in time
Possible Implementation

Simple implementation:

- A central synchronization server determines the sequence of synchronization operations

- Per synchronize:
 - Local data copy broadcasts all updated variable values to the centralized sync-server
 - Local data copy gets all update-values from all other data copies in the DDS

Try to find a more distributed solution!!
Analysis: Weak Consistency

Whenever `synchronize()` is called, DDS can not distinguish between:

A: begin of a synchronized section SS due to a sequence of successive reads

B: end of a synchronized section SS due to a previous sequence of writes

- If we would distinguish between those two different synchronization events ⇒

we might find *more efficient solutions*
Release Consistency

Idea:
Distinguish between memory accesses in front of a CS `acquire()` and behind of a CS `release()`

Design:
When an `acquire()` is done the calling process will be blocked until all its local data copies have been updated

When a `release()` is done, all the protected data that have been updated within the CS have to be propagated to all replicas
Release Consistency

Example:

- P_1: acquire(L), $w(x):1$, $w(x):2$, release(L)
- P_2: acquire(L), $r(x):2$, release(L)
- P_3: $r(x):1$

Valid event sequence for release consistency, even though P_3 missed to use acquire and release.

Remark: Acquire is more than a lock (enter_critical_section), it waits until all updates on protected data from other nodes are done to its local store before it enters the critical section.
Release Consistency

Definition:
A DDS offers release consistency if the following three conditions hold:

1. Before a read or write operation on shared protected data is performed, all operations needed to do the previous acquire must have completed successfully
 - The local copies of the protected data are up to date, i.e. they are consistent with their remote data

2. Before a release is allowed to be performed, all previous (reads and) writes by the process must have been completed and the updated values are sent to the replicas

3. Accesses to synchronization variables are FI FO consistent.
Release Consistency

Simplified implementation:

- Centralized coordinator:
 - `acquire()` corresponds to lock CS
 - Centralized coordinator knows about all locks
 - `release()` sends all updated values to the coordinator which forwards them to all other participants
Lazy Release Consistency*

Problems with “eager” release consistency:
When a release is done, the process doing the release pushes out all the modified data to all processes that already have a copy and thus might potentially read them in the future.

There is no way to tell if all the target machines will ever use any of these updated values in the future
⇒
above solution is a bit inefficient, too much overhead.

Lazy Release Consistency

With “lazy” release consistency nothing is done at a `release()`.

However, at the next `acquire()` the processor determines whether it already has all the data it needs.

Only when it needs updated data, it needs to send messages to those places where the data have been changed in the past.

Time-stamps help to decide whether a data is out-dated
Eager versus Lazy Release Consistency

EAGER RELEASE CONSISTENCY

P1 \text{acq;w(x);rel}

P2

P3

LAZY RELEASE CONSISTENCY

P1 \text{acq;w(x);rel}

P2

P3

acq;r(x)
Entry Consistency

Unlike release consistency, entry consistency requires that every ordinary shared variable can be protected by a distinct synchronization variable.

Before a process can enter a critical section it has to acquire all needed synchronization variables.

When an acquire is done on a synchronization variable, only those ordinary shared variables guarded by that synchronization variable are made consistent.

A list of shared variables may be assigned to a synchronization variable (to reduce overhead).
Entry Consistency*

Definition:
A DSM exhibits *entry consistency* if the following holds:

1. An acquire access of a sync-variable is not allowed to perform with respect to a process until all updates to the guarded shared data have been performed with respect to that process.

2. Before an exclusive mode access to a sync-variable by a process is allowed to perform with respect to that process, no other process may hold this sync-variable, not even in non-exclusive mode.

3. After an exclusive mode access to a sync-variable has been performed, any other process’ next nonexclusive mode access to that sync-variable may not be performed until it has performed with respect to that variable’s owner.

How to synchronize in Entry Consistency?

- Every synchronization variable has a current owner.
- An owner may enter and leave critical sections protected by this synchronization variable as often as needed without sending any coordination message to the others.
- A process wanting to get a synchronization variable has to send a message to the current owner.
- The current owner hands over the synchronization variable all together with all updated values of its previous writes.
- Multiple reads in the non-exclusive read modus are possible.
Entry Consistency

P1: \(\text{Acq(Lx)} \text{ W(x)a Acq(Ly) W(y)b Rel(Lx)} \text{ Rel(Ly)}\)

P2: \(\text{Acq(Lx) R(x)a R(y)NIL}\)

P3: \(\text{Acq(Ly) R(y)b}\)

