Priority Inversion

o © 2009 Universitat Karlsruhe (TH), System Architecture Group

Roadmap for Today

= Priority Inversion
= Resource protocols

= Synchronization Mechanisms
= Signaling
= Semaphores
= Monitors

= Synchronization Problems

= Producer / Consumer and
= Reader / Writer

i arlsruhe (TH), System Architecture Group

Example

= 5 processes
= process number equals priority
P4 » Priority of P5 > priority of P1

= Release and execution times
as shown

P3
= No deadlines (only an example
for later comparison)
P2
= Priority-driven preemptively
b1 scheduled

0 2 4 6 8 10 12 14 16 18 20

D © 2009 Universitét Karlsruhe (TH), System Architecture Group

P4

P3

P2

P1

Example

10

12

14

16

18

20

12 14 16 18 20

10

(TH

o © 2009 Universitat Karlsruhe

P1

12 14 16 18 20

10

(TH

o © 2009 Universitat Karlsruhe

P1

12 14 16 18 20

10

(TH

o © 2009 Universitat Karlsruhe

P2

P1

12 14 16 18 20

10

(TH

o © 2009 Universitat Karlsruhe

P3

P2

P1

12 14 16 18 20

10

(TH

o © 2009 Universitat Karlsruhe

P4

P3

P2

P1

12 14 16 18 20

10

(TH

P4

P3

P2

P1

Example

10

12

14

16

18

20

11

P4

P3

P2

P1

Example

10

12

14

16

18

20

12

P4

P3

P2

P1

Example

10

12

14

16

18

20

P4

P3

P2

P1

Example

12

14

16

18

20

14

18 20

16

14

12

10 '

P4
P3
P2
P1

15

(TH

o © 2009 Universitat Karlsruhe

P2

P1

10 12 14 16 18 20

38

(TH

P2

P1

12' 14 16 18 20

10

(TH

P4

P3

P2

P1

12 14 16 18 20

10

18

(TH

o © 2009 Universitat Karlsruhe

P4
P3

P2

P1

12 14 16 18 20

10

(TH

P2

P1

12 14 16 18 20

10

(TH

P3
P2

P1

12 14 16 18 20

10

21

(TH

o © 2009 Universitat Karlsruhe

P3
P2

P1

12 14 16 18 20

10

22

(TH

o © 2009 Universitat Karlsruhe

P3
P2

P1

12 14 16 18 20

10

23

(TH

o © 2009 Universitat Karlsruhe

P3
P2

P1

12 14 16 18 20

10

24

(TH

o © 2009 Universitat Karlsruhe

Reality is more complex

= Processes are not usually independent

i arlsruhe (TH), System Architecture Group

Real-Time Traffic Scheduling

= [WO process
streams

= A high priority
& a low priority

Problem

= Intersection is a mutually exclusive resource

27

Mutual Exclusion

Can be solved by
resource access protocols

\/

® O

?
3

Priorities and Resource
Contention

Main Reference
Pane W. S. Liu “"Real-time Systems”, Chapter 8

Resources

= Processes require resources in order to
execute. (e.g. locks, ports, memory, ...)

s Resource characteristics
n Serially reusable,
s Mutually exclusive

= We ignore resources that
« are infinitely available or exceed demand,
= Or can be pre-allocated.

i arlsruhe (TH), System Architecture Group

Resource Contention Problem

= Priority inversion.
= We need to, at least,

bound the length of P
priority inversion.
= Preferably minimize the p, @

length of priority inversion.
Pl

Famous example of priority inversion:

