Intended for further publication.
Do not copy!

Do not circulate!

Potential Interdependencies Between Caches, TLBs and Memory

Management Schemes

Jochen Liedtke
GMD — German National Research Center for Information Technology *
jochen.liedtke@gmd.de

Abstract

Dynamic memory management usually stresses the

randomness of data memory usage; the variables of
a dynamic cache working set are to some degree
distributed stochastically in the virtual or physi-
cal address space. This interferes with cache and
TLB architectures, since, currently, most of them
are highly sensitive to access patterns. In the above
mentioned stochastically distributed case, the true
capacity is (a) far below the cache or TLB size
and (b) largely differs from processor to processor.
As a consequence, dynamic memory management
schemes may substantially influence cache/TLB hit
rates and thus overall program performance.

After presenting basic cache and TLB architec-
tures in short, an analytical model for evaluating
their true capacities is developed and applied to
various architectures. Some industrial processors
are evaluated in the same way and potential impli-
cations for memory management techniques are dis-
cussed. Furthermore, a new architecture for caches
and TLBs is presented which improves their true ca-
pacity and reduces their dependence on usage pat-
terns.

1 Rationale

This paper does not deal with the primary costs of
garbage collection or other dynamic memory man-
agement mechanisms but with their secondary costs.
Does a program the variables which of have been dy-
namically allocated and subject to garbage collec-
tion behave and perform like other programs? And
can we reduce negative effects by modification of
memory management algorithms and/or by hard-
ware?

*GMD 15.RS, 53754 Sankt Augustin, Germany

Suppose that you use a simple block structured
programming language which does not support point-
ers, allocates variables solely on the stack and passes
parameters and results always by value. When run-
ning a program written in such a language, select
by random a sequence of a few thousand instruc-
tions and mark all data (variables) accessed in the
sequence. There is a good chance that this (fine-
grained) working set has a highly systematic struc-
ture: all addresses fit into a relatively small interval
which is the stack’s hot part, and there are only few
unused holes in it. If the size of the interval is less
than or equal to the data cache size, you can expect
a hit rate of nearly 100%.

(Un)fortuantely, programming languages are not
as restricted as assumed above. They have refer-
ence parameters, pointers, heaps and sometimes use
rather sophisticated memory management mecha-
nisms including garbage collection. An extreme ex-
ample might be a concurrent logic programming
language, where all variables are written at most
once and data structures are implemented as pointer
arrays. As a consequence, a data working set is
usually spread over a fairly large interval and has a
stochastically influenced structure. Dynamic mem-
ory management usually leads to more or less ran-
domly allocated variables. (Note that even a per-
fectly compactifying garbage collector does not lead
to compact dynamic working sets.)

Since caches and translation lookaside buffers
(TLBs) are in most cases not fully-associative, the
effect of stochastically structured working sets is not
obvious. As will be shown later, random influences
lead to an increase of cache conflicts and thus to
reduced hit rates.

Cache and TLB performance is crucial for to-
day’s systems and will become even more crucial
for tomorrow’s processors. For illustration: on a

fast 3-issue processor, a primary cache miss (and
secondary cache hit) may lead to a 20 cycle delay
corresponding to a delay of 50 to 60 instructions,
even if a few subsequent instructions may be ex-
ecuted during miss handling. TLB misses induce
similar costs. In this situation, reducing both hit
rates by only 1%, from 99% to 98%, can make the
processor run 1.3 times slower.

Hence, it might be relevant to examine (a) to
what extent current caches and TLBs support or
impede MM, (b) whether there exist MM guide-
lines that lead to better performing programs and
(c) how caches and TLBs can be made more effi-
cient when dynamic memory management is used.
This paper examines these issues. Section 2 gives
a short introduction to basic cache and TLB archi-
tectures and describes a new overflow cache mecha-
nism. Section 3 informally introduces various capac-
ity cache measures; more precise definitions and an
analytical model of them are given in appendix A.
The model was originally developed to examine the
ability of caches and TLBs to handle fine-grained
virtual memory [Liedtke 1994]. Although it thus
is stronger in giving upper complexity bounds than
precise costs which can be expected, it shows limita-
tions of different processors and gives some insight
into the problem’s structure. In the remaining sec-
tions, some cache architectures and concrete pro-
cessors are evaluated according to the model, and
some conclusions with respect to memory manage-
ment schemes are drawn.

2 Basic Cache Architectures

A general introduction into caches can be found
in [Smith 1982]. Special architectures are described
in [Bederman 1979; Wood et al. 1986; Wang et al.
1989; Baer and Wang 1988; Chiueh and Katz 1992;
Kessler et al. 1989]. This section deals only with as-
pects related to associativity, since they determine
how a cache reacts to usage patterns. Cache ad-
dressing and tagging (virtual or physical), line size,
replacement algorithms, write strategies and coher-
ence protocols are not discussed here.

2.1 Cache Associativity

This section can be shortened, if cache architecture is
widely known.

A fully-associative cache of n entries is a content
addressable memory. Each entry consists out of a

tag field and a data field. The tag field contains
the (main memory) address of the data held in a
given cache entry; the data fields contain the cor-
responding data. Upon a cache access, the address
a i1s compared with all n tags in parallel. If one
tag matches, a hit is detected and the correspond-
ing data field is used. Otherwise the access leads to
a cache miss which must be handled by the cache
replacement mechanism.

Ca 1

entry 0 entry 1

tag data tag data

l l
© ©
T T

Figure 1: Fully Associative Cache.

From a software engineer’s point of view, a fully-
associative cache is the most convenient architec-
ture, since there are no restrictions on the set of
addresses which can be cached simultaneously. Any
n addresses can be held; clashes never occur.

