
Systems Design and Implementation
II.1 – L4 API Crash Course Part II

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

April 30, 2009

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

2© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

Address Spaces and Mapping

• Map
• Unmap

G

Basic Operations

4© 2009 University of Karlsruhe, System
Architecture Group

• Grant

Pager 4
Application

Application Application

Application

Recursive Address Spaces

5© 2009 University of Karlsruhe, System
Architecture Group

Physical Memory

Initial AS σ0

Pager 1 Pager 2

Pager 3
Driver

Driver

Pager

"PF" msg

KernelApplication

PF IPC

Page Fault Handling

6© 2009 University of Karlsruhe, System
Architecture Group

g

map msg

pp

res IPC

Page Fault Protocol

Pager

"PF" msg
MR0=access type

MR1 = faulting address
MR2 = IP of faulting instruction

Application

7© 2009 University of Karlsruhe, System
Architecture Group

g

map msg
Contains MapItem

pp

Page Fault Message

Fault address

-2 0 2

Faulting user-level IP

0(4)0rwx

MR2

MR1

MR0

8© 2009 University of Karlsruhe, System
Architecture Group

 Short message
 No further page faults

 Applications can synthesize page fault messages
 Not a problem - the application could do it anyway by

directly accessing the memory it wishes to cause a fault on

Mapping Questions

 How is the mapping to be sent specified?
 How is the mapping to be received specified?
 How do they combine? What is the result?

9© 2009 University of Karlsruhe, System
Architecture Group

Fpage Data Type

 Fpage

 fpage size = 2
s

 Specifies a region of the address space that is

base/1024 s(6) ~(4)

10© 2009 University of Karlsruhe, System
Architecture Group

 A power of 2 in size

 Aligned to its size

 Note: Smallest supported size is architecture specific

 IA-32 supports 4K (s = 12)

Fpage Data Type

 Complete Address Space

0 s=1(6) ~(4)

11© 2009 University of Karlsruhe, System
Architecture Group

 Nilpage

 See l4/types.h
0 0(6) 0(4)

Receiving a mapping

"PF" msg
MR1 = 0x00002002

MR2 = 0xXXXXXXXX

12© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

0x3000

BR0 Rcv Fpage (window)

0x8 12(6) 0(4)

Buffer Register 0

 BR0 Specifies
Willingness to receive StringItems

Rcv Window (fpage) 000s

13© 2009 University of Karlsruhe, System
Architecture Group

 Willingness to receive StringItems
 s = 1
 Target sting locations in other BRs

 The receive window for mappings
 Region of the address space to accept mappings
 Nilpage: No mappings accepted

Normal Page Fault

"PF" msg
MR1 = 0x00002002

MR2 = 0xXXXXXXXX

14© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication
0x2000

0 1(6) 0(4)

BR0 Rcv Fpage (window)

Set by kernel to complete
address space

MapItem/GrantItem Data Type

 Permissions

d

Snd Fpage

Snd base/1024

0rwx

0(6) 10gC

15© 2009 University of Karlsruhe, System
Architecture Group

 r: read

 w: write

 x: execute

 Note: Not all architectures support all combinations

 IA-32: rx and rwx are supported by hardware

 g: mapping (0) or granting (1)

Receive window > mapping size

0 10000

MapItem

0x40 s=12

0x8

0rwx

10000(6)

16© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

map msg
0x10000

Sndbase determines
location in receive

window

Sending a mapping

0 10000

0x40 s=12

MapItem

0x123

0rwx

10000(6)

17© 2009 University of Karlsruhe, System
Architecture Group

PagerApplication

0x2000

map msg
0x10000

Mappings and Window Sizes

 See reference manual for precise definition of what
happens for mismatched mappings and window sizes

 Advice:
 Simply use 4K pages for all mappings

18© 2009 University of Karlsruhe, System
Architecture Group

A Map Message

 For page faults, the kernel expects the following map
message response
 No untyped words
 1 MapItem

19© 2009 University of Karlsruhe, System
Architecture Group

label 0 2 0

Snd Fpage

Snd base/1024

0rwx

0(6) 10gC

Explicit Mapping Receive

 BR0 determines whether a receive/wait IPC can
include strings or a mapping
 Set it prior to invoking IPC receive/wait

