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Intended Schedule

 Motivation

 Abstract Scheduling Problem

 Scheduling Goals
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 Scheduling Policies

 Priority Scheduling and its problems

 Hints to Assignment 1



Motivation

Schedules & Scheduling?

 Lecturer hands out intended schedule of this course
 which topic at what date

 Schools/universities etc. need schedules for their 
various classes, courses, i.e.
 course
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 time 
 location

 Furthermore, there are schedules for
 Trains
 Airlines
 Ships, fairies 

 Travel agency people are experts in scheduling



Example Problem

 Find an appropriate traffic solution for a

 flight to Sydney via

 Bahrain and 

Singapore

Motivation
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 Singapore

 Book a car and a hotel near the conference hall

 Scheduling has to be done

Scheduling ~ planning “minor or major events”, e.g. 
elections, examinations, weddings, recipes, etc.



Abstract Scheduling Problem
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Scheduling

Abstract Scheduling Problem*

How to map executable units of activity (threads) to 
executing units (processors)?

Criteria how to schedule?

overall system goals or
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*Simplification: Only focus on the resource CPU

 overall system goals or 
 specific application constraints:

 Time critical threads should meet their 
“deadlines”, neither too early, nor too late

 Fast response to an interactive input



Abstract Scheduling Problem

?

CPU 1

CPU 2

T1
T2
T3
T4

T5
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CPU 3
T5
T6

How to map these 6 threads to 3 CPUs?
Is there an optimal schedule?

As long as there is no performance measure, 
we can neither produce a good, nor a bad schedule



Scheduling

Concrete Scheduling Problems

 In a multi-programming system n > 1 processes 
(KLTs) can be ready

Which of these processes (KLTs) should run next?

 You’re watching a Beatles (…) video 
 How to manage that
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 How to manage that
 network-software 
 data stream decoding
 output to screen and 
 audio 

is well done concurrently?
 Additionally, you have initiated a long running compute-

bound job in the background. When to switch to it?

 In a multi-threaded application a programmer wants 
to influence, how her/his threads are scheduled



Scheduling

Concrete Scheduling Problems

 In assignment 1 you must emulate a user-level 
scheduler

 What does a scheduler need to know to do its job?
 It must know the system state and each process’s state, i.e. 

all relevant scheduling information of each candidate and
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all relevant scheduling information of each candidate and 
each resource

 Related information per KLT/PULT has to be provided at 
user-level

 You have to install your own TCBs

 How to find a specific TCB?

 What information has to be provided per TCB?



Scheduling GoalsScheduling Goals
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Quantitative
Qualitative



Quantitative Scheduling Goals

 CPU Utilization
 When is a CPU unused?

 Throughput
 Number of completed jobs per time

 Response Time

© 2008 Universität Karlsruhe (TU), System Architecture Group 11

 Response Time

 Turnaround Time

 Waiting Time

 Number of Deadline Violations

 Lateness

 Tardiness
Real Time Problems



influenced by current load & by scheduler

What is included in a Waiting Time?

Waiting time?
1. Time a process spends in the ready queue 

2. Time a process/thread is blocked, i.e. due to
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influenced by process 
or resource shortage

 missing message

 missing input

 missing resource

 Blocked processes/threads should not hold a CPU

 Kernel stores them in a separate data structure, 
the waiting queue(s)



Response/Turnaround Time

t0 t1 t2 t3

Response Time
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Creation time
Admission time
Release time

First instruction
of the process is
executed on CPU

First output of
the process on 

the monitor

Completion time

Turnaround Time



Qualitative Goals

 Predictability
 Low variance in turnaround times and/or response times of 

a specific task
 System guarantees certain quality of service

 Fairness
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 Few starving applications
 In MULTICS, when shutting down the machine, they found a 

10 year old job

 Robustness
 Few system crashes
 The simpler the system, the more robust



Scheduling PoliciesScheduling Policies
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System Environment
Principle Components of Scheduling



System Environment

Different Systems require different scheduling policies

 Computer server
 Use budgets (due to contracts) to fulfill requirements of its clients

 Distinguish between high cost and low cost applications
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 Desktop Computer
 Multiple interactive & batch jobs preferring interactive ones

 Offer foreground and background jobs 

 Soft Real Time 
 Distinguish inside an application mandatory and optional parts, the 

latter might only improve the quality of a video or audio recording, 
but are not necessary 



Scheduling

Characteristics of a Scheduling Policy

 Scheduling order: where in the ready queue(s) to place   
a new (or unblocked) thread 

 Selection: which ready thread to run next 

 Decision mode: when to execute the selection function
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 Non preemptive
Once a thread is running, it will continue until it 
 terminates
 yields 
 blocks (e.g. due to I/O or due to a wait())

 Preemptive
A running KLT or process is preempted when 
 a more urgent work has to be done or
 a process or KLT has expired its time slice



Survey on Scheduling Policies

 FCFS = first come first served

 (R)SJF = (remaining) shortest job first

 RR = round robin
 System wide constant time-slice

Scheduling

needs at least estimation of execution time
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y
 Job (class) specific time-slice

 MLF = multi-level feedback

 Priority
 Static priority values
 Dynamic priority values

 …



Why  Different Scheduling Policies?