Unfortunately, fully-associative caches are very
expensive and become too slow when they are de-
signed sufficiently large. In practice, this type is not
used for data or instruction caches, but sometimes
for TLBs.

In the case of a direct-mapped cache (see fig-
ure 2), a map function forms a cache index from
the physical or virtual address a. The index selects
a cache line. Each (valid) cache line contains both
data and the address of the associated main mem-
ory as a tag. a is compared with the tag stored in
the selected cache entry. If it matches, we have a hit
and the cache data field is used instead of the mem-
ory. Otherwise, we have a cache miss, and some
cache replacement mechanism will solve the prob-
lem in such a way that a restarted access a results
in a hit.

In most cases, (a mod cachesize) /linesize is used
as map function. Then it is sufficient to store only
a/cachesize instead of the complete address in the
tag field.

Direct-mapped caches are simple, fast and cheap.
For a given die size, the direct-mapped architecture
permits the fastest [Wilton and Jouppi 1994] and

tag data

D —

o]

Figure 2: Direct-mapped Cache.

the largest [Mulder 1991] cache (the cache with the
most entries). On the other hand, it tends to cache
conflicts or clashes, i.e. cache misses caused by two
or more addresses which are mapped to the same
index and thus cannot be held in the cache simul-
taneously.

Direct-mapped Caches are simpler but lead to
higher miss rates than n-way set-associative caches.
In principle, n-way caches consist of n accordingly
smaller direct-mapped cache blocks. Figure 3 shows
a 2-way set-associative cache. The replacement mech-

Ca 1
way 0 way 1
tag data tag data
@D

l l

® ®
T T

Figure 3: 2-way Set-associative Cache.

anism of the cache ensures that any main memory
entity resides at most once in the cache. The map
function always adresses a complete row, i.e. n ca-
che entries simultaneously. All n tags are read and
compared with the address a in parallel. The row
consisting of n tag and data fields 1s called a set.
Thus an n-way cache with s sets (or rows) contains
sn entries. If all comparisons fail, a cache miss is
signaled. If one tag matches, a cache hit is detected
and the cache entry of this wayis used. In the figure,

a way is represented by its tag and data column.

The n-way set-associative cache can contain up
to n memory entities with map-equivalent addresses
per set. This n-fold associativity reduces the con-
flict probability and accordingly improves the hit
rate. On the other hand, an n-way cache needs
more die size than a direct-mapped one and is not
quite as fast.

In practice, direct-mapped (Mips R4000), 2-way
(Pentium), 4-way (486, PowerPC 604) and 8-way
caches (PowerPC 601) are used.

Page
Processor Size | Ways Size | Use
486 8 K 4 4K I+D
Pentium 8K 2 14K I
8 K 2 1K D
PowerPC 601 32 K 8 4 K I+D
PowerPC 604 16 K 4 14K I
16 K 4 4K D
Alpha 21064 8 K 1 8 K 1
8 K 1 8K D
Mips R4000 8-32 K 1 4K 1
8-32 K 1 4K D

Table 1: First Level Processor Caches.

2.2 TLBs

A Translation Lookaside Buffer (TLB) is a special
cache which is used for translating virtual to physi-
cal addresses. Some processors use fully-associative
TLBs, e.g. Mips R4000 , but in most cases, the
TLBs are n-way set-associative caches.

Although in practice, TLBs are at least 2-way
set-associative, we use a direct-mapped one (fig-
ure 4) for explaining the principle functions. The
diagram is simpler and can easily be extended to
the n-way case.

The uppermost bits v/ of the virtual address v
are used to select an entry of the TLB (in the n-
way case, to select a row of n entries simultane-
ously). The entry ¢ holds the virtual page number
v;, 1ts associated physical page number r; and fur-
ther status bits (e.g. valid, writable, user/kernel)
which are omitted in the figure. If the entry is valid

v oy’ |7

phys. Iaddr. virt. zliddr.

/"’L U’L

ash

i o 7]

Figure 4: Direct-mapped TLB.

and v/ = v;, we have a TLB hit, and the physical
address is composed of the lowermost bits v/ of the
virtual address v (also called page offset) and the
physical page number 7.

Processor Entries | Ways | Page Size | Use
486 32 4 14K I+D
Pentium 32 4 14 K I

64 4 14K D
PowerPC 601 256 2 4 K I+D
PowerPC 604 128 2 14 K I

128 2 14K D
Alpha 21064 32 32 8K I+D
Mips R4000 48 48 14K I+D

Table 2: TLBs.

2.3 Overflow Caches and TLBs

Jouppi [1990] placed a small, fully-associative vic-
tim cache between ordinary direct-mapped primary
and secondary caches for tolerating a few primary
cache conflicts. As a generalization and extension
of this 1dea, we propose to extend a conventional
1-way set-associative cache or TLB by a parallel,
small fully-associative overflow cache or TLB.

The mechanisms described in the following sec-

tions can be applied to both caches and TLBs. Since
usually, stochastic influences are stronger for TLBs
than for data or instruction caches, we first describe
the TLB case.

A direct-mapped or n-way set-associative TLB
1s complemented by a small fully-associative over-
flow TLB which is used to hold the “set overflows”.
Assume that a new (v,r) pair should be entererd
into the TLB and that the map function maps v to
a set which is already full, i.e. consists already of
n valid entries. Instead of flushing one entry of the
set, the new (v, r) pair can also be entered into the
overflow TLB. Thus, some sets may overrun with-
out inducing clashes.

