
Systems Design and Implementation
II.1 – L4 API Crash Course Part II

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

April 30, 2009

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

2© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

Address Spaces and Mapping

• Map
• Unmap

G

Basic Operations

4© 2009 University of Karlsruhe, System
Architecture Group

• Grant

Pager 4
Application

Application Application

Application

Recursive Address Spaces

5© 2009 University of Karlsruhe, System
Architecture Group

Physical Memory

Initial AS σ0

Pager 1 Pager 2

Pager 3
Driver

Driver

Pager

"PF" msg

KernelApplication

PF IPC

Page Fault Handling

6© 2009 University of Karlsruhe, System
Architecture Group

g

map msg

pp

res IPC

Page Fault Protocol

Pager

"PF" msg
MR0=access type

MR1 = faulting address
MR2 = IP of faulting instruction

Application

7© 2009 University of Karlsruhe, System
Architecture Group

g

map msg
Contains MapItem

pp

Page Fault Message

Fault address

-2 0 2

Faulting user-level IP

0(4)0rwx

MR2

MR1

MR0

8© 2009 University of Karlsruhe, System
Architecture Group

 Short message
 No further page faults

 Applications can synthesize page fault messages
 Not a problem - the application could do it anyway by

directly accessing the memory it wishes to cause a fault on

Mapping Questions

 How is the mapping to be sent specified?
 How is the mapping to be received specified?
 How do they combine? What is the result?

9© 2009 University of Karlsruhe, System
Architecture Group

Fpage Data Type

 Fpage

 fpage size = 2
s

 Specifies a region of the address space that is

base/1024 s(6) ~(4)

10© 2009 University of Karlsruhe, System
Architecture Group

 A power of 2 in size

 Aligned to its size

 Note: Smallest supported size is architecture specific

 IA-32 supports 4K (s = 12)

Fpage Data Type

 Complete Address Space

0 s=1(6) ~(4)

11© 2009 University of Karlsruhe, System
Architecture Group

 Nilpage

 See l4/types.h
0 0(6) 0(4)

Receiving a mapping

"PF" msg
MR1 = 0x00002002

MR2 = 0xXXXXXXXX

12© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

0x3000

BR0 Rcv Fpage (window)

0x8 12(6) 0(4)

Buffer Register 0

 BR0 Specifies
Willingness to receive StringItems

Rcv Window (fpage) 000s

13© 2009 University of Karlsruhe, System
Architecture Group

 Willingness to receive StringItems
 s = 1
 Target sting locations in other BRs

 The receive window for mappings
 Region of the address space to accept mappings
 Nilpage: No mappings accepted

Normal Page Fault

"PF" msg
MR1 = 0x00002002

MR2 = 0xXXXXXXXX

14© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication
0x2000

0 1(6) 0(4)

BR0 Rcv Fpage (window)

Set by kernel to complete
address space

MapItem/GrantItem Data Type

 Permissions

d

Snd Fpage

Snd base/1024

0rwx

0(6) 10gC

15© 2009 University of Karlsruhe, System
Architecture Group

 r: read

 w: write

 x: execute

 Note: Not all architectures support all combinations

 IA-32: rx and rwx are supported by hardware

 g: mapping (0) or granting (1)

Receive window > mapping size

0 10000

MapItem

0x40 s=12

0x8

0rwx

10000(6)

16© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

map msg
0x10000

Sndbase determines
location in receive

window

Sending a mapping

0 10000

0x40 s=12

MapItem

0x123

0rwx

10000(6)

17© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

map msg
0x10000

Mappings and Window Sizes

 See reference manual for precise definition of what
happens for mismatched mappings and window sizes

 Advice:
 Simply use 4K pages for all mappings

18© 2009 University of Karlsruhe, System
Architecture Group

A Map Message

 For page faults, the kernel expects the following map
message response
 No untyped words
 1 MapItem

19© 2009 University of Karlsruhe, System
Architecture Group

label 0 2 0

Snd Fpage

Snd base/1024

0rwx

0(6) 10gC

Explicit Mapping Receive

 BR0 determines whether a receive/wait IPC can
include strings or a mapping
 Set it prior to invoking IPC receive/wait

4 4 d d

20© 2009 University of Karlsruhe, System
Architecture Group

L4_Acceptor_t L4_UntypedWordsAcceptor
L4_Acceptor_t L4_StringItemsAcceptor
L4_Acceptor_t L4_MapGrantItems (