Mars Pathfinder 1997

i arlsruhe (TH), System Architecture Group

R1

Marth Pathfinder

32

Resource Contention Problems

= Timing anomaly
= Deadlock

Resource Contention

Major Assumption

» Single processor system

Example with Resources

Our Example + 2 Resources

[] B Resource 1

D Resource 2

/Nested Critical Section’
H B E

P

0 2 4 6 8 10 12 14 16 18 20
“P2 first needs R1 and then later additionally R2

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 35

SPD Scheduling

Simple Priority Driven Scheduling

SPD Scheduling

12 14 16 18 20

10

37

(TH

o © 2009 Universitat Karlsruhe

SPD Scheduling

12 14 16 18 20

10

38

(TH

o © 2009 Universitat Karlsruhe

SPD Scheduling

12 14 16 18 20

10

39

(TH

o © 2009 Universitat Karlsruhe

SPD Scheduling

Example

SPD Scheduling

Example

SPD Scheduling

Example

SPD Scheduling

Example

SPD Scheduling

Example

10 12 14 16 18 20

SPD Scheduling

14 16 18 20

12

(TH

SPD Scheduling

12 14 16 18 20

10

(TH

SPD Scheduling

Q
Q.
=
(G
X

L]

16 18 20

14

(TH

SPD Scheduling

Example

12" 14 16 18 20

10

(TH

SPD Scheduling

Example

SPD Scheduling

Q
Q.
=
(G
X

L]

12 14" 16 18 20

10

(TH

SPD Scheduling

Q
Q.
=
(G
X

L]

20

18

12 14

10

(TH

SPD Scheduling

Q
Q.
=
(G
X

L]

12 14 16' 18 20

10

(TH

SPD Scheduling

Q
Q.
=
(G
X

L]

20

12 14 16

10

(TH

SPD Scheduling

Q
Q.
=
(G
X

L]

12 14 16 18' 20

10

(TH

SPD Scheduling

o
5 -

12 14 16 18

10

(TH

SPD Scheduling

Result

= The most important processes P5 and P4 are
heavily delayed

= P3 is almost not delayed due to its
characteristic, it does not need any resource

— Find a better solution

56

Resource Allocation Protocols

4 Resource Allocation Protocols

= Non Preemptive Critical Sections (NPCS)
= Priority Inheritance (PI)

= Priority-Ceiling Protocol (PCP)

= Stacked Priority-Ceiling Protocol (SPCP)

= ... and some others
= See text book (Liu)

NPCS Scheduling

Nonpreemptive Critical Sections

= As soon as a process holds
a resource it is no longer p3
preemptable”

= Prevents deadlock P2 @

cannot
happen at t1

R1

= Bounds priority inversion

= Max blocking time is the
maximum execution time of 3
the critical sections of all max prio
lower priority processes

Allocate at t0
Pl

“This process gets highest priority in system

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 58

NPCS Scheduling

Non-Preemptive Critical Sections

NPCS Scheduling

12 14 16 18 20

10

60

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

12 14 16 18 20

10

61

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

12 14 16 18 20

10

62

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

Example

Example

10

12

14

16

18

20

NPCS Scheduling

64

NPCS Scheduling

Example

Example

NPCS Scheduling

10

12

14

16

18 20

66

NPCS Scheduling

Example

Example

NPCS Scheduling

10

12

14

16

18 20

68

NPCS Scheduling

Example

Example

NPCS Scheduling

14

16

18 20

70

NPCS Scheduling

16 18 20

14

71

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

12' 14 16 18 20

10

72

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

18 20

16

12

10

73

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

12 14' 16 18 20

10

74

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

20

18

12 14

10

75

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

12 14 16' 18 20

10

76

(TH

o © 2009 Universitat Karlsruhe

NPCS Scheduling

Example
| |
P

o © 2009 Universitat Karlsruhe

20

12 14 16

10

77

(TH

NPCS Scheduling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example
| |
P

o © 2009 Universitat Karlsruhe

12 14 16 18' 20

10

78

(TH

NPCS Scheduling

Example
| |
P

o © 2009 Universitat Karlsruhe

12 14 16 18

10

79

(TH

NPCS Scheduling

Comparison with SPD-Scheduling

NPCS Scheduling

Analysis: Nonpreemptive Critical
Sections

s Pros
= Simple
= No prior knowledge of resource requirements
needed
= Prevents deadlock

s Cons

= Low priority process blocks high priority process
even when there are no resource conflicts