The overflow TLB operates in parallel with the
conventional TLB. Figure 5 shows a system com-
posed of an overflow TLB with j entries and a con-
ventional n-way set-associative TLB. When trans-

— —
overflow n-way TLB
TLB

[g

Figure 5: n-way j-overflow TLB.

lating a virtual address v, both the n-way TLB and
the overflow TLB work in parallel. If one of the
two units signals a hit, the corresponding physical
address is the resulting physical address r and the
whole TLB signals a hit. If no unit signals a hit,
we have a TLB miss. Figure 6 shows a 2-way set-
associative, 3-overflow TLB. Note that small con-
tent addressable memories can be very fast so that
an 4-way 4-overflow cache should be simpler and
faster than an 8-way cache.

The mechansims described in section 2.3 can
also be used to improve the associativity of an in-
struction or data cache. An access with address a
(virtual or physical) will be handled in parallel by a
conventional n-way or direct-mapped cache and the
new overflow cache. If one of them signals a hit, the
corresponding data field will be used. Otherwise, if
neither of the two parts signals a hit, the composed
cache signals a miss.

way 0 way 1

virt ad _phys ad “’virt ad phys ad

2 \ Y
@ @ 2-wa
} ? TLBy

¥ ¥ ¥
0o ow
[

virt ad phys ad virt ad phys ad virt ad phys ad

Figure 6: 2-way 3-overflow TLB.

3 Probabilistic Capacity

3.1 Ewvaluations

Numerous studies use the cache hit rate (the ra-
tio of accesses which hit in the cache to accesses
in total) as a measure of the cache’s quality. Un-
fortunately, the hit rate not only depends on the
cache architecture but also heavily on the dynamic
program or system behaviour. We cannot predict
hit rates; we can only measure them for a given pro-
gram or a given set of programs and given data sets.
Large amounts of heuristic work has been invested
to find benchmarks which are in some respect “rep-
resentative”. Some people hope that the results of
such benchmarks are valid also for “similar” pro-
grams and that many practically relevant programs
are “similar”. This approach has at least two weak
points:

e It cannot be predicted how upcoming new ap-
plications, new programming styles, even new
programming languages or code generators will
effect the hit rate.

e It cannot be predicted how the combination
of two or more applications will effect the hit
rate.

Measuring hit rates is not sufficient to understand
caches. We need a measure which gives us more in-
sight into the cache properties and is not as program
dependent as the simple hit rate. There are strong
similarities between caches and paging. The most

important idea to understand paging was introduc-
ing working sets [Denning 1968]. This abstraction
turned out to be both sufficiently independent of
concrete program behaviour and sufficiently expres-
sive for performance evaluations.

Accordingly, we define the cache working set
of a sequence of n memory accesses to be the set
of w (different!) memory entities accessed by this
sequence. (A memory entity is the memory unit
which can be held in one cache entry.) If the com-
plete cache working set fits completely into the ca-
che, we can be sure that the instruction sequence
can be executed fast. Besides potentially loading
the cache working set, no cache miss at all will oc-
cur: the worst case miss rate is w/n. Otherwise, if
the complete cache working set does not fit simul-
taneously into the cache, we cannot make relevant
statements about cache hits and misses: the worst
case miss rate is n/n.

Now, we argue the other way around. Assume
an infinite sequence of accesses. N, denotes the
maximum prefix length of this sequence so that its
cache working set contains w entities. The corre-
sponding cache working set is denoted by W,,. The
cache capacity related to the given sequence of ac-
cesses is the value C' such that the first C' members
of the working set fit simultaneously into the cache
whereas the first C'+ 1 do not, i.e., W fits into the
cache and W41 does not.

This capacity seems to be an essential cache prop-
erty. Unfortunately, for most cache architectures; it
heavily depends on the working set structure: the
capacity of a direct-mapped cache can range from 1
(all accesses mapped to the same cache entry) up to
n (all mapped to different entries). To get rid of this
dependency, we use expected capacity and probabilis-
tic capacity. These terms are defined more precisely
in appendix A; here we describe them informally:
_ Expected Capacity is the “average” capacity
C over the working sets of all possible access se-
quences. If you select such a working set at ran-
dom, C' is the expected value of the corresponding
capacity.

Probabilistic Capacity is the maximal capac-
ity Cp such that with probability p, a randomly se-
lected working set relates to a capacity of at least
C,. Usually, p is chosen very close to 1.

Accordingly, we use the term systematic capacity
as a synonym for the cache size.

An important parameter for determining the ex-
pected and the probabilistic capacity is the method

for selecting the working set. Generally, any method
can be specified by an according probability distri-
bution.

We concentrate on equally distributed working
sets, more precisely, we assume that any working
set with a predefined size has the same probabil-
ity of occuring. In the case of stochastically se-
lected working sets, the probabilistic capacity is also
called stochastic capacity and the expected capacity
1s called expected stochastic capacity.

Why did we choose the stochastic model? There
are presumably no hard mathematical arguments
for this choice but some serious intuitive and prag-
matic arguments:

e In practice, stochastic selection is presumably
the worst case. A systematic selection 1s ei-
ther better than a stochastic one or can be
randomized, e.g. by a hash function or even
by simply xoring the address by a bit mask.
Therefore a cache architecture well-suited for
stochastic selection should perform well in most
cases.

e In practice, stochastic influences become more
and more important. Among other reasons,
increasing cache and TLB size, increasing con-

currency and object-oriented programming tech-

niques are responsible for this effect. There-
fore, a stochastically bad-performing cache ar-
chitecture will presumably not be very effi-
cient in practice.

In appendix A we show how expected and proba-
bilistic capacity of various cache types can be cal-
culated analytically.