L4_Fpage_t RcvWindow
)
void L4_Accept (L4_Acceptor_t a)

Unmap

 Revoke mappings
 That were derived from

mappings in the current address
space

 Revoke access rights
 To existing mappings

E l RW RO

21© 2009 University of Karlsruhe, System
Architecture Group

 Example: RW -> RO

 The mappings to revoke are
specified by fpages in MRs

Unmap Arguments

 Control
 f: specifies whether fpages are

flushed from the current address
space in addition to revoking
derived mapping

0(25) f(1) k(6)

22© 2009 University of Karlsruhe, System
Architecture Group

 k: specifies the highest number
MR that contains an Fpage to
unmap

 Fpages
 Fpages specify the regions in the

local address space
 rwx: the access rights to revoke

Fpage 0rwx

Fpage 0rwx

Fpage 0rwx MR2

MR1

MR0

Unmap Results

 RWX

Fpage 0RWX

Fpage 0RWX

Fpage 0RWX

...

MR2

MR1

MR0

23© 2009 University of Karlsruhe, System
Architecture Group

 RWX
 Reference (r), Dirty (w), and Executed (x) bits

 Bit returned set if corresponding access has occurred on any
derived mapping

 Reset as a result of the unmap operation

 Supported combinations are arch-dependent

Unmap

 Derived mappings in other address spaces
L4_Fpage_t L4_UnmapFpage (L4_Fpage_t f)

 Derived mappings in own address space as well
L4_Fpage_t L4_Flush (L4_Fpage_t f)

24© 2009 University of Karlsruhe, System
Architecture Group

void L4_UnmapFpages (L4_Word_t n,
L4_Fpage_t * fpages)

void L4_FlushFpages (L4_Word_t n,
L4_Fpage_t * fpages)

L4_Bool_t L4_WasWritten (L4_Fpage_t f)
L4_Bool_t L4_WasReferenced (L4_Fpage_t f)
L4_Bool_t L4_WaseXecuted (L4_Fpage_t f)

SpaceControl

 Used to control the layout of newly created address
spaces
 Specifically

 Location of Kernel Info Page - fpage
 Location of UTCB region - fpage

25© 2009 University of Karlsruhe, System
Architecture Group

g p g
 Redirector

 All IPC from threads within the address space is
redirected to a controlling thread
 Used to enforce security policy

 Note: Should not need to change what is already
done in the example code

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

26© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

ProcessorControl

 Privileged system call
 Sets processor frequency, voltage and other

processor specific stuff
 ... once implemented

27© 2009 University of Karlsruhe, System
Architecture Group

MemoryControl

 Privileged system call
 Set cache architecture attributes on pages in memory

 Machine specific
 Not implemented for IA-32

28© 2009 University of Karlsruhe, System
Architecture Group

 Obsoleted by MapControl proposal

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

29© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

That’s it.

Protocols

 Page Fault
 Thread Start
 Interrupt

Preemption

30© 2009 University of Karlsruhe, System
Architecture Group

 Preemption
 Exception
 Sigma0

Exception Protocol

 Exception IPC to exception handler thread
 On behalf of faulting thread
 The IPC contains

 IP of where to resume the thread after handling the
exception

31© 2009 University of Karlsruhe, System
Architecture Group

exception
 Exception type
 Other machine specific stuff

 The exception handler can respond with an IPC
specifying a new IP and other state to recover
from the exception
 See the IA-32 appendix in the manual

Sigma0
 Owns all physical memory in the machine

 Except that reserved for kernel use
 Mapped idempotently

 One-to-one
 Various memory classes

 Conventional

32© 2009 University of Karlsruhe, System
Architecture Group

 Conventional
 Shared (VGA screen memory, ...)
 Architecture-specific (ACPI tables, ...)
 Boot-loader specific (modules, initial servers, ...)

