Systems Design and Implementation
/1.3 Stub Code Generation with IDL4

System Architecture Group, SS 2009
University of Karlsruhe

May 8, 2009 Jan Stoess

University of Karlsruhe

Introduction

L4 Microkernel

Goal: Multiserver
Operating System

Components need to
Interact frequently

Common operation:
Send request to
another component,
wait for reply

System will contain a
lot of communication
code

[L) Introduction

voi d sonme_function(l4_idl _service_t *_service, const char *strl,

int lenl, const char *str2, int len2)

| 4_nsgdope_t _result;
unsi gned _offset, _tnp_size;
struct _ nsg_buffer_struct__ {
| 4_fpage_t fpage;
| 4_nsgdope_t si ze;
| 4_nsgdope_t send;
} *_msg_buffer;
_tnp_size = 20+strlen(strl)+1+4+strlen

_tnp_size = (_tnp_size & ~0x3) + ((_t 3) ? 4 :

_tnp_size += sizeof (1 4_fpage_t) + 2 Pnsgdope_t);
_msg_buffer = (struct _ _nsg_buff S *)al | oca(_tnp_size);
_tnp_size = _tnp_size >> 2;

_nmsg_buffer->size = L4_| PC_ size, 0);
_nmsg_buffer->send = L4_| PC, Wi ze, 0);

((dword_t) (& _nsg_buff 1))) = sone_opcode;
((int) (& _nsg_buffer)) = leni;

((int) (& _nsg_buff 8]))) = lenz

_offset = 12;

_tnp_size = strl Str include termnating zero
((dword_t) (& r->buffer[_offset]))) = _tnp_size;
mentpy (& _| buffer[_offset+4]), strl, _tnp_size);

"

_offset +z ;
(str2)+1; // include termnating zero

_tnp_siz

_offset += _tnp_size+4;
|4 1386 _ipc_call(_service->server_id, _nsg_buffer,
((dword_t) (& _nsg_buffer->buffer[0]))), *((dword_t*)

(& _nmsg_buffer->buffer[4]))), *((dword_t*) (& _nsg_buffer->
buffer[8]))), L4_IPC SHORT_MSG (dword_t*)&(_nsg_buffer->
buffer[0]), (dword_t*)& _nmsg buffer->buffer[4]), (dword_t¥*)
& _nmsg_buffer->buffer[8]), _service->tinmeout, & result);

if (L4_I PC_IS_ERROR(result))
THROW EXCEPTI ON(_servi ce, L4_IPC IS ERROR(_result));

© 2009 University of Karlsruhe, System
Architecture Group

~sg_buffer->buffer[_offset]))) = _tnp_size;
mencpy(& _ns uffer->buffer[_offset+4]), str2, _tnp_size);

Writing communication
code is a tedious and error-
prone task

— Don‘t do it

Remote Procedure Call

s Parameters and
return values must
be copied via IPC

= Stub code required
on both sides

= Messages need to be
created (marshalled)
and analyzed (un-

bar(5, "hello™)

Client
stub

return 42

marshalled)
Server Server = Server loop demulti-
stub loop

plexes requests

int bar(in int len, in string message) = Formal specification

© 2009 University of Karlsruhe, System 4
itecture Grou

[") Outline

= Motivation
s Remote Procedure Call

= Using IDL?
= Working with Generated Code

[") IDL: General Structure
/newscope

module 10

{
— exception eof { };

definition of exceptlon full { }; directional
an exception interface textfile attribute

{

Int readIn(in short handle, out string line)

raises (eof);
Ad writeln(in short handle, in string line)

raises (full);
void flush();

exception can
occur here!