Assume that for 8K cache, we find an expected
stochastic capacity C' = 50% and a stochastic ca-
pacity Cogyy = 25%. What does this mean? The
naive interpretation of the expected capacity is: we
expect that programs with cache working sets up to
4K perform fast. This interpretation is wrong!

We can be relatively sure (precisely 99%-sure)
that programs with cache working sets up to 2K, the
stochastic capacity, perform fast. For a stochastic
capacity C},, we can expect a worst case miss rate

of

Ne Cp
PNy 41—
N, Ne +(1-p)

Cp
p—w— + (I=-p
ot)
We do not have a similar approximation based on

the expected capacity. In our example, a cache

working set of 3.5 may lead to a horrible miss rate,
although it is not larger than the expected capacity.

Pragmatic conclusion: Cum grano salis, we can
use probabilistic and expected capacity as prob-
able lower and upper bounds for efficiently
performing cache working sets. As long as
the working sets do not exceed the probabilis-
tic capacity (with p & 1), we can be relatively
sure that the program performs fast. On the
other hand, we should be surprised, if a pro-
gram heavily using cache working sets beyond
the expected capacity performs well.

4 Capacity Analysis

For comparing some cache architectures, in this sec-
tion always 32-byte cache lines are assumed. Fig-
ure 7 shows the stochastic capacities with p = 99%
for conventional direct-mapped, 2-way, 4-way and
8-way associative caches from 4K up to 32K size.

100 q
90 1
80 1
70 4
60 1
0.99 50 4
[%]
40 1
30 1 \\\\‘_\
20 - 8
10 x4
X2
T T T 1 Xl
4K 8K 16K 32K

cache size

Figure 7: Stochastic Capacity, n-way Caches

The capacity is given as relative capacity, where
100% denotes the complete cache, i.e. the size given
by the x-axis. Direct-mapped caches (x1) have
an extremely low stochastic capacity, mostly be-
low 1%; 2-way caches are slightly better with 4%.
Although 4-way and 8-way caches have a 15 re-
spectively 40 times higher stochastic capacity than
direct-mapped caches, their absolute values, 11%
and 25% respectively, are still not very high.

Figure 8 shows the effect of adding overflow caches
with 4, 8, 16 and 32 entries to a direct-mapped ca-
che. The effect is surprisingly strong: even 4 entries

100
90
80
70 -
60 -
c
.99 50 i
[%]
40
30 .
20 4 o T 432
S TTmeen e 116
104 Tmeea T 8
~~~~~~~~~~~ i
T T T 1 +0
4K 8K 16K 32K

cache size

Figure 8: Stochastic Capacity, Direct-Mapped Ca-
che

are enough to compete with a 4-way set associative
cache, 32 overflow entries outperform the 8-way ca-

che.

100
90 +
80 1
70
60 +
O 29
’ 50 S~ 32
[%] CSael el *
40 A Se el T 116
30 | TUeeell T +8
~~~~~~~ 4
20
10 - +0
T T T 1
4K 8K 16K 32K

cache size

Figure 9: Stochastic Capacity, 4-way Cache

When a 4-way cache is complemented by an
overflow cache (see figure 9), the first 4 overflow
entries increase the stochastic capacity by roughly
20%, i.e. more than doubles it. 50% can be reached
by 16 overflow entries.

All the capacity evaluations discussed until now
assume purely stochastic cache or TLB working sets.
In practice, stochastic (e.g. on the heap) and sys-
tematic (e.g. on the stack) influences coexist. Does
this substantially increase the capacities? We ex-
amine working sets built by two simultaneously ac-