 Maps each page once (and once only)
 Sigma0 protocol

 Request specific page
 Request any page
 Request larger regions

 Pager of initial threads (root task)
 Also implements page fault protocol
 Responds with idempotent mapping

Sigma0 – Root Pager

33© 2009 University of Karlsruhe, System
Architecture Group

Physical Memory

Sigma0

Root Task

Sigma0 Request Message

R t d tt ib t

B = Requested Fpage/1024

-6 2

Requested attributes

0(4)0(4)

MR2

MR1

MR0
0(6)

s(6) 0rwx(4)

34© 2009 University of Karlsruhe, System
Architecture Group

 Requested attributes
 Architecture specific

 Use default = 0
 Requested Fpage

 B != -1
 Request a specific region of physical memory

Some Sigma0 Helpers

 Found in l4/sigma0.h

 Request a specific page
L4_Fpage_t L4_Sigma0_GetPage (L4_ThreadId_t s0,

L4_Fpage_t f,
4 i d)

35© 2009 University of Karlsruhe, System
Architecture Group

L4_Fpage_t RcvWindow)

 Request some page
L4_Fpage_t L4_Sigma0_GetAny (L4_ThreadId_t s0,

L4_Word_t s,
L4_Fpage_t RcvWindow)

Example Code

 Kernel
 L4Ka::Pistachio 0.4

ia32-kernel
 Supporting applications

 Kickstart

roottask

testclient

Locator

LoggerPager

36© 2009 University of Karlsruhe, System
Architecture Group

 Kickstart
 Sigma0

 Custom applications
 Roottask
 Test client

sigma0

ia32-kernel

ggg

Custom Applications

 Roottask
 Locator
 Log server
 Pager

roottask

testclient

Locator

LoggerPager

37© 2009 University of Karlsruhe, System
Architecture Group

 Test Client
 Locates log server
 Sends a message to the log

server

sigma0

ia32-kernel

ggg

The Boot Sequence (1)

 BIOS loads the boot block
 Small loader, GRUB stage1
 Only 512 bytes available

 Stage1 starts

38© 2009 University of Karlsruhe, System
Architecture Group

 Searches disks for stage2
 Loads GRUB stage2

stage10x7c00

The Boot Sequence (2)

 Stage2
 more complex part of GRUB

 Understands various file systems
 Supports network

39© 2009 University of Karlsruhe, System
Architecture Group

 Supports network
 Supports a menu
 60kb – 80kb in size
 Supports ELF loading

 Searches for menu.lst

stage10x7c00
stage20x8000

stage2
0x80000

The Boot Sequence (3)

 Stage2 continues
 ELF-loads kickstart
 Appends additional modules after

kickstart

0x800000 kickstart

ia32-kernel

root

sigma0

test

40© 2009 University of Karlsruhe, System
Architecture Group

 Generates multiboot info
 Passes pointer to multiboot info to

kickstart
 Hands over execution to kickstart

multiboot0x1000
stage10x7c00
stage20x8000

stage2
0x80000

The Boot Sequence (4)

 Kickstart starts
 Converts multiboot info into generic

bootinfo
 ELF-loads

0x800000 kickstart

ia32-kernel

root

sigma0

test

41© 2009 University of Karlsruhe, System
Architecture Group

 L4 kernel
 Sigma 0
 Roottask

 Configures L4 via Kernel
Configuration Page

 Hands over control to kernel
sigma0

L4 kernel

Roottask0x300000

0x100000

0x20000

bootinfo0x1000

0x80000

The Boot Sequence (5)

 L4 starts
 allocates some upper memory for

internal data structures
 starts sigma0 and roottask

kmem

Test client0x600000

test

42© 2009 University of Karlsruhe, System
Architecture Group

 Roottask starts
 parses generic bootinfo
 ELF-loads test client
 starts test client

sigma0

L4 kernel

Roottask0x300000

0x100000

0x20000

bootinfo0x1000

The Directory Structure

 /include
 Global header files
 Subdirectories

 /l4 - L4 systemcalls
 /sdi - Header for our system library

43© 2009 University of Karlsruhe, System
Architecture Group

 /sdi Header for our system library
 /if

 Global interface descriptions
 /lib/sdi

 Our system library code
 /src

 Custom application code

Next Week

 Tuesday : OS Interfaces
 Thursday: IDL4, Debugging on L4
 Homework

 Change your group’s password in the lab (R.149)
 We will lock accounts with default passwords on Thursday

44© 2009 University of Karlsruhe, System
Architecture Group

 Get your build environment going
 See the SDI Wiki at http://i30www.ira.uka.de/~sdi/wiki/

 Create two threads in the roottask’s address space
 Let them send a few untyped words back and forth

 Create an additional testclient-like binary
 Run it in its own address space

 Also available as assignment01.pdf