3. e special
’ no "void"! data types

= More details: See IDL4 User Manual

© 2009 University of Karlsruhe, System
Architecture Group

[") IDL: Data Types

= Basic Types = Structs
char struct foo {
short I nt a;
| ong word t b;
| ong | ong char c;
fl oat }
doubl e - bounded
| ong doubl e = Strings length
bool ean string
oct et stri ng<30>
= Alias Types and Arrays = Flexpages
t ypedef short word t f page
t ypedef char sector[512] \\\\\\““mdmmd

later

© 2009 University of Karlsruhe, System
Architecture Group

B
[_) IDL: Sequences

t ypedef sequence<char >
char _seq_t;

t ypedef sequence<short, 10>
short seq_t;

#elements,
not #bytes!
_/
Y
_length

i nt W» X)

© 2009 University of Karlsruhe, System
itecture

Sequences are arrays of
variable length

Storage for out sequences is
allocated via CORBA alloc()
and must be freed with
CORBA free()

Maximum size must be
known before the call.

Unbounded sequences?

Sequences can only be used
with typedef

No sequences of sequences

[C) IDL: Inheritance

Interfaces can inherit

[uui d(1)] " _
interface fruit { from other interfaces
}.VO' d eat(): = Multiple inheritance is
| allowed
[uurd(2)] = Functions cannot be
| nterface nerchandi se {
void buy(in int price); overloaded
b = Individual threads can
[uui d(3)] only serve a single
I nterface banana : fruit, Interface
mer chandi se
{ |
voi d peel ();
}

© 2009 University of Karlsruhe, System 9
Architecture Group

[") Outline

Motivation
Remote Procedure Call
Defining Interfaces with CORBA IDL

Working with Generated Code

10

Invoking IDL#

= Two separate header
files for client and
server stub code

dl4 -sfoo.dl o Hinclude client

neader in every client
application

idl4 -c foo.idl

s #Hinclude server
idl4 -t foo.idl neader in the server

= Generate server
template once, then
add implementation
for each operation

© 2009 University of Karlsruhe, System 1 1
o Architecture Group

[") Command Line Options

i dl 4 [OPTIONS] input.idl

-c, -s, -t Choose output: Client header,
server header, or server template

-Vl | Enable all warnings

-1 path Search this path for #includes

- D nmacr o=val Define a macro

-p platform Select another platform (ia32, generic)
-i api Select another kernel API (v2, x0, v4)

-m | ang Select language mapping (c, c++)

© 2009 University of Karlsruhe, System 12
Architecture Gro

[") Outline

= Motivation

= Remote Procedure Call

= Defining Interfaces with CORBA IDL
= Using IDL?

13

(L) Client side

#include "io_client.h" = Implicit parameters:
server threadlD,

i nt mai n(voi d) environment

{

CORBA_Envi ronnent env o
= idl 4_default _environnent; = Always initialize the

| O textfile server; environment!

I nt fhandle; char *line; :

= System exceptions
can always occur,
e.g. when IPC fails

switch (env. major) { = Out strings and out

case CORBA_USER EXCEPTI ON: arrays must be freed
case CORBA SYSTEM EXCEPTI ON: using CORBA free()

} _ _
CORBA free(line): = Simple alloc/free in

) the sample code

/| *get server and file handl e*/

|O textfile readl n(server,
fhandl e, & ine, &env);

© 2009 University of Karlsruhe, System 14
Architecture Group

[*) Server side

#include "io_server.h"

int 10O textfile readln(
CORBA (hj ect _caller,
i nt fhandl e, char **I|ine,
i dl 4_server _environnent *env)

{
strcpy(*line, "Hello world");
[* or */
*line = "Hello worl d";
| f (handl e<0) {
CORBA exception_set (env,
ex_eof, NULL);
return;
}
return strlen(*line);
}

| DL4 _PUBLI SH | O TEXTFI LE_READLN
(IO textfile_ readln);

© 2009 University of Karlsruhe, System
Architecture Group

Extend the skeleton
function in the server
template file!

= Remove duplicate
interfaces

Implicit parameters:
ThreadlD of the
caller, environment

Stub provides buffers
for output values;
other buffers may be
used instead

No need to call
CORBA free()

15

[T} Server loop

#i ncl ude "i o server.h" = Reply&Wait is used to
send reply and to receive

int 1O textfile_vtable[] = ...; next request

void IOtextfile server()
{ = Function number is
struct { extracted, and the

unsi gned int stack[768]; ’
unsi gned int message[...]: corresponding stub

idl 4 strdope t str[...]; IS called
} butter; = Preallocated buffers
[* initialize string dopes */ are used for output
Wh}' e (1) = Loop performs a
reply and wait(...): stack switch to the
process_request (...); buffer; make sure
} stack is big enough!