100 q
~~~~~~ 4-way + 4 ov
90 - ]

- 4-way ?
80 e

-~ l-way + 4 ov S
70 S
- 1-way H
60
0.99

(%] L /i
40 K
30 A P
20 - y

10 ~

systematic contingent

Figure 10: Probabilistic Capacity of 8K-Caches for
Mized Stochastical and Systematic Selections

tive mechanisms: the first is a pure stochastic selec-
tion, the second a pure systematic selection which
chooses subsequent adjacent entries, i.e. a compact
part of memory. Now we start with a pure stochas-
tically determined situation and then increase the
systematic contingent. A systematic contingent of
0.6 means that 60% of any cache working set is cho-
sen systematically and the remaining part is chosen
stochastically. Figure 10 shows probabilistic capaci-
ties (p = 99%) for direct-mapped and 4-way caches
without and with a 4-overflow cache. () is mea-
sured for systematic contingents from 0.0 (purely
stochastic) up to 1.0 (purely systematic). In the
latter case, cache capacity is of course always 100%;
but even limited stochastic influences, like system-
atic contingents of 0.7 or 0.8, reduce the capacity
nearly to the purely stochastic case. From this, we
conclude that stochastic capacity is an acceptable
measure for programs which are influenced by dy-
namic memory management and garbage collection.
For a more comprehensive comparison, figure 11
shows stochastic and ezpected capacity of 1-, 2-,
4- and 8-way associative caches, each for in isola-
tion and also when combined with 4-; 8- 16- and
32-overflow caches. The general result is that to
achieve higher capacities, multiple ways and an over-
flow cache are required. For capacities beyond 50%,
the potential combinations are 2-way+32, 4-way+16
or 8-way+8. Note that the gap between expected
and stochastic capacity becomes smaller when using
overflow caches. In the case of a 16-entry overflow
cache e.g., the difference is only 10% or even less.



.99

[%]

T
8K 16K

n-way cache size

100 100
90 + 90
80 1
. 70
C
60 +
: 50 -
0.99 40 i
[%] 432
30 4 +16
20 +8
+4
10 - 40
i.“ T T - 1 T T T 1
4K 8K 16K 32K 4K 8K 16K 32K
1-way+7 cache size 2-way+j cache size
100 100
90 + 90
80 1 80
. 70 70 4 v
¢ 432
60 + 60 +16
: 50 50 - S +8
Clag Y +4
40 + 40 :
[%]
30 + 30 +0
20 20 -
10 - 10 H

T
16K

4-way—+j cache size

T
32K 4K 8K 16K 32K

8-way—+j cache size

Figure 11: Cache Capacitlies.



100 ~

90 +
80 +
c
C oo
[%]
T T T T 1
3264 128 256 512
n-way TLB entries
100 100
c
C oo
[%]
T I 1 - T T T 1
3264 128 256 512 3264 128 256 512
1-way+7 TLB entries 2-way+; TLB entries

100 . 100

90 + 90 +

80 1 80

- 70 4 70 A

C

60 + 60

: 50 50 -
C oo

40 + 40
[%]

30 + 30

20 20 -

10 - 10 1

T T T T 1 T T T T 1
3264 128 256 512 3264 128 256 512
4-way+j TLB entries 8-way+j TLB entries

Figure 12: TLB Capacities.



TLBs have a behaviour similar to caches. Fig-
ure 12 shows expected capacity and stochastic ca-
pacity (p = 99%) for TLBs from 32 up to 512 en-
tries. To ensure capacities beyond 50%, TLBs also
require overflow TLBs.

4.1 Counterarguments

Many existing processors have direct-mapped or 2-
way caches. Do these caches really perform as bad
as the above cacpacity analysis suggests? There are
two obvious counterarguments:

only a 2% effect in his (conservative) overall bench-
mark suite.

A further remark: a stochastic cache working set
is chosen out of an infinitely large address interval.
In practice, twice the cache size is already “infinite”.
On the other hand, if you select variables within
a memory interval smaller than or equal the total
cache size, the capacity is always 100%. This means
that a 32K cache works perfectly as long as the hot
data variables lie within one 32K interval, no matter
what architecture the cache has.

1. The mentioned processor vendors made benchmark-5  Conclusions

based hit-rate measurements for various cache
architectures. Obviously, some of them con-
cluded that improved associativity does not

pay in relation to the improved hardware costs.

2. Measurements and simulations, especially Hill
and Smith [1989], state that improving asso-
ciativity beyond 2 ways has only very limited
effects.

Indeed, Hill and Smith show that the influence
of associativity is limited in scenarios where capac-
ity misses (which here should better be called size
misses) dominate conflict misses. They explicitly
say that “trace samples that exhibit unstable be-
haviour (e.g., a particular doubling of cache size
or associativity alters the miss ratio observed by
many factors of two) have been excluded from both
groups [of trace samples]” [Hill and Smith 1989, p.
1615]. Not surprisingly, under this premise size
misses dominate and enlarging size or increasing
associativity has only smoothing effects; otherwise
increasing size or associativity would produce “un-
steady” effects.

Due to instruction prefetching, speculative ex-
ecution and non blocking caches, the delay effects
of instruction cache size misses may substantially
decrease. Larger register sets, new compiling tech-
niques and perhaps data prefetching may also de-
crease data cache size misses. Conflict misses re-
main.

Furthermore, it should be mentioned that these
cache miss rate measurements always show rates av-
eraged over a variety of programs. They do not
predict the behaviour of a single program. From
a software architect’s point of view, a 50% perfor-
mance difference in programs of his favoured type
is important, even if the hardware architect realizes

10

5.1 Interdependencies with Caches

Table 3 and figure 13 show systematic, expected
and stochastic data cache capacity of various avail-
able processors. For the processors using a unified
instruction and data cache (486 and PowerPC 601),
it is assumed that half of the cache is used for in-
structions.

Processor Cache Workingset
486 55-139 x 16 B = 0.88-2.22 K
Pentium 11-45 X 32 B = 0.35-1.44 K

PowerPC 601 | 61-112 x 64 B = 3.90-7.17 K
55-139 X 32 B = 1.76-4.44 K