= Protocol only suitable for trusted software
= Usually implemented by interrupt disabling

= In CS there is no system calls otherwise CPU
wasting in case of a "blocking” system call

i arlsruhe (TH), System Architecture Group

NPCS Scheduling

Worst-Case Blocking Time

= Longest lower-priority critical section:

bt(rc) = max {cst,}

i+1 <k <n

bt blocking time
cst = critical section time

PI Scheduling

Priority Inheritance (PI)

= When a high-priority
process (P3) blocks, the

low-priority process (P1) "

inherits the current priority

of the blocking process > @ "
P1 (3

= PI bounds priority inversion

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

AN

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

14 16 18 20

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

O 2 4 6 8 10 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

14 16 18 20

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

O 2 4 6 8 10 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Example with Priority Inheritance

o

PI Scheduling

Example with Priority Inheritance

i

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Comparison with SPD Rule

_ |

P |

PI Scheduling

Analysis: Priority Inheritance

s Pros
= Prevents uncontrolled priority inversion.
= Needs no knowledge of resource requirements.

s Cons
= Does not prevent deadlock.

= Does not minimise blocking times.

= With chained blocking, worst-case blocking time is
min(n,m) critical sections
n = number of lower priority processes that can block P
m = number of resources that can be used to block P

= Some overhead in a release or acquire operation

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 108

PI Scheduling

Chained Blocking

= 4 lower priority processes

T] = 4 potentially conflicting

resources

= Worst-case blocking time

B N
T = 16 units!
B [=

Priority ———

IAssume lower priority process
Time — allocates its first resource just
before higher priority process runs

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 109

PCP Scheduling

Priority Ceiling Protocol

= Avoids deadlock by defining an order of
resource acquisition

= Prevents transitive (chained) blocking
= Worst-case blocking time = single critical section

Description how to implement PCP, see:
http://www.awprofessional.com/articles/article.asp?p=30188&seqNum=5&rI=1

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 110

PCP Scheduling

Priority Ceilings

= Resources required by all processes are
known a priori
= Similar approach as with deadlock avoidance

= Priority ceiling of resource R, is equal to the
highest priority of all processes that use R,

= Priority ceiling of system is highest priority
ceiling of all resources currently in use

i arlsruhe (TH), System Architecture Group

PCP Scheduling

Priority Ceilings of Our Example

. Priority Cellings of Ri

p M -

PCP Scheduling

Priority Ceiling Protocol Rules

= Priority inheritance applies as before.

= When a process (P) requests a resource (R)
either:

» If Ris allocated = P blocks (+ priority inheritance)

« If Ris free,
« If P's current priority > system’s priority ceiling =
R is allocated to process P
= If P’s current priority < system’s priority ceiling =
P blocks — except if:

P already holds a resource whose priority ceiling is
equal to the systems priority ceiling

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 113

PCP Scheduling

Example

max

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 114

PCP Scheduling

12 14 16 18 20

10

115

(TH

o © 2009 Universitat Karlsruhe

PCP Scheduling

curr

12 14 16 18 20

10

116

(TH

o © 2009 Universitat Karlsruhe

Example

PCP Scheduling

Prio(P2) < CurrSPC = no allocation

10 12 14 16 18 20

117

PCP Scheduling

Example

P 2 ... but P1 inherits prio(P2) = 2

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 118

PCP Scheduling

Example

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 119

PCP Scheduling

Example

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 120

PCP Scheduling

Example

8 10 12 14 16 18 20

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 121

Example

PCP Scheduling

122

PCP Scheduling

Example

10 12 14 16 18 20

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 123

Example

PCP Scheduling

124

PCP Scheduling

Example

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 125

PCP Scheduling

Example

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 126

PCP Scheduling

Example

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 127

PCP Scheduling

Example

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 128

PCP Scheduling

Example

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 129

PCP Scheduling

Example

© © 2009 Universitst Karlsruhe (TH), System Architecture Group 130

PCP Scheduling

Example

PCP Scheduling

Example

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 132

PCP Scheduling

Example

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 133

PCP Scheduling

Example
| |
P

o © 2009 Universitat Karlsruhe

12 14 16 18 20

10

134

(TH

PCP Scheduling

Comparison to Previous Example

B

PCP Scheduling

Analysis: Priority Ceiling Protocol

m Pros
= Avoids deadlocks

« If a process doesn’t self suspend, a process is
blocked at most once during execution
= Processes cannot be transitively blocked

= =Mminimizes blocking time to the longest lower-priority
conflicting critical section (+ context switches)

= Processes only receive their first resource when all
required resources are not held by lower priority
processes

= Cons
= A priori knowledge of resource needs is required

D © 2009 Universitét Karlsruhe (TH), System Architecture Group 136

SPCP Scheduling

Stack-Based Priority Ceiling Protocol

= The motivation is to share a single stack
for all processes

= Saves stack space.

= Restriction: processes cannot self-
suspend.

SPCP Scheduling

&) Rules

= Scheduling:

= After a process is released, it is blocked from
starting until its assigned priority is higher than
the current system priority ceiling.

= Unblocked processes are preemptively priority
scheduled according to their assigned priority.

s Resource allocation:

= Whenever a process requests a resource it
receives the resource.

i risruhe (TH), System Architecture Group 138

P1

SPCP Scheduling

Example
H N B
]
V) 2 4 10 12 14 16 18 20

139

SPCP Scheduling

12 14 16 18 20

10

140

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

12 14 16 18 20

10

P1

141

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

P1

12 14 16 18 20

10

142

(TH

o © 2009 Universitat Karlsruhe

Example

SPCP Scheduling

143

P1

Example

SPCP Scheduling

10

12

14

16

18

144

Example

SPCP Scheduling

145

P1

Example

SPCP Scheduling

10

12

14

16

18

146

Example

SPCP Scheduling

147

P1

Example

SPCP Scheduling

10

12

14

16

18

148

Example

SPCP Scheduling

149

P1

Example

SPCP Scheduling

14

16

18

150

P1

Example

SPCP Scheduling

151

P1

Example

SPCP Scheduling

152

SPCP Scheduling

20

18

16

12

10

P4
P3

P1

153

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

P4
P3

P1

12 14' 16 18 20

10

154

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

20

18

12 14

10

P4
P3

P1

155

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

P4
P3
P2
P1

12 14 16' 18 20

10

156

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

12 14 16

10

1 Example

| |
P4
P3

P1

157

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

1 Example

| |
P4
P3

P1

12 14 16

10

158

(TH

o © 2009 Universitat Karlsruhe

SPCP Scheduling

1 Example
| |
P4
P3
P2

P1

12 14 16 18 20

10

159

(TH

o © 2009 Universitat Karlsruhe

P1

SPCP Scheduling

Comparison with Priority Ceiling
Protocol

SPCP Scheduling

Analysis: Stack-Based Priority Ceiling

m Pros
= Simple to implement.

= Slightly better worst-case when compared
to normal PCP — two less context switches.

= No priority inheritance needed.

= Cons
=« Threads cannot self suspend.

Summary

Summary

= 4 protocols controlling resource access
in priority driven preemptive systems

= NPCS
= PI

= PCP
= SPCP

i arlsruhe (TH), System Architecture Group

Summary

Summary

= NPCS and PI do not require a priori
knowledge of resource requirements

= PI neither prevents deadlocks nor avoids
deadlocks

= All protocols -except PI- ensure that
processes are blocked at most once*

163