- A valid event sequence for entry consistency
Summary of Consistency Models

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict</td>
<td>Absolute time ordering of all shared accesses matters.</td>
</tr>
<tr>
<td>Linearizability</td>
<td>All processes must see all shared accesses in the same order. Accesses are furthermore ordered according to a (nonunique) global timestamp</td>
</tr>
<tr>
<td>Sequential</td>
<td>All processes see all shared accesses in the same order. Accesses are not ordered in time</td>
</tr>
<tr>
<td>Causal</td>
<td>All processes see causally-related shared accesses in the same order.</td>
</tr>
<tr>
<td>FIFO</td>
<td>Writes from every single process are seen in their true order by all processes. Writes from different processes may be seen in different order on each process.</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>Shared data can be counted on to be consistent only after a synchronization is done</td>
</tr>
<tr>
<td>Release</td>
<td>Shared data are made consistent when a critical region is exited</td>
</tr>
<tr>
<td>Entry</td>
<td>Shared data pertaining to a critical region are made consistent when a critical region is entered.</td>
</tr>
</tbody>
</table>

(b)

a) Strong consistency models (no synchronization)
b) Weak consistency models (with explicit synchronization)
Coherence ~ versus Consistency Models

- Consistency models deal with right ordering of operations of different processes on a set of data.
- A coherence model deals with the right ordering of concurrent writes to one single data item.
 - Sequential consistency is the most popular model for data coherence.
Client Centric Consistency

Motivation
Eventual Consistency
Monotonic Reads
Monotonic Writes
Read-your-Writes
Writes-follow-Reads
Client Centric Consistency

Up to now:

- System wide consistent view on the DDS* independent of number of involved processes and potentially concurrent updates
 - Atomic operations on DDS
 - Processes can access local copies
 - Updates have to be propagated, whenever it is necessary to fulfill the requirements of the consistency model (e.g. release consistency)

- ∃ weaker consistency models?

*DDS = Distributed Data Store
Client Centric Consistency

- Provides guarantees about ordering of operations only for a single client, i.e.
 - Effects of an operation depend on the client performing it
 - Effects depend on the history of the client’s operations
 - Applied only when requested by the client
 - No consistency guarantees for interleaved accesses of different clients

- Application:
 - Rare and/or no concurrent updates of the data, e.g.
 - Each domain of DNS has an authority, that is allowed to update its entries, i.e. no write-write conflicts
 - Secondary DNS-server gets new name-bindings after a while
 - A Webpage is only update by its webmaster
 - Stale data can be accepted for a while
Goal: Weaker, i.e. less restricted consistency models

Idea: Data of DDS will become consistent after “some time”
Example: Eventual Consistency

- Mobile user accessing different replicas of a distributed database crossing domain borders
- First ideas in Terry: “The Case for Non-transparent Replication: Examples from Bayou”
Eventual Consistency

If updates do not occur for a long period of time, all replicas will gradually become consistent.

- **Requirements:**
 - Few read/write conflicts
 - No write/write conflicts, because “each data item” has an owner who is the only subject being allowed to update that data item.

- **Examples:**
 - **DNS:**
 - No write/write conflicts
 - Updates (e.g. new entries) are slowly (1 – 2 days) propagating to all caches
 - **WWW:**
 - Few write/write conflicts (webmaster is the only writer)
 - Mirrors eventually updated
 - Cached copies (browser or Proxy) replaced
Implement Eventual Consistency

How to propagate updated data?

- **Push model**
 - After a timeout/periodically send your updates to all other replicas

- **Pull-model**
 - After timeout/periodically try to get the newest data from all replicas, e.g. web-cache

- **Push-Pull model**
 - Mutual actualization between the replicas
 - Example: DNS
 - Notification message that zones have changed in DNS
 - Via push updates from primary to secondary
4 Client Centric Consistency Models

- Monotonic Reads
- Monotonic Writes
- Read Your Writes
- Writes Follow Reads

Client Centric Consistency Models

Assumptions:

- DDS is physically distributed across different nodes
- A process P -accessing the DDS- always connects to a local, often the nearest replica
- Each data item1 has one single owner, being the only subject who is allowed to update this data

\Rightarrow no write/write conflicts

1Typical data item: file
Notation

- writes do not completely overwrite data item x
- $x_i[t]$ is the version of data x at time t at replica L_i ($x_i[t] = \text{result of a sequence of earlier writes since initialization}$)
- According write-set is denoted as: $WS(x_i[t])$, i.e. x has taken into account at least all writes at L_i until time t
- $WS(x_i[t_1]; x_j[t_2])$ denotes all writes until t_1 at replica L_i and all writes until t_2 at L_j

A client centric consistent DDS guarantees that at L_j all previous writes at L_i have been updated before the first write can take place at L_j
Timeline Example

Note:

In the above example we only regard one data item x_i and its replica at note L_i.