2-20 x 32 B = 0.06-0.64 K

5-40 x 32 B = 0.16-1.28 K

PowerPC 604
Alpha 21064
Mips R4000

Table 3: Concrete Cache Capacities.

1. Analytically or heuristically derived values of
the cache working sets of concrete programs
may help the user to select the most appro-
priate hardware.

2. The cache capacity characteristics of the pro-
cessors differ largely. We should not expect to
find processor independent optimization strate-
gies for memory management algorithms.

3. For programs with a relatively small data set
(and processors with a fairly large cache), it
might be a good strategy to concentrate the
complete data set into a virtual memory re-
gion smaller than the cache size.



e apme ()

Z

486 Pentium Power601 Power604 Alpha R4000

Figure 13: Conecrete Cache Capacilies

11

16 T . R . s .

15 o el

C
Ll e

12 4

11
10.3
10

Qe —apg ()

Z

486+ Pent4+ Pow6014 Pow6044 Alp4+  R40004

Figure 14: Hypothetical Cache Capacities When
Adding an 8-overflow Cache



4. This strategy will presumably not work for
larger data sets, especially in the case of object-
oriented systems and databases or in the case
of single address space operating systems. All
these applications will profit from higher as-
sociativity and thus higher stochastic capacity
like on the PowerPC.

5. A strategy for PowerPCs: try to cluster re-
lated objects in one page. As long as the data
working set consists of only up to 4 pages,
you have 100% capacity, i.e. 16K (provided
that not more than 4 instruction pages are
required on the 601).

6. Intuitively, we doubt that effects comparable
to increased associativity can be obtained by
software, mainly due to the costs of dynamic
detection of working sets and the required re-
arrangement.

7. Increasing the stochastic capacity of caches
seems to be the most promising way. Fig-
ure 14 shows the hypothetical effect of adding
only an 8-entry overflow cache to the primary
cache of the processors mentioned above.

5.2 Interdependencies with TLBs

Table 4 and figure 15 show systematic, expected
and stochastic data TLB capacity of the same pro-
cessors. The capacity is given in Kbyte which can
be mapped by the TLB. The Alpha and R4000!
TLBs are fully-associative and therefore have high
stochastic capacity. Note that these are both pro-
cessors with software controlled TLBs, where TLB
misses are extremely expensive. Again, in the case
of unified instruction and data TLBs (all but Pen-
tium and PowerPC 604), it is assumed that half of
the TLB is used for instruction pages.

1. Similar to the cache case, TLB working set
data of his program may help the user.

2. The capacity characteristics of the processors
vary less than in the cache case. The chance
is higher to find optimization strategies which
can be applied to multiple processor types.

1 The R4000 TLB has 48 entries, each of which can hold a
pair of two adjacent pages. Therefore the total TLB capacity
is at least 48 x 4K and at most 48 x 8K.

12

Qe —ap oo ()

Z

Processor TLB Workingset

486 4-9x4K= 16-36K
Pentium 12-29 x 4 K = 48-116 K
PowerPC 601 6-23 x 4 K= 24-88 K

PowerPC 604 729 x 4 K= 28-116 K
Alpha 21064 16-16 x 8 K = 128-128 K
Mips R4000 24-24 x 4 K = 96-96 K

Table 4: Concrete TLB Capacities.

512

448 -

384

320

256

192 o

128

64 —

486

Pentium Power601 Power604 Alpha R4000

Figure 15: Concrete TLB Capacities



3. There are processors (Alpha and R4000), where
the TLBs permit arbitrary stochastic distri-
butions, provided that not too many pages are
used. Unfortunately, exactly these processors
are characterized by low cache capacity.

4. On the PowerPC and the Pentium, restrict-
ing the data memory used to a region of 256K
(Pentium) or 512K (PowerPC) will eliminate
data TLB conflicts. Such an attempt to im-
prove locality is e.g. described in [Lam et al.
1992]. The stochastic capacity permits also a
certain unlimited random use.

6 Open Questions

This is a workshop paper and does not describe
completed research. It leaves a many questions open:

1. How stochastic are data working sets of pro-
grams running under various memory man-
agement mechanisms? Are they similar to
Lisp and Smalltalk programs, to OO databases
and single address space operating systems?

2. Performance research has concentrated on the
efficiency of the garbage collection process it-
self. Are the existing algorithms capable of
usage optimization strategies without loosing
their performance?

3. Is the situation different in uniprocesors, mul-
tiprocessors and distributed systems?

4. What are the real costs (in terms of perfor-
mance degradation) of capacity overflows, i.e.
when the working set exceeds stochastic or ex-
pected capacity?

5. Will the importance of conflict misses really
increase in future processors?

6. Can overflow caches/TLBs be added to nor-
mal caches/TLBs without slowing them down?

Last, but not least, it should be mentioned that
the discussed problems may be as important for
large second and third level caches, since the costs
per cache miss then increase dramatically, size misses
occur more seldom and randomess grows, because
the caches are shared by multiple address spaces.
Since these caches are indexed by physical addresses,
virtual memory mapping adds additional stochastic
effects.

13

Acknowledgement

Many thanks to Richard Uhlig for proofreading and
critical comments.

A Theorems

For sake of simplicity, we assume that the smallest address-
able unit is one cache line. Let us regard a sequence a4; of
addresses by which the cache is accessed. We eliminate all
multiple occurrences of addresses from a; so that in the re-
sulting sequence a;, all elements are pairwise different. A
working set of cache entries can be characterized by a set
of pairwise different addresses a; with the property that the
cache 1s able to hold all a; stimultaneously.

From the sequence a; of addresses, the cache’s map func-
