
1 System & Activities

1© 2006 Universität Karlsruhe (TU), System Architecture Group

Gerd Liefländer

28. Oktober 2008
System Architecture Group

Roadmap for Today & Next Week

 System Structure
 System Calls

 (Java) Virtual Machine

 Basic System Abstractions
 Address Space

© 2006 Universität Karlsruhe (TU), System Architecture Group 2

 Activities
 Procedures
 Process, Task
 Threads

 Kernel Level Threads
 User Level Threads

 Assignment Hints

 OS Kernels
 Monolithic

 Micro

System Structure

3© 2006 Universität Karlsruhe (TU), System Architecture Group

Layered Systems
Privileged OS Kernel

System Interface

… what does this ordering imply?
Is it a strict layering?

What is at the top or at the bottom?

End
User

Programmer

System Layers

System Structure

higher
abstraction

© 2006 Universität Karlsruhe (TU), System Architecture Group 4

g

Operating-
System

Designer

Computer Hardware

Operating-System

Application
Programs

Utilities

lower details

Major System Components

Application

System Structure

What happens here?

© 2006 Universität Karlsruhe (TU), System Architecture Group 5

Operating System Kernel

Hardware

The Privileged OS (Kernel)

 Applications should not be able to bypass the OS
(apart from the non-privileged CPU instructions)

 OS can enforce the extended machine

 OS can enforce its resource management

© 2006 Universität Karlsruhe (TU), System Architecture Group 6

 OS prevents applications from interfering with each other

 Some embedded OSes (e.g. PalmOS) do not have
privileged components

System Calls
 OS supplies its functionality via system calls
 System calls form a well defined interface (API)

between applications and OS
 Applications only need to know these system calls in order to

get the requested service from the kernel

© 2006 Universität Karlsruhe (TU), System Architecture Group 7

 How is a system call implemented?

 Via a specific, but non privileged instruction:
 trap
 int

 The trap instruction needs a specific parameter
indicating the target IP within the kernel

 To enable some control this parameter must be transferred
within a predefined register

Interrupt Vector Table

Exception &
Interrupts

pagefaultIndex 3

© 2006 Universität Karlsruhe (TU), System Architecture Group 8

System calls

Index 240 gettimeofday

OS as a Privileged Component

User Level

Application 1
Application 2

Application 3

system calls Specific gate that
can be controlled

?

© 2006 Universität Karlsruhe (TU), System Architecture Group 9

OS Kernel

Kernel Level

?

API?

The System API is often hidden within a user level library, e.g. the Java API

Typical system calls?

Process Management
Call Description

pid = fork() Create child process

System Calls

Linux System Calls for Processes

© 2006 Universität Karlsruhe (TU), System Architecture Group 10

pid=waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate execution and return status

File Management
Call Description

fd = open(file, how, …) Open file for reading, writing, or both
l (fd) Cl fil

System Calls

Linux System Calls for Files

© 2006 Universität Karlsruhe (TU), System Architecture Group 11

s = close(fd) Close an open file
n = read(fd, buffer, nbytes) Read data from a file into a buffer
n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer
s = stat(name, &buf) Get the file’s status information

Directory Management
Call Description

s = mkdir(name, mode) Create a new directory
di () R t di t

System Calls

Linux System Calls for Directories

© 2006 Universität Karlsruhe (TU), System Architecture Group 12

s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create new entry name2 → name1

s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Miscellaneous Management
Call Description

s = chdir(dirname) Change the working directory

System Calls

System Calls for Miscellaneous Tasks

© 2006 Universität Karlsruhe (TU), System Architecture Group 13

s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get elapsed time since Jan. 1, 1970

Interdependencies

Application

System Libraries (e.g. API)

Interaction via a function call to a library procedure

System Structure

© 2006 Universität Karlsruhe (TU), System Architecture Group 14

Operating System Kernel

Hardware

Interaction via System Calls

Java
application

Java
application

Java Runtime

Java Application Interface

Structure of a Virtual Machine
on top of the OS kernel

System Structure

Nested Layered System Structure

© 2006 Universität Karlsruhe (TU), System Architecture Group 15

Environment

Terminal
driver

Process
manager

Memory
manager Network Driver

Communication Software

System interface

Kernel

Basic System Terms

16© 2006 Universität Karlsruhe (TU), System Architecture Group

Address Space,
Process, Thread, Task,

Thread Types

1. How to install „information processing“,
i.e. activity “when“ to execute “what” code

 activity , e.g.
thread (process*)

Basic Terms

2 Main Abstractions within Systems

© 2006 Universität Karlsruhe (TU), System Architecture Group 17

2. How to install „protected code and data
depositories“, i.e. ”where“ to store
”what” software entities

thread (process)

 address space

*Note: Notion “process”  “procedere” = “voranschreiten”
Notion “thread” ~ “Faden abwickeln”

Design Parameters for Address Spaces

 Number of data entities

 Boundary checks

 Types of buffers (stack, heap, file, …)

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 18

 Security of data entity (object, protection domain)

 Duration of data entity
(volatile/temporary/persistent)

 An address space (AS) provides a protected domain
for an activity, i.e. an executing program

Procedure
caller callee = procedure

© 2006 Universität Karlsruhe (TU), System Architecture Group 19

procedure call

return

1. In most cases caller & callee belong to same AS

2. Either caller or callee are running

Why Processes/ Threads?

