
4 Concurrency4 Concurrency

1© 2008 Universität Karlsruhe (TU), System Architecture Group

Concurrency Problems
Signals & Synchronization

Semaphore
Mutual Exclusion
Critical Section

Monitors

Roadmap for Today

 Concurrency Problems
 Producer / Consumer and
 Reader / Writer

© 2008 Universität Karlsruhe (TU), System Architecture Group 2

 Synchronization Mechanisms
 Signal
 Semaphore
 Monitor

Concurrency ProblemsConcurrency Problems

3© 2008 Universität Karlsruhe (TU), System Architecture Group

Producer Consumer Problem
Reader Writer Problem

6 5 4 3 2 1

Producer/Consumer & Bounded Buffer

Concurrency Problems

© 2008 Universität Karlsruhe (TU), System Architecture Group 4

Concurrency problems with bounded buffers?

Problems with p>1 producers or c>1 consumers?

file-document

..

Reader/Writer Problem

Concurrency Problems

© 2008 Universität Karlsruhe (TU), System Architecture Group 5

..

..

Problems?

Possible solutions?

Assignment 2

 All concurrency problems have to be solved
using Java monitors or specific self-made
semaphores implemented by Java monitors
 Study how to use those Java monitors (some hints

are given in the assignments)

© 2008 Universität Karlsruhe (TU), System Architecture Group 6

g g)
 We do not accept solutions where one centralized

thread is used to do the sequencing job, i.e.
somewhere in your code there must be properly
positioned assignments with wait() and
notify()

 Do a nice graphic to visualize your solutions
of the experiments

Signal MechanismSignal Mechanism

7© 2008 Universität Karlsruhe (TU), System Architecture Group

History of Signals
Application of signals

Don’t mix up with Unix signals

 “Pay Attention” (see a siren)

 “Stop” (see road signs)

 “Go Ahead” (officer at a train station)

Semantics of Signals

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 8

()

 “Interrupt” or (arbiter in a soccer game)
“Resume Playing”

 ...

Implementing a Signal

 Flag 1 = Signal set, 0 = Signal reset
 Continuation (signaled thread may continue)
 Stop (signaled thread has to wait)
 Abort (signaled thread has to be aborted)

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 9

Problem: Try to find out when a flag is sufficient
or when you better use a counter variable!

...
see “signal vector” in Unix or Linux

 Counter Any value may have a different meaning or
just reflects the number of pending signals

{Thread 1}
.
.
.

{ section a1
… }

{Thread 2}
.
.
.
{ section b1

… }

Synchronizing a Precedence Relation

Synchronization

a1 b1

T1 T2

© 2008 Universität Karlsruhe (TU), System Architecture Group 10

{ section a2
… }

.

.

.

{ section b2
… }

.

.

.

Problem: How to achieve that a1 <* b2 (a1 precedes b2), i.e.
section b2 has to wait until section a1 has completed

a2 b2

Synchronization

{Thread 1}
.
.
.

{ section a1

{Thread 2}
.
.
.

{ section b1

1:1_signal s; /* type 1:1_signal_object */

Synchronize a Precedence Relation

© 2008 Universität Karlsruhe (TU), System Architecture Group 11

{ section a1
… }

{ section a2
… }

.

.

.

{
… }

{ section b2
… }

.

.

.

Problem: How to implement a 1:1_signal_object?

Signal(s) Wait(s)

Simple flag s as a common shared global variable
of both threads

signal(s) wait(s)

noset s s == set?

User-Level Signal Object: FLAG

busy
waiting

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 12

no

Hint: Discuss this approach carefully! Does it work on every system
effectively and/or efficiently?

set s
reset s

Synchronization

Principal Types of Solutions

 Software Solutions (at application level)
 Algorithms neither rely on special processor

hardware nor on special OS features

 Hardware Solutions

© 2008 Universität Karlsruhe (TU), System Architecture Group 13

Remark: Most systems offer only a subset of these solutions.

 Rely on some special machine instructions

 Offering a kind of atomicity

 OS Solutions (offered by kernel)
 Provide “kernel-interface functions” for application

programmers

SemaphoresSemaphores

14© 2008 Universität Karlsruhe (TU), System Architecture Group

Definition:
A semaphore S is an integer variable that, apart from
initialization, can only be accessed by 2 atomic and
mutually exclusive operations.

Dijkstras (Counting) Semaphores

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 15

P(S) P ~ Passeren (from Dutch signaling language
some say proberen ~ decrement)

V(S) V ~ Verlaaten (see above,

some say verhogen ~ increment)

Dijkstras (Counting) Semaphores

How to design and implement counting semaphores?

 To avoid busy waiting:

 When thread cannot “passeren” inside of P(S)
 put calling thread into a blocked queue

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 16

 put calling thread into a blocked queue
waiting for an event

 Occurrence of event will be signaled via V(S)
by another thread (hopefully)
 What happens if not?