tion derives a sequence z; of cache indices by z; = map (a;).
Note that the elements of this sequence are not necessarily
pairwise different: x; = x; models two used cache entries
addressed by the same index. For capacity modeling, we
can describe a cache working set as well by the sequence
z=(z1,72...%n).

For a complete cache description, we additionally need a
fit function which specifies whether any given Z simultane-
ously fits into the cache or not.

Definition 1 (Abstract Cache) An abstract cache is a
pair (X, f) consisting of an index set X and a fit function
f+ X* = {0,1}. For all sequences T€X™ which fit com-
pletely into the cache, f(z) = 1 holds; otherwise f(z) = 0.

Usually, a cache’s index set consists of the indices 0,1, ..
1. Its fit function is determined by the cache architecture.
Fit functions for some architectures are given below.

The length n of a sequence z = (z1,z2...2,) € X" Is
denoted by |Z|. For z € X* and y € X, the number of z; with
z; = y is denoted by Z||.

Then the fit functions for a fully-associative cache of m
entries (f1xm), an m-way set-associative cache with s sets
and sm entries (fsxm) and an m-way j-overflow cache with
s sets and sm + j entries (fsxm+;) can be written as

_ Jlzl<m — 1
flxm(l’) = B
I:I Z|>m = 0
o Nvi: @lley <m = 1
Joxm(@) = I:I i Z||e, >m — 0
f (z) I:I Zz max(Z||z; —m,0) < j —
o > max(zllz; =m,0) > j —

Definition 2 (Probabilistic and Stochastic Capacity)
Assume an abstract cache with index set X and fit function
f. Let D = (di,d2...) be a family of probability distribu-
tions dp + X7 = [0,1] with 1 = 3" dn(&) for all dn.
Then

en= Y dn(@](@)

ZEX™

AXT=



15 called the corresponding fit probability. For p>0, the
corresponding probabilistic capacity with limit probability p
15 defined as

Cp = max {n|en>p}
For p =0, the probabilistic capacity is

Co max {n|en >0}

If D is the family of equal distributions dn(z) = |X|™7, Cp

15 also called the stochastic capacity of the cache.

Remark: Cj is the best case capacity of the cache, since it
is the largest n such that there is at least one sequence
of length n fitting into the cache. Usually, Cy equals
the number of cache entries.

(1 is the worst case capacity of the cache, since it
is the largest n such that any sequence of length n
fits into the cache. Usually, C; equals the cache’s
maximum degree of associativity.

Definition 3 (Expected Capacity) Assume an abstract
cache with index set X, fit function f and a mazimum ca-
pacity of n entries (f(z) = 0 for all z with |z|>n). The
function F': X™ — N with

F(zi,...zn) = max{ i<n | f(z1,...2;) =1}

delivers the length of the longest prefiz of a given T which
fits into the cache. If the cache is not even able to hold only
the first element (f(z1) =0), F(%1,...) = 0 is defined.

The expected capacity of the given cache with respect to
a probability distribution dn : X™ — [0,1] is defined to be

Z dn () F(2)

ZEX™

c

If dn is the equal distribution dn(z) = |X|77, C is also
called the expected stochastic capacity of the cache.

Theorem 1 (Expected Stochastic Capacity) Assume an
abstract cache with index set X, fit function f and mazimum
capacity n. Let @y, be the corresponding fit probability. Then
the expected stochastic capacity can be calculated by

n
¢ = g Pk
k=1
Proof: By definition, the expected stochastic

capacity is
C = > dF@) |
ZEX™

where d,, |X|77.

wise disjoint sets

Now, we construct the pair-

Yi {zeX" |F(z)=k }

which form a decomposition of X" (U Y =
X" andY;NY; = ¢ fori#j). Using this decom-
position, we can rewrite the expected stochastic
capacity as

14

n n

SN dnF@) = DD dak

k=1z€Y) k=1 z€Y)

n
Zdnmw
k=1

Note that d,,Yy is the probability that a ran-
domly selected Z is member of Y. By presup-
position, we know the probability ¢, that Z is
member of Y UYp41 U---Yy. Since the V;
are pairwise disjoint, the probability that Z is
member of Yy is

dnYr = @r — Pry1
Note that ¢n,41 = 0,i.e. dnYyn = ¢n. Therefore

n

= Z(@k_@k+l)k = Zwk
k=1

c

qg.e.d

Al

An m-way set-associative Cache with s sets has sm entries
in total. We model this cache as follows:

There is an infinite set of balls, each one marked by an
index. There are s different indices which are equally dis-
tributed. A ball is drawn by randomly selecting one and
removing it from the infinite set of balls. The probability to
draw a ball with a specific index is % and remains stable over
subsequent drawings. Furthermore: there are s bins, one per
index value. Each bin is able to hold up to m balls, i.e. al-
together there is room for sm balls. Now, n balls are drawn
and each drawn ball is put into the appropriate bin.

Select one of the s indices and then draw n balls. How large
is the probability l_[(k)S that exactly k& of the drawn balls

n

m-way Set-associative Caches

have the preselected index? Since the probability to get a
preselected index in one drawing is % and there are (Z)

possibilities to select k& elements out of n, the answer is

- (i

We define 0° = 1 so that H(k)l

7,

1k

n,s

correctly evaluates to 1 if
k = n and 0 otherwise.

How large is the probability PC(S) that at most m balls
of each index are drawn in n drawings, i.e. that no bin
runs over? Assume that 0 <k <m balls of the first index
are drawn. Then n — k balls are left for the remaining s —
1 indices. For ¢>0, PS(") can be calculated recursively by
summing over all legal values of k:

m
_ k —k
P =30 p
k=0
For proper end of recursion, we define Pu(n) = 1. Note that

Pl(n) is 1 in case of n<m and 0 otherwise.



Theorem 2 (Stochastic Capacity of m-way Cache) Let
(X, f) be an abstract cache with |X| = s and fit function
f = fexm as defined in (1). The stochastic capacity of this
cache 1s determined by pn = PS(").

Proof: See construction above.

PS(") is hard to calculate for large n and s. In the case of

P! 7) 2 1, it can also be approximated much simpler:

