
3 Scheduling3 Scheduling

1© 2008 Universität Karlsruhe (TU), System Architecture Group

Problems
Kernel Scheduler

User Level Scheduler

Intended Schedule

 Motivation

 Abstract Scheduling Problem

 Scheduling Goals

© 2008 Universität Karlsruhe (TU), System Architecture Group 2

 Scheduling Policies

 Priority Scheduling and its problems

 Hints to Assignment 1

Motivation

Schedules & Scheduling?

 Lecturer hands out intended schedule of this course
 which topic at what date

 Schools/universities etc. need schedules for their
various classes, courses, i.e.
 course

© 2008 Universität Karlsruhe (TU), System Architecture Group 3

 time
 location

 Furthermore, there are schedules for
 Trains
 Airlines
 Ships, fairies

 Travel agency people are experts in scheduling

Example Problem

 Find an appropriate traffic solution for a

 flight to Sydney via

 Bahrain and

Singapore

Motivation

© 2008 Universität Karlsruhe (TU), System Architecture Group 4

 Singapore

 Book a car and a hotel near the conference hall

 Scheduling has to be done

Scheduling ~ planning “minor or major events”, e.g.
elections, examinations, weddings, recipes, etc.

Abstract Scheduling Problem

5© 2008 Universität Karlsruhe (TU), System Architecture Group

Scheduling

Abstract Scheduling Problem*

How to map executable units of activity (threads) to
executing units (processors)?

Criteria how to schedule?

overall system goals or

© 2008 Universität Karlsruhe (TU), System Architecture Group 6

*Simplification: Only focus on the resource CPU

 overall system goals or
 specific application constraints:

 Time critical threads should meet their
“deadlines”, neither too early, nor too late

 Fast response to an interactive input

Abstract Scheduling Problem

?

CPU 1

CPU 2

T1
T2
T3
T4

T5

© 2008 Universität Karlsruhe (TU), System Architecture Group 7

CPU 3
T5
T6

How to map these 6 threads to 3 CPUs?
Is there an optimal schedule?

As long as there is no performance measure,
we can neither produce a good, nor a bad schedule

Scheduling

Concrete Scheduling Problems

 In a multi-programming system n > 1 processes
(KLTs) can be ready

Which of these processes (KLTs) should run next?

 You’re watching a Beatles (…) video
 How to manage that

© 2008 Universität Karlsruhe (TU), System Architecture Group 8

 How to manage that
 network-software
 data stream decoding
 output to screen and
 audio

is well done concurrently?
 Additionally, you have initiated a long running compute-

bound job in the background. When to switch to it?

 In a multi-threaded application a programmer wants
to influence, how her/his threads are scheduled

Scheduling

Concrete Scheduling Problems

 In assignment 1 you must emulate a user-level
scheduler

 What does a scheduler need to know to do its job?
 It must know the system state and each process’s state, i.e.

all relevant scheduling information of each candidate and

© 2008 Universität Karlsruhe (TU), System Architecture Group 9

all relevant scheduling information of each candidate and
each resource

 Related information per KLT/PULT has to be provided at
user-level

 You have to install your own TCBs

 How to find a specific TCB?

 What information has to be provided per TCB?

Scheduling GoalsScheduling Goals

10© 2008 Universität Karlsruhe (TU), System Architecture Group

Quantitative
Qualitative

Quantitative Scheduling Goals

 CPU Utilization
 When is a CPU unused?

 Throughput
 Number of completed jobs per time

 Response Time

© 2008 Universität Karlsruhe (TU), System Architecture Group 11

 Response Time

 Turnaround Time

 Waiting Time

 Number of Deadline Violations

 Lateness

 Tardiness
Real Time Problems

influenced by current load & by scheduler

What is included in a Waiting Time?

Waiting time?
1. Time a process spends in the ready queue

2. Time a process/thread is blocked, i.e. due to

© 2008 Universität Karlsruhe (TU), System Architecture Group 12

influenced by process
or resource shortage

 missing message

 missing input

 missing resource

 Blocked processes/threads should not hold a CPU

 Kernel stores them in a separate data structure,
the waiting queue(s)

Response/Turnaround Time

t0 t1 t2 t3

Response Time

© 2008 Universität Karlsruhe (TU), System Architecture Group

13

Creation time
Admission time
Release time

First instruction
of the process is
executed on CPU

First output of
the process on

the monitor

Completion time

Turnaround Time

Qualitative Goals

 Predictability
 Low variance in turnaround times and/or response times of

a specific task
 System guarantees certain quality of service

 Fairness

© 2008 Universität Karlsruhe (TU), System Architecture Group 14

 Few starving applications
 In MULTICS, when shutting down the machine, they found a

10 year old job

 Robustness
 Few system crashes
 The simpler the system, the more robust

Scheduling PoliciesScheduling Policies

15© 2008 Universität Karlsruhe (TU), System Architecture Group

System Environment
Principle Components of Scheduling

System Environment

Different Systems require different scheduling policies

 Computer server
 Use budgets (due to contracts) to fulfill requirements of its clients

 Distinguish between high cost and low cost applications

© 2008 Universität Karlsruhe (TU), System Architecture Group 16

 Desktop Computer
 Multiple interactive & batch jobs preferring interactive ones

 Offer foreground and background jobs

 Soft Real Time
 Distinguish inside an application mandatory and optional parts, the

latter might only improve the quality of a video or audio recording,
but are not necessary