Dijkstras Semaphores

Semantic of a counting semaphore (for signaling):

 A positive value of counter indicates:
#signals currently pending

 A negative value of the counter indicates:
#threads waiting for a signal

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 17

#threads waiting for a signal,
i.e. are queued within the semaphore object

 If counter == 0  no thread is waiting
and no signal is pending

Remark (from Margo Seltzer, Harvard USA):
“A semaphore offers a simple and elegant
mechanism for mutual exclusion and other things”

module semaphore
export p, v
import BLOCK, UNBLOCK
type semaphore = record

Count: integer = 0 {no signal pending}
QWT: list of Threads = empty {no waiting threads}

end
p(S:semaphore)

Counting Semaphores (First solution)

Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 18

p(p)
S.Count = S.Count - 1
if S.Count < 0 then
insert (S.QWT, myself) {+ 1 waiting thread}
sleep(myself)
fi

v(S:semaphore)
S.Count = S.Count + 1 {+ 1 pending signal}
if S.Count <= 0 then
wakeup(delete first(S.QWT))
fi

end

Unix Signals

 Besides a terrible notation (e.g. kill = signal)  no
common semantics nor a widely accepted interface

 They are four different versions:
 System-V unreliable

Unix Signaling

© 2008 Universität Karlsruhe (TU), System Architecture Group 19

 BSD

 System-V reliable

 POSIX

 Using Unix signals may lead to severe race conditions

 Programming is quite cumbersome

Unix Signals

Unix Signaling

SIGNAL ID DEFAULT DESCRIPTION
===
SIGHUP 1 Termination Hang up on controlling terminal
SIGINT 2 Termination Interrupt. Generated when we enter CTRL-C
SIGQUIT 3 Core Generated when at terminal we enter CTRL-\
SIGILL 4 Core Generated when we execute an illegal instruction
SIGTRAP 5 Core Trace trap (not reset when caught)
SIGABRT 6 Core Generated by the abort function
SIGFPE 8 Core Floating Point error
SIGKILL 9 Termination Termination (can't catch, block, ignore)

© 2008 Universität Karlsruhe (TU), System Architecture Group 20

SIGBUS 10 Core Generated in case of hardware fault or invalid address
SIGSEGV 11 Core Generated in case of illegal address
SIGSYS 12 Core Generated when we use a bad argument in a system service call
SIGPIPE 13 Termination Generated when writing to a pipe/socket when no reader anymore
SIGALRM 14 Termination Generated by clock when alarm expires
SIGTERM 15 Termination Software termination signal
SIGURG 16 Ignore Urgent condition on IO channel
SIGCHLD 20 Ignore A child process has terminated or stopped
SIGTTIN 21 Stop Generated when a background process reads from terminal
SIGTTOUT 22 Stop Generated when a background process writes to terminal
SIGXCPU 24 Discard CPU time has expired
SIGUSR1 30 Termination User defiled signal 1
SIGUSR2 31 Termination User defined signal 2

Recommended Reading

 Bacon, J.: OS (9, 10, 11)
 Exhaustive (all POSIX thread functions)

 Event handling, Path Expressions etc.

 Nehmer, J.: Grundlagen moderner BS (6, 7, 8)

© 2008 Universität Karlsruhe (TU), System Architecture Group 21

 Silberschatz, A.: OS Concepts (3, 4, 6)

 Stallings, W.: OS (5, 6)

 Tanenbaum, A.: MOS (2)

Mutual ExclusionMutual Exclusion

22© 2008 Universität Karlsruhe (TU), System Architecture Group

Critical Sections

When a thread accesses shared data or an exclusive
resource,  thread executes a critical section (CS)

A thread may have different CSs, even nested ones

E ti CS t b t ll l i i t

© 2008 Universität Karlsruhe (TU), System Architecture Group 23

Executing a CS must be mutually exclusive, i.e. at any
time, only 1 thread is allowed to execute the related CS

 Each thread must request the permission
to enter a critical section (CS),
i.e. it must obey a certain protocol

Critical Sections

T1 T2 T3 T4 T5 T6

Suppose: All Ti are KLTs of same Task
(IP of) T1 is in its “red CS”

Question: What IPi are valid at the same time?

IP

© 2008 Universität Karlsruhe (TU), System Architecture Group 24

IP1

IP2

IP3 IP4

IP7 IP6

Mutual Exclusion

Again Counting Semaphore

Semantic for “mutual” exclusion of CSs:
1. Positive value of counter→ #threads that can enter

their CS
 If mutual exclusion, # allowed threads = 1

l f h d

© 2008 Universität Karlsruhe (TU), System Architecture Group 25

2. Negative value of counter → #waiting threads in
front of CS, i.e. being queued at semaphore object

3. Counter == 0 → no thread is waiting respectively
maximal #threads currently in CS

Still an open problem:
How to establish “atomic semaphore-operations”?