4 4 d d

20© 2009 University of Karlsruhe, System
Architecture Group

L4_Acceptor_t L4_UntypedWordsAcceptor
L4_Acceptor_t L4_StringItemsAcceptor
L4_Acceptor_t L4_MapGrantItems (

L4_Fpage_t RcvWindow
)
void L4_Accept (L4_Acceptor_t a)

Unmap

 Revoke mappings
 That were derived from

mappings in the current address
space

 Revoke access rights
 To existing mappings

E l RW RO

21© 2009 University of Karlsruhe, System
Architecture Group

 Example: RW -> RO

 The mappings to revoke are
specified by fpages in MRs

Unmap Arguments

 Control
 f: specifies whether fpages are

flushed from the current address
space in addition to revoking
derived mapping

0(25) f(1) k(6)

22© 2009 University of Karlsruhe, System
Architecture Group

 k: specifies the highest number
MR that contains an Fpage to
unmap

 Fpages
 Fpages specify the regions in the

local address space
 rwx: the access rights to revoke

Fpage 0rwx

Fpage 0rwx

Fpage 0rwx MR2

MR1

MR0

Unmap Results

 RWX

Fpage 0RWX

Fpage 0RWX

Fpage 0RWX

...

MR2

MR1

MR0

23© 2009 University of Karlsruhe, System
Architecture Group

 RWX
 Reference (r), Dirty (w), and Executed (x) bits

 Bit returned set if corresponding access has occurred on any
derived mapping

 Reset as a result of the unmap operation

 Supported combinations are arch-dependent

Unmap

 Derived mappings in other address spaces
L4_Fpage_t L4_UnmapFpage (L4_Fpage_t f)

 Derived mappings in own address space as well
L4_Fpage_t L4_Flush (L4_Fpage_t f)

24© 2009 University of Karlsruhe, System
Architecture Group

void L4_UnmapFpages (L4_Word_t n,
L4_Fpage_t * fpages)

void L4_FlushFpages (L4_Word_t n,
L4_Fpage_t * fpages)

L4_Bool_t L4_WasWritten (L4_Fpage_t f)
L4_Bool_t L4_WasReferenced (L4_Fpage_t f)
L4_Bool_t L4_WaseXecuted (L4_Fpage_t f)

SpaceControl

 Used to control the layout of newly created address
spaces
 Specifically

 Location of Kernel Info Page - fpage
 Location of UTCB region - fpage

25© 2009 University of Karlsruhe, System
Architecture Group

g p g
 Redirector

 All IPC from threads within the address space is
redirected to a controlling thread
 Used to enforce security policy

 Note: Should not need to change what is already
done in the example code

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

26© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

ProcessorControl

 Privileged system call
 Sets processor frequency, voltage and other

processor specific stuff
 ... once implemented

27© 2009 University of Karlsruhe, System
Architecture Group

MemoryControl

 Privileged system call
 Set cache architecture attributes on pages in memory

 Machine specific
 Not implemented for IA-32

28© 2009 University of Karlsruhe, System
Architecture Group

 Obsoleted by MapControl proposal

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

29© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

That’s it.

Protocols

 Page Fault
 Thread Start
 Interrupt

Preemption

30© 2009 University of Karlsruhe, System
Architecture Group

 Preemption
 Exception
 Sigma0

Exception Protocol

 Exception IPC to exception handler thread
 On behalf of faulting thread
 The IPC contains

 IP of where to resume the thread after handling the
exception

31© 2009 University of Karlsruhe, System
Architecture Group

exception
 Exception type
 Other machine specific stuff

 The exception handler can respond with an IPC
specifying a new IP and other state to recover
from the exception
 See the IA-32 appendix in the manual

Sigma0
 Owns all physical memory in the machine

 Except that reserved for kernel use
 Mapped idempotently

 One-to-one
 Various memory classes

 Conventional

32© 2009 University of Karlsruhe, System
Architecture Group

 Conventional
 Shared (VGA screen memory, ...)
 Architecture-specific (ACPI tables, ...)
 Boot-loader specific (modules, initial servers, ...)

 Maps each page once (and once only)
 Sigma0 protocol

 Request specific page
 Request any page
 Request larger regions

 Pager of initial threads (root task)
 Also implements page fault protocol
 Responds with idempotent mapping

Sigma0 – Root Pager

33© 2009 University of Karlsruhe, System
Architecture Group

Physical Memory

Sigma0

Root Task

Sigma0 Request Message

R t d tt ