

Priority Inversion

Roadmap for Today

- Priority Inversion
 - Resource protocols
- Synchronization Mechanisms
 - Signaling
 - Semaphores
 - Monitors
- Synchronization Problems
 - Producer / Consumer and
 - Reader / Writer

Example

3

Example

Reality is more complex

Processes are not usually independent

Real-Time Traffic Scheduling

- Two process streams
- A high priority& a low priority

Intersection is a mutually exclusive resource

Mutual Exclusion

Can be solved by resource access protocols

Main Reference

Pane W. S. Liu "Real-time Systems", Chapter 8

- Processes require resources in order to execute. (e.g. locks, ports, memory, ...)
- Resource characteristics
 - Serially reusable,
 - Mutually exclusive
- We ignore resources that
 - are infinitely available or exceed demand,
 - or can be pre-allocated.

Resource Contention Problem

- Priority inversion.
 - We need to, at least, bound the length of priority inversion.
 - Preferably minimize the length of priority inversion.

Famous example of priority inversion:

Mars Pathfinder 1997

Marth Pathfinder

Mars Path Finder and the famous Mars Rock YOGI

Resource Contention Problems

- Timing anomaly
- Deadlock

Major Assumption

Single processor system

Our Example + 2 Resources Resource 1 Resource 2 **P**3 Nested Critical Section*

8 10 12 18 14 16 20

*P2 first needs R1 and then later additionally R2

P1

45

46

SPD Scheduling

- The most important processes P5 and P4 are heavily delayed
- P3 is almost not delayed due to its characteristic, it does not need any resource
- ⇒ Find a better solution

4 Resource Allocation Protocols

- Non Preemptive Critical Sections (NPCS)
- Priority Inheritance (PI)
- Priority-Ceiling Protocol (PCP)
- Stacked Priority-Ceiling Protocol (SPCP)
- ... and some others
 - See text book (Liu)

Nonpreemptive Critical Sections

- As soon as a process holds a resource it is no longer preemptable*
- Prevents deadlock
- Bounds priority inversion
 - Max blocking time is the maximum execution time of the critical sections of all lower priority processes

^{*}This process gets highest priority in system

Non-Preemptive Critical Sections

Analysis: Nonpreemptive Critical Sections

Pros

- Simple
- No prior knowledge of resource requirements needed
- Prevents deadlock

Cons

- Low priority process blocks high priority process even when there are no resource conflicts
- Protocol only suitable for trusted software
 - Usually implemented by interrupt disabling
- In CS there is no system calls otherwise CPU wasting in case of a "blocking" system call

Worst-Case Blocking Time

Longest lower-priority critical section:

$$bt_{i}(rc) = \max_{i+1 \le k \le n} \{cst_{k}\}$$

bt = blocking time

cst = critical section time

Priority Inheritance (PI)

• When a high-priority process (P3) blocks, the low-priority process (P1) inherits the current priority of the blocking process

PI bounds priority inversion

Example with Priority Inheritance

85

Comparison with SPD Rule

Analysis: Priority Inheritance

Pros

- Prevents uncontrolled priority inversion.
- Needs no knowledge of resource requirements.

Cons

- Does not prevent deadlock.
- Does not minimise blocking times.
 - With chained blocking, worst-case blocking time is min(n,m) critical sections
 - n = number of lower priority processes that can block P
 - m = number of resources that can be used to block P
- Some overhead in a release or acquire operation

Chained Blocking

- 4 lower priority processes
- 4 potentially conflicting resources
- Worst-case blocking time
 = 16 units¹

¹Assume lower priority process allocates its first resource just before higher priority process runs

Priority Ceiling Protocol

- Avoids deadlock by defining an order of resource acquisition
- Prevents transitive (chained) blocking
 - Worst-case blocking time = single critical section

Description how to implement PCP, see:

http://www.awprofessional.com/articles/article.asp?p=30188&seqNum=5&rl=1

Priority Ceilings

- Resources required by all processes are known a priori
 - Similar approach as with deadlock avoidance
- Priority ceiling of resource R_i is equal to the highest priority of all processes that use R_i
- Priority ceiling of system is highest priority ceiling of all resources currently in use

Priority Ceiling Protocol Rules

- Priority inheritance applies as before.
- When a process (P) requests a resource (R) either:
 - If R is allocated ⇒ P blocks (+ priority inheritance)
 - If R is free,
 - If P's current priority > system's priority ceiling ⇒
 R is allocated to process P
 - If P's current priority ≤ system's priority ceiling ⇒
 P blocks except if:
 - P already holds a resource whose priority ceiling is equal to the systems priority ceiling

Comparison to Previous Example

Analysis: Priority Ceiling Protocol

Pros

- Avoids deadlocks
- If a process doesn't self suspend, a process is blocked at most once during execution
- Processes cannot be transitively blocked
 - minimizes blocking time to the longest lower-priority conflicting critical section (+ context switches)
 - Processes only receive their first resource when all required resources are not held by lower priority processes

Cons

A priori knowledge of resource needs is required

Stack-Based Priority Ceiling Protocol

- The motivation is to share a single stack for all processes
 - Saves stack space.
- Restriction: processes cannot selfsuspend.

Scheduling:

- After a process is released, it is blocked from starting until its assigned priority is higher than the current system priority ceiling.
- Unblocked processes are preemptively priority scheduled according to their assigned priority.

Resource allocation:

 Whenever a process requests a resource it receives the resource.

152

Analysis: Stack-Based Priority Ceiling

Pros

- Simple to implement.
- Slightly better worst-case when compared to normal PCP – two less context switches.
- No priority inheritance needed.

Cons

Threads cannot self suspend.

Summary

- 4 protocols controlling resource access in priority driven preemptive systems
 - NPCS
 - PI
 - PCP
 - SPCP

- NPCS and PI do not require a priori knowledge of resource requirements
- PI neither prevents deadlocks nor avoids deadlocks
- All protocols -except PI- ensure that processes are blocked at most once*