 Suppose your system offers a software tool,
enhancing the way how you can edit,
compile, and test your programs

 If this tool allows concurrent editing,
ili d t ti thi t l ld

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 20

compiling, and testing,  this tool could
reduce your work a great deal

 Processes/threads help to manage

concurrent activities

Design Parameters for Activities

 Number of activities
 Static
 Dynamic

 Types of activities
 Foreground
 Background

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 21

g

 Urgency of activities
 Real time

 Hard real time
 Soft real time

 Interactive
 Batch

 Degree of interdependency
 Isolated
 Dependant

 …

Dependant on these design parameters
different activity models have been used

Thread

 Basic entity of pure activity

 Object of scheduling
 Internal scheduling in the kernel

E l h d li i i

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 22

time

 External scheduling in a runtime system

Basic characteristics of a thread?

Characteristics of Threads

 Protected domain
 The kernel address space is domain for all kernel threads
 A user address space is domain for all threads of this

application, i.e. each application has its own user address
space

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 23

 Code

 Instruction pointer

 Stack

 Stack pointer

 Thread control block TCB

Additional Attributes of Threads

 Internal state (context)

 External state (running, ready, waiting, …)

 Priority

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 24

 Creation time

 Start time

 Deadline

 Waiting time

 Exit time

Process

 Single threaded

 Address space (Unix terminology)

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 25

Address space = protected area

 Additional resources

Task

 Entity of an “application” consisting of
 t ≥ 1 thread(s)
 Address space

R

Basic Terms

© 2006 Universität Karlsruhe (TU), System Architecture Group 26

1 or
more threads

 Resources

The Activity ModelsThe Activity Models

27© 2006 Universität Karlsruhe (TU), System Architecture Group

Process Mode
Procedure versus Thread

Process versus Task
Shared Memory
Java Threads

Process Model

Process Model

4 Instruction Pointers
1 HW-Instruction pointer

© 2006 Universität Karlsruhe (TU), System Architecture Group 28

 Multiprogramming of 4 programs, each program is
located in an extra address space

 Conceptually 4 independent, sequential processes
 However, on a single processor only one process is

running at any instant

Program Procedure()

Procedure vs. Thread
Assumption: Given program with a simple procedure call to

compute data needed for the program to progress

Procedure

© 2006 Universität Karlsruhe (TU), System Architecture Group 29

time

call()

return()

How does return find the fitting return address?

Thread 1 Thread 2

Procedure vs. Thread

Assumption: Given program with two threads, one computes
data that the other thread needs for its progress

Thread

© 2006 Universität Karlsruhe (TU), System Architecture Group 30

time

Wait_For_Data()
Provide_Data()

does something else …

Data is stored in an independent
object both threads have access to

Thread Model

Thread

 Thread = abstraction for a pure activity
(e.g. being executed on a CPU) 

 Thread includes code and private data (e.g. a stack)

 A thread may also need some environment

© 2006 Universität Karlsruhe (TU), System Architecture Group 31

 A thread may also need some environment
 Address space
 Files, I/O-devices and other resources
 It may even share this environment with other threads

Example: A file server may consist of t identical threads,
each thread serving only one client’s request.

Process versus Task Model

task process 3 process 2 process 1

Thread Model

Compare both models!
Pros and cons?

© 2006 Universität Karlsruhe (TU), System Architecture Group 32

(a) Three processes (each task with only one thread)

(b) One task with three threads

Process versus Task

Process model
 create and delete

need more
 time

space e g

Thread model
 Might destroy each

others data

© 2006 Universität Karlsruhe (TU), System Architecture Group 33

 space, e.g.
new address space

 Cooperation via IPC or
shared memory ()

+ well-separated from
each other

+ create and delete need
less
 time
 space, e.g. only new

 stack and TCB

+ easier to work together
on common data

Shared Memory (0)

Process 1

Stack 1 Stack 2

Process 2

© 2006 Universität Karlsruhe (TU), System Architecture Group 34

Kernel

Code 1

Data 1

Code 2

Data 2

IPC Queue

Shared Memory (1)

Process 1
(producer)

Stack 1 Stack 2

Process 2
(consumer)

© 2006 Universität Karlsruhe (TU), System Architecture Group 35

Kernel

Code 1

Data 1

Code 2

Data 2

Shared Memory
Management

Shared Memory Shared Memory

Shared Memory (2)

Process 1
(producer)

Stack 1

Shared Memory

Stack 2

Process 2
(consumer)

Shared Memory

© 2006 Universität Karlsruhe (TU), System Architecture Group 36

Kernel

Code 1

Data 1

Code 2

Data 2

Shared Memory (3)

Task
(producer/consumer)

Stack 1

Shared Memory

Stack 2

© 2006 Universität Karlsruhe (TU), System Architecture Group 37

Kernel

Code 1

Data 1

Code 2

Data 2

Thread Life-Cycle in Java

Created Alive

new Thread()

start()

start() causes the thread to
call its run() method.