$w(x_1[t_1]) \implies WS(x_1)

w(x_1[t_2]) \implies WS(x_1; x_2)$
Implement Client Centric Consistency

Naive Implementation (ignoring performance):

- Each write gets a **globally** unique identifier
- Identifier is assigned by the server that accepts this write operation for the first time
- For each client two sets of write identifiers are maintained:
 - Read-set(client C) := RS(C)
 \{write-IDs relevant for the reads of this client C\}
 - Write-set(client C) := WS(C)
 \{write-IDs having been performed by client C\}
Definition:
A DDS provides “monotonic-read” consistency if the following holds:

Whenever a process P already has read the value v of a data item x, then any successive read on x by P at any location L will return the same value v or a more recent one v' (independently of the replica at location L where this new read is done)

Note: At some other location L' another process P concurrently might read: $v(\text{old})$ or v or v'
Monotonic Reading

- Read operations performed by process P at two different local copies of data item x

 a) A monotonic-read consistent data store

 b) A data store that does not provide monotonic reads, suppose x is a vector consisting of 2 entries, i.e.
 \[x = \langle x[1], x[2]\rangle \]

 \(x_1 \) changed \(x[1] \), whereas \(x_2 \) has changed \(x[2] \)
 (the second read only reflects changes made to \(x[2] \))
Systems with Monotonic Reads

- Distributed e-mail database with distributed and replicated user-mailboxes
- Emails can be inserted at any location
- However, updates are propagated in a lazy (i.e. on demand) fashion
Example: Non Monotonic Reads

 incr(x): a r(x): a incr(x): b

P1

S1

S2

P2

r(x): b instead of a + b
Implement Monotonic Reads

Basic Idea:
Client keeps a log of writes it has already seen, and makes sure that each replica he wants to read is up to date

- Each write gets a globally unique id (identifying operation and writer)
- Each replica keeps a log of writes that have occurred on that replica
- Each client keeps track of a set of write identifiers
 - Read set: = \{writes relevant to reads done by the client\}
Implement Monotonic Reads

- **Read operation:**
 - Client hands its *read-set* to the server of the local replica, whenever it wants to read from it.
 - Server checks the *writes in this read set* whether all of them have been done on its local replica.
 - If *not yet done*, the server retrieves all missing writes on its replica before it replies to the client’s read request.
Implement Monotonic Reads

Client Centric Consistency Models

Assume: Client C has already read from S₁ and S₃ implying 2 read sets
When C wants to read from S₂, C hands its current RS(C)={w₁,w₂} to S₂
S₂ controls whether all writes of RS(C) have taken place at S₂
If not, S₂ has to be updated before reading can be allowed!
Analysis

- The logs (read sets) can become very large.

- To reduce **space and time overhead**:
 - You can use the usual session semantics to **clear logs** at the end of a session →
 - before a client leaves the session, its **session manager** provides that all replicas are updated with all client’s writes.
Monotonic Writes

Definition:
A DDS provides “monotonic-write” consistency if the following holds:

A write by a process P on a data item x is completed before another write by the same process P can take place on that x.

Remark: Monotonic-writing ~ FIFO consistency

- Only applies to writes from one client process P
- Different clients may see the writes of process P in any order
The write operations performed by a single process \(P \) at two different replicas of the same data store:

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write consistency
Implement Monotonic Writes (1)

Each client keeps a write-set = \{all writes this client has previously performed\}

- **Write operation:**
 - Whenever a client C wants to perform a write on a local replica it hands its current write-set to the corresponding local server.
 - This server checks whether all writes of C’s write set have been done yet.
 - If not, it contacts the other concerned server(s) to initiate the propagation of the missing writes.
Implement Monotonic Writes (2)

- Each write gets an unambiguous sequence number
- Each replica keeps newest sequence number
 - Delay writes with a too high sequence number as long as all missing writes have been updated on the local copy
Read Your Writes

Definition:
A DDS provides “read your write” consistency if the following holds:

The effect of a write operation by a process P on a data item x at a location L will always be seen by a successive read operation by the same process wherever this read will take place.

Example of a missing read your write consistency:
Updating a website with an editor, if you want to view your updated website, you have to refresh it, otherwise the browser uses the old cached website content.
Example: Read Your Writes

(a) A DDS providing read-your-writes consistency

(b) A DDS that does not
Definition:
A DDS provides “writes-follow-reads” consistency if the following holds:

A write operation by a process P on a data item x following a previous read by the same process is guaranteed to take place on the same or even a more recent value of x, than the one having been read before.
a) A writes-follow-reads consistent DDS

b) A DDS not providing writes-follow-reads consistency
Summary on Consistency Models

An appropriate consistency model depends on following trade-offs:

- **Consistency and redundancy**
 - All replicas must be consistent
 - All replicas must contain full state
 - Reduced consistency → reduced reliability

- **Consistency and performance**
 - Consistency requires extra work
 - Consistency requires extra communication
 - May result in loss of overall performance

- **Consistency and scalability**
 - Consistency requires extra work
 - Consistency requires extra communication
 - Strong consistency weakens scalability