}

© 2009 University of Karlsruhe, System 16
Architecture Group

) Summary

= |DL* generates communication code from a formal interface
definition
= To build a component,

1. Define the interface(s) in CORBA IDL
2. Run IDL* with -c and -s to generate client and

server stubs
3. Get a server template with —t and implement

the operations of each interface

= Recommended reading: IDL* User Manual
(available from the course website)

Questions?

17

© 2009 University of Karlsruhe, System
Architecture Group

[") The Example in DCE IDL

library 10

{
exception eof { };
exception full { };

interface textfile
{
int readIn([in] short handle, [out, string] char **line)
raises (eof);
void writeln([in] short handle, [in, string] char *line)
raises (full);
void flush();

© 2009 University of Karlsruhe, System 18
Architecture Group

[L) IDL: Page faults

| nterface pager {
[kernel meg(idl 4:: pagefaul t)]
voi d pagefaul t(
I n | ong addr,
I n [ong uip,
I n | ong access,
out fpage fp

© 2009 University of Karlsruhe, System
Architecture Group

Client sends the address of
the fault and its instruction
ptr

Server replies with the
requested page

The fpage type maps to
struct idl4_fpage_t, which
also contains map base,
permissions

IDL* provides macros to
access this struct

Also works for interrupts
and exceptions

Details: See manual

19

[2) IDL: Files and Attributes

Multiple IDL files
= #include “idl-file.idl”

= Type import from C/C++ header files
= I nport “header.h”;

= No need to define types twice

= Function attribute oneway
= No result, no out or i nout parameters
= NoO exceptions
= Output parameter attribute preal | oc
= Pre-allocation of buffers by user
= No implicit *_alloc() by stub

20

IDL: Implementation BUGS

What IDL4 doesn't do (even if the manual claims so0)
From SDI@UKa Wiki

= Yyou cannot add some data to an exception (even though it
appears so from reading the include files)

= The standard server loop from the server template allocates
8000 bytes, no matter how much is actually needed. If you
want to receive more, adjust it by hand!

= Sequences without a maximum length are NOT supported,
neither are sequences of strings; actually idl4 might crash while
compiling

= 1dl4 cannot deal with namespaces. Therefore, we unfortunately
have to do without them.

= It seems to be that idl4 does not recognize [prealloc] in
conjunction with strings.

= Wwhen receiving a sequence in a server, the _maximum value
might not be set correctly. So don't rely on that.

© 2009 University of Karlsruhe, System 2 1
Architecture Group

L) Next week

= Tuesday: Lecture (Naming)
= Thursday: Debugging Tutorial

= Fallcase Session

= [akes Place in Room 148, 50.34
= Homework — IDL* exercise

= Make privileged system calls available to
threads outside the root task!

=« Ignore MemoryControl and ProcessorControl
= Use IDL# for stub code generation!
= Detailed instructions in the SDI WiKi
. See also assignment02.pdf

22

© 2006 U

21.4.
28.4.

5.5.
12.5.
19.5.
26.5.

2.6.

9.6.
16.6.
23.6.
30.6.

1.7
14.7.
217

ty of

Lecture Schedule

Introduction
Communication

OS Interfaces

Naming

J. Stoess — Project Kittyhawk
File Systems

Threads, Scheduling
Memory Management
Drivers

Device Service Design (2)
Lab

Lab

Lab

Lab

.
Karlsruhe, System
Architecture Grou

P

23.4.
30.4.

1.5.
14.5.
21.5.
28.5.

4.6.
11.6.
18.6.
25.6.

2.7.

9.7.
16.7.
23.7.

L4 API Crash Course (1)
L4 API Crash Course (1)
IDL4, Debugging on L4
Debugging on L4 (Lab)

- Christi Himmelfahrt -
Name Service Design (3)
File Service Design (2)

- Fronleichnam-

Task Service Design (2)

MM Service Design (2)
Lab

Lab

Lab

Lab Demos + Conclusion,