Scheduling

Characteristics of a Scheduling Policy

 Scheduling order: where in the ready queue(s) to place
a new (or unblocked) thread

 Selection: which ready thread to run next

 Decision mode: when to execute the selection function

© 2008 Universität Karlsruhe (TU), System Architecture Group 17

 Non preemptive
Once a thread is running, it will continue until it
 terminates
 yields
 blocks (e.g. due to I/O or due to a wait())

 Preemptive
A running KLT or process is preempted when
 a more urgent work has to be done or
 a process or KLT has expired its time slice

Survey on Scheduling Policies

 FCFS = first come first served

 (R)SJF = (remaining) shortest job first

 RR = round robin
 System wide constant time-slice

Scheduling

needs at least estimation of execution time

© 2008 Universität Karlsruhe (TU), System Architecture Group 18

y
 Job (class) specific time-slice

 MLF = multi-level feedback

 Priority
 Static priority values
 Dynamic priority values

 …

Why  Different Scheduling Policies?

 Different application scenarios

 Different performance measures
 Response time

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 19

 Turnaround time

 Throughput

 …

First Come First served

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 20

Remark: Many things in daily life are scheduled according to FCFS.
It’s quite fair, but not usable under certain circumstances.
Give examples

 Ready queue: ordered according to start times

 Selection function: select the oldest ready thread

 Decision mode: non preemptive (or preemptive)

 Which one to chose?

Implementation Remarks

 What information do you need to implement strict
FCFS?

 Suppose your process does a blocking I/O. How to
deal with this process when its I/O has finished? Do
you have to preempt the currently running process?

© 2008 Universität Karlsruhe (TU), System Architecture Group 21

you have to preempt the currently running process?

Idea:
Whenever you have to fill the PCB into a queue,
do it according to increasing start times, i.e.
the head of the queue must be the senior

Shortest Job First

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 22

 Ready queue: How to order?
 Selection function: thread with the shortest (expected)

execution (burst) time
 Decision mode: non preemptive
 We need to estimate the required processing time

(CPU burst time) for each thread

Round Robin

Read q e e Append each ne ead ent

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 23

 Ready queue: Append each new ready entry
 Selection function: select first thread in ready queue
 Decision mode: “time” preemptive

 A non cooperative thread is allowed to run
until its time slice TS ends (TS  [0.1, 100]* ms)

 When a timer interrupt occurs, the running thread
is appended to the ready queue

* Depends on the application system & on the CPU speed

Scheduling

Terminate

Terminate

Multilevel Feedback in CTTS1

P
R
I
O
R
I
T
y

© 2008 Universität Karlsruhe (TU), System Architecture Group 24

Terminate

Selection: first thread in highest ready queue RQ0

Decision mode: Preemptive (at least due to time slices)
However, you may also add priority preemption

Whenever a thread is unblocked after an I/O it is admitted to RQ0

y

1CTSS started in 1961 at MIT, used until 1973 (reused in MULTICS)

Scheduling

Analysis: Multilevel Feedback Policy

 MLFB approximates SRTF:
 CPU bound KLTs drop like a rock (they might starve)
 Short-running I/O bound jobs stay near the top

 Scheduling must be done between the queues
Fixed priority scheduling:

© 2008 Universität Karlsruhe (TU), System Architecture Group 25

 Fixed priority scheduling:
 select a KLT from RQi, only if RQi-1 to RQ0 are empty

 Time slice:
 each queue has an individual TS

 Countermeasure = user action foiling the intent of
the OS designer
 Put in a bunch of meaningless I/O to keep KLTs priority high
 Example of Othello program:

 insert printf’s, program ran much faster

Scheduling

Priority Scheduling

Selection function: ready thread with highest priority

Decision mode: non preemptive, i.e. a thread keeps on
running until it
▪ cooperates (e.g. yielding) or

© 2008 Universität Karlsruhe (TU), System Architecture Group 26

Remark:
Priority based scheduling is often done with preemption
and with dynamic priorities

p (g y g)
▪ blocks itself (e.g. initiating an I/O) or
▪ terminates

Drawbacks: Danger of starvation and priority inversion

Problems with Static Priorities

Thread with highest priority runs on CPU

What will happen when this thread is calling yield()?

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 27

 After a minor delay due to execution time of
yield() the calling thread will run again if 
no other ready thread with the same or even
a higher priority

Further Problems with Priorities?

 Priority Inversion
 Mars pathfinder

 Deadlocks
M t l iti

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 28

 Mutual waiting

 Spin Locks
 Active waiting

 Proper mapping of priority values to KLTs or
to processes

Events leading to a Thread Switch

 yield()works fine if there are other threads with
the same priority value

 A thread WT is calling a method of a synchronized
class with an internal wait()

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 29

 WT waits until its partner send a notify

 Partner thread ST does a notify() within another
method of the same synchronized class, whereby
thread WT only runs if its priority is higher than the
one of thread ST

 A thread returns or exits otherwise

Assignment #1 a

 Java Version 1.4 (and later versions)
 Threads are Kernel Level Threads 

 scheduling can hardly be influenced by the
Java VM and

Scheduling

© 2008 Universität Karlsruhe (TU), System Architecture Group 30

Java VM and
 it depends heavily on kernel’s scheduling policy
 yielding sets a KLT’s state to runnable 

kernel-scheduler may schedule this thread
again right after it has yielded

 What about sleep(), wait() & notify()?