 Different application scenarios

 Different performance measures
 Response time

Scheduling
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 Turnaround time

 Throughput

 …



First Come First served

Scheduling
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Remark: Many things in daily life are scheduled according to FCFS.
It’s quite fair, but not usable under certain circumstances.
Give examples

 Ready queue: ordered according to start times

 Selection function: select the oldest ready thread

 Decision mode: non preemptive (or preemptive)

 Which one to chose?  



Implementation Remarks

 What information do you need to implement strict 
FCFS?

 Suppose your process does a blocking I/O. How to 
deal with this process when its I/O has finished? Do 
you have to preempt the currently running process?
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you have to preempt the currently running process?

Idea: 
Whenever you have to fill the PCB into a queue,
do it according to increasing start times, i.e. 
the head of the queue must be the senior



Shortest Job First

Scheduling
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 Ready queue: How to order?
 Selection function: thread with the shortest (expected) 

execution (burst) time
 Decision mode: non preemptive
 We need to estimate the required processing time 

(CPU burst time) for each thread



Round Robin

Read q e e Append each ne ead ent

Scheduling
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 Ready queue: Append each new ready entry
 Selection function:  select first thread in ready queue
 Decision mode: “time” preemptive

 A non cooperative thread is allowed to run 
until its time slice TS ends  (TS  [0.1, 100]* ms)

 When a timer interrupt occurs, the running thread 
is appended to the ready queue

* Depends on the application system & on the CPU speed



Scheduling

Terminate

Terminate

Multilevel Feedback in CTTS1

P
R
I
O
R
I
T
y
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Terminate

Selection: first thread in highest ready queue RQ0

Decision mode: Preemptive (at least due to time slices)
However, you may also add priority preemption

Whenever a thread is unblocked after an I/O it is admitted to RQ0

y

1CTSS started in 1961 at MIT, used until 1973 (reused in MULTICS)



Scheduling

Analysis: Multilevel Feedback Policy

 MLFB approximates SRTF:
 CPU bound KLTs drop like a rock (they might starve)
 Short-running I/O bound jobs stay near the top

 Scheduling must be done between the queues
Fixed priority scheduling:
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 Fixed priority scheduling: 
 select a KLT from RQi,  only if RQi-1 to RQ0 are empty

 Time slice:
 each queue has an individual TS

 Countermeasure = user action foiling the intent of 
the OS designer
 Put in a bunch of meaningless I/O to keep KLTs priority high
 Example of Othello program:

 insert printf’s, program ran much faster



Scheduling

Priority Scheduling

Selection function: ready thread with highest priority

Decision mode: non preemptive, i.e. a thread keeps on 
running until it
▪ cooperates (e.g. yielding) or
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Remark:
Priority based scheduling is often done with preemption
and with dynamic priorities

p ( g y g)
▪ blocks itself (e.g. initiating an I/O) or 
▪ terminates

Drawbacks: Danger of starvation and priority inversion



Problems with Static Priorities

Thread with highest priority runs on CPU

What will happen when this thread is calling  yield()?

Scheduling
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 After a minor delay due to execution time of
yield() the calling thread will run again if 
no other ready thread with the same or even 
a higher priority



Further Problems with Priorities?

 Priority Inversion
 Mars pathfinder

 Deadlocks
M t l iti

Scheduling
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 Mutual waiting

 Spin Locks
 Active waiting

 Proper mapping of priority values to KLTs or 
to processes



Events leading to a Thread Switch

 yield()works fine if there are other threads with 
the same priority value

 A thread WT is calling a method of a synchronized 
class with an internal wait()

Scheduling
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 WT waits until its partner send a notify

 Partner thread ST does a notify() within another 
method of the same synchronized class, whereby 
thread WT only  runs if its priority is higher than the 
one of thread ST

 A thread returns or exits otherwise



Assignment #1 a

 Java Version 1.4 (and later versions)
 Threads are Kernel Level Threads 

 scheduling can hardly be influenced by the 
Java VM and

Scheduling
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Java VM and
 it depends heavily on kernel’s scheduling policy 
 yielding sets a KLT’s state to runnable 

kernel-scheduler may schedule this thread 
again right after it has yielded

 What about sleep(), wait() &  notify()?