© 2006 Universität Karlsruhe (TU), System Architecture Group 38

Terminated

stop(), or
run() returns

The predicate isAlive() can be
used to test if a thread has been
started but not terminated. Once
terminated, it cannot be restarted.

Thread Alive States in Java
Once started, an alive thread has a number of substates:

i ld()

Running
start()

© 2006 Universität Karlsruhe (TU), System Architecture Group 39

Runnable Non-Runnable

yield() dispatch

notify)()

Thread Models

40© 2006 Universität Karlsruhe (TU), System Architecture Group

Pure User Level
Kernel Level

Hybrid

Types of Threads

Types of Threads

 Kernel Level* Threads (KLT)
 Known to the system wide thread management

implemented inside the kernel, i.e. the
corresponding TCBs are located inside the kernel

© 2006 Universität Karlsruhe (TU), System Architecture Group 41

 User Level* Threads (PULT)
 Known only within one task or one sub system,

often implemented by a thread library, i.e. the
corresponding TCBs are located inside an
instance of the thread library, i.e in user-land

*This notion is KA-specific

Kernel Level Threads

Task

Types of Threads

© 2006 Universität Karlsruhe (TU), System Architecture Group 42

Task

TCBs of all known
kernel level threads

TaskCBs of 2
tasks

Kernel Level Threads

 Supported by the Kernel

 Examples

- Windows 95/98/NT/2000

© 2006 Universität Karlsruhe (TU), System Architecture Group 43

Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux

User Level Threads

Task

Types of Threads

© 2006 Universität Karlsruhe (TU), System Architecture Group 44

Task

User Level Threads

 Thread management done by user-level
thread library

 Examples

Types of Threads

© 2006 Universität Karlsruhe (TU), System Architecture Group 45

a p s

- POSIX Pthreads

- Mach C-threads

- Solaris threads

Advantages:
Kernel can simultaneously
schedule threads of same
task on different processors

Inconveniences:
Thread switching within
same task involves the
kernel. We have 2 mode

it h th d it h!!

Thread Type Comparison

Analysis of Kernel-Level Threads

© 2006 Universität Karlsruhe (TU), System Architecture Group 46

A blocking system call only
blocks the calling thread,
but no other thread from
the same application

switches per thread switch!!

Discuss this very carefully

Advantages
Thread switch does not
involve the kernel: 
no mode switching

S h d li li b

Inconveniences
Many system calls are blocking, 
all threads of the task will be
blocked

l l k

Analysis of User-Level Threads

Thread Type Comparison

© 2006 Universität Karlsruhe (TU), System Architecture Group 47

Scheduling policy can be
application specific: 
best fitting policy

PULTs can run on any OS,
if there is thread library

Kernel can only assign tasks to
processors 

2 pure user level threads of the
same task can never run on two
processors simultaneously

OS Kernels

48© 2006 Universität Karlsruhe (TU), System Architecture Group

What’s Inside a Kernel?

Depends on the type of kernel

 Monolithic Kernel (traditional approach)
 Lot of things, e.g.

 File system

© 2006 Universität Karlsruhe (TU), System Architecture Group 49

 Network stack
 Device Driver
 Memory management

 Microkernel (our view)
 Only what’s needed

 2 major system abstraction + IPC mechanism

Monolithic Kernel

App AppApp

ApplicationApplicationApplication

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

address space semaphore
event region

© 2006 Universität Karlsruhe (TU), System Architecture Group 50

Hardware

Linux

Monolithic System

Monolithic KernelMonolithic KernelMonolithic Kernelfile

address space

socket
IPC

process

monitor

mutex

priority

ACLthread
pipepagetask

schedule

HardwareHardwareHardware
bit word

register

byte
instruction

interrupt
exception

TLB

Microkernel

TCP/IP EXT2
L4Linux

App AppApp App AppApp

TCP/IP EXT2 TCP/IP EXT2

App AppApp

ApplicationApplicationApplication

documents

windows
threads

coroutines

symbols
stacks & heaps

arrays & structures

variables

modules

procedures

statements

ServerServerServerPage SSS

© 2006 Universität Karlsruhe (TU), System Architecture Group 51

Net Drv IDE Drv

Hardware

Linux

Hardware

L4 µ-kernelDriver Driver

Driver Driver

Monolithic System µ-kernel Based
Monolithic System

Hardware

L4 µ-kernel

Multi-Server System

HardwareHardwareHardware
bit

wordregister
byte

instruction

µµµ---KernelKernelKerneladdress space
thread

ServerServerServerPage ServerServerServerMutex ServerServerServerSocket ServerServerServerFile