Mutual Exclusion

thread Ti:
repeat
p(S);
CS

Application of Counting Semaphores

Suppose: n concurrent threads

Initialize S.Count to 1 
only 1 thread allowed to enter its CS
(i e mutual exclusion)

© 2008 Universität Karlsruhe (TU), System Architecture Group 26

v(S);
RS

forever

(i.e. mutual exclusion)

Initialize S.Count to k 
k threads allowed to enter their “CS”

Why Atomic Semaphore Operation?

T1 T2

IP1 IP2

T2

P

T1

P

© 2008 Universität Karlsruhe (TU), System Architecture Group 27

IP1 IP2

VV

We have to implement P() and V() in such a way, that these operations
are hopefully shorter critical sections!!!

Atomic Semaphore Operation

“very short”
enter_section

(S)

Problem:
p() and v() -each consisting of
multiple machine instructions-
have to be atomic!

© 2008 Universität Karlsruhe (TU), System Architecture Group 28

p(S)
“very short”
exit_section

Solution:
Use “another” type of critical
sections, hopefully with shorter
execution times, establishing
atomic and exclusive
semaphore operations

MonitorsMonitors

29© 2008 Universität Karlsruhe (TU), System Architecture Group

Monitor (1)

 High-level “language construct” ~ semantic of
binary semaphore, but easier to control

 Offered in concurrent programming
languages

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 30

languages
 Concurrent Pascal, Modula-3, Java, ...

 Can be implemented by semaphores or other
synchronization mechanisms

Monitor (2)

A software module* containing:
 one or more interface procedures
 an initialization sequence
 local data variables

Ch te i ti

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 31

Characteristics:
 local variables accessible only by monitor’s procedures
 thread enters the monitor by invoking an interface procedure
 only one thread can be executed in the monitor at any time,

i.e. a monitor may be used for implementing mutual exclusion

*Java’s synchronized classes enable monitor-objects
(already used in Assignment 2)

Monitor (3)

Monitor already ensures mutual exclusion 
no need to program this constraint explicitly

Hence, shared data are protected automatically
by placing them inside a monitor.
Monitor locks its data whenever a thread enters

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 32

Monitor locks its data whenever a thread enters

Additional thread synchronization inside the monitor can
be done by the programmer using condition variables

A condition variable represents a certain condition (e.g.
an event) that has to be met before a thread may
continue to execute one of the monitor procedures

Condition Variables

Local to the monitor (accessible only inside the monitor)
can be accessed only by:

CondWait(cv) blocks execution of the calling thread on
condition variable cv

Monitors

in Java: wait()

© 2008 Universität Karlsruhe (TU), System Architecture Group 33

condition variable cv
This blocked thread can resume its execution only
if another thread will execute CondSignal(cv)

CondSignal(cv) resumes execution of some thread
blocked on this condition variable cv

If there are several such threads: choose any one
If no such thread exists: void, i.e. nothing to do

In Java: notify() or notifyAll()

Monitor (4)

Waiting threads are either in the
entrance queue or in a condition
queue

A thread puts itself into the
condition queue cn by invoking
C dW it()

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 34

CondWait(cn)

CondSignal(cn) enables one
thread, waiting at condition
queue cn, to continue

Hence CondSignal(cn) blocks the
calling thread and puts it into the
urgent queue (unless csignal is
the last operation of the monitor
procedure)

Contiguous array as the cyclic buffer of N slots
with interface operations fetch() and deposit()

Example of a Monitor*

(without condition variables)

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 35

head tail
fetch deposit

occupied free

1 n

monitor module bounded_buffer
buffer = record

array buffer[N] of datatype
head: integer = 0
tail: integer = 0
count: integer = 0

end
monitor procedure deposit(b:buffer, d:datatype)
begin

b.buffer[b.tail] = d
b.tail = b.tail mod N

head tail
fetch deposit

occupie
d

free
1 n

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 36

Automatically with mutual exclusion

Automatically with mutual exclusionb.count = b.count + 1
end
procedure fetch(b:buffer, result:datatype)
begin

result = b.buffer[b.head]
b.head = b.head mod N
b.count = b.count - 1

end
end monitor modul

Concurrent deposits or fetches are serialized, but you can still deposit to a full buffer and you
can still try to fetch from an empty buffer!  two additional constraints have to be considered.

ProducerI:
repeat
produce v;
deposit(v);

forever

Monitor Solution

Two types of threads:
 Producer(s)
 Consumer(s)

Synchronization is now confined
to the monitor

Monitors

© 2008 Universität Karlsruhe (TU), System Architecture Group 37

forever

ConsumerI:
repeat
fetch(v);
consume v;

forever

to the monitor

deposit(...) and fetch(...) are
monitor interface methods

If these 2 methods are correct,
synchronization will be correct
for all participating threads.