Theorem 3 (Approximation PS("))

n
PO 2 -5y where Y= Y n)

7,

k=m+1

Proof: Here Y is the probability that a given
bin runs over. The probability that at least one
of s bins runs over is certainly less or equal than

sY.2

The simple to calculate lower bound 1 —s Y is obviously only
good for ¢ Y « 1. Fortunately, we are interested exactly in
these cases.

A.2 m-way j-overflow Caches

Now we extend the model to describe also m-way j-overflow
caches. We introduce an additional overflow bin which is
able to hold up to j balls of arbitrary index.

At first, we generalize Hglk)sz instead of 1, select ¢ of the
s indices and then draw n balls. How large is the probability
Hglk)s , that exactly k of the drawn balls are marked with one
of the preselected indices? Since the probability to get a ball
with one of the preselected indices in one drawing is % and

ere are possibilities to selec elements out ot 7,
th Z ibilities to select k el ts out of

= (1) @ra-omt

Similar to PS(") in (A.1), we calculate the probability Q(S")
that more than m balls of each index are drawn in n draw-
ings, i.e. that all bins run over. Here the lower bound of % is
m + 1. The upper bound is n — (s — 1)(m + 1), since other-
wise at least one of the remaining s — 1 bins cannot run over.

Therefore,

Itk

n,s,1

for s >0 and an) = 1 holds.

At last, we want to know the probability that no more
than 7 overruns occur when n balls are drawn. To express
this more precisely, for every experiment of drawing n balls,
we denote by N; the number of actually drawn balls of index
1. If Ny <m, bin 7 did not run over; otherwise it produced

2The different possible bin overflow events during one
drawing experiment are not independent. Therefore, we can-
not simply calculate PS(") by (1 — Y')*.This expression gives
the probability that in s subsequent drawing experiments,
bin i does not overflow during the " drawing ewperiment,
while other bins may overrun in the experiment.

15

N; —m overruns. We are interested in the probability R(S") (7)
that Zle max (N; —m, 0)<j.

For the calculation, we assume that exactly ¢ bins run
over and the remaining s — ¢ do not. Furthermore, we as-
sume that exactly &k balls are drawn which belong into the
overrunning ¢ bins. Due to Bayes’ formula, the probability
for this special situation is the product

k) k) pln=k)
The lower bound for k is 7(m + 1), since ¢ bins must run over;
its upper bound is i¢m + 7, since exactly ¢ bins run over and at
most j overruns are permitted. The number ¢ of overrunning
bins may vary from 0 to 7. Therefore, the final result is

J tm+g
R0 =30 (1) X me e e
1=0 k=i(m+1)

Theorem 4 (Stoch. Cap. of m-way j-overflow Cache)
Let (X, f) be an abstract cache with |X| = s and fit function
f = fexm+; as defined in (1). The stochastic capacity of
this cache is determined by the fit probability ¢n = R(S") (7)-

Proof: See construction above.

References

BAER, J. L. AND WaNG, W. H. 1988. On the inclusion
properties for multi level cache hierarchies. In 15th
Annual International Symposium on Computer Ar-

chitecture (ISCA ), Honolulu, HA, pp. 73-80.

BEDERMAN, S. 1979. Cache management system using vir-
tual and real tags. IBM Technical Disclosure Bul-
letin 21, 11 (April), 4541.

CHIiUvEH, T. anD KaTz, R. H. 1992. Eliminating the ad-
dress translation bottleneck for physical address ca-
che. In 5th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Boston, MA, pp. 137-148.

DENNING, P. J. 1968. The working set model for program
behaviour. Commun. ACM 11, 5 (May), 323-333.

HiLe, M. D. aND SMITH, A. J. 1989. Evaluating associa-
tivity in CPU caches. IEEE Transactions on Comput-
ers 38, 12 (Dec.), 1612-1630.

Intel Corp. 1990. 1486 Microprocessor Programmer’s Ref-
erence Manual. Intel Corp.

Intel Corp. 1993. Pentium Processor User’s Manual, Vol-
ume 8: Architecture and Programming Manual. Intel
Corp.

Jouppr, N. P. 1990. Improving direct-mapped cache per-
formance by the addition of a small fully-associative
cache and prefetch buffers. In 17th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
Seattle, WA, pp. 364-373.

KaNg, G. AND HEINRICH, J. 1992. MIPS Risc Architec-
ture. Prentice Hall.

KessLer, R. E., Joos, R., LEBECK, A., AND HILL,
M. D. 1989. Inexpensive implementations of set-
associativity. In 16th Annual International Sympo-
stum on Computer Architecture (ISCA), Jerusalem,
pp. 131-139.



Lam, M. S., WiLsoN, P. R., AND MOHER, T. G. 1992. Ob-
ject type directed garbage collection to improve local-
ity. In Memory Management (IWMM 92), St. Malo,
pp. 404-425. Springer.

LIEDTKE, J. 1994. Address space sparsity and fine gran-
ularity. In 6th SIGOPS European Workshop, Schlof
Dagstuhl, Germany, pp. 78-81. also in Operating Sys-
tems Review 29, 1 (Jan. 1995), 87-90.

Motorola Inc. 1993. PowerPC 601 RISC Microprocessor
User’s Manual. Motorola Inc.

MULDER, J. 1991. An area model for on-chip memories and
its applications. IEEE Journal of Solid States Cir-
cuits 26, 2 (Feb.), 98-106.

SMITH, A. J. 1982. Cache memories. ACM Computing
Surveys 14, 3 (Sept.), 473-530.

Sonag, S. P., DENMAN, M., AND CHANG, J. 1994. The
PowerPC 604 risc microprocessor. IEEE Micro 14, 5
(Oct.), 8-17.

Wanag, W. H., Bagr, J. L., anD LEvy, H. 1989. Orga-
nization and performance of a two-level virtual-real
cache hierarchy. In 16th Annual International Sym-
posium on Computer Architecture (ISCA), Jerusalem,
pp. 140-148.

WiLToN, S. J. E. aAND Jouppr, N. P. 1994. An enhanced
access and cycle time model for on-chip caches. Tech.
Rep. 93/5 (July), Digital Western Research Labora-
tory, Palo Alto, CA.

Woob, D. A., EGGERs, S. J., GiBson, G., HiLL, M. D.,
PenDLETON, J. M., RITCHIE, S. A., TAYLOR, G. S.,
Karz, R., AND PATTERsON, D. A. 1986. An in-
cache address translation mechanism. In 13th Annual
International Symposium on Computer Architecture

(ISCA), Tokyo, pp. 358-365.

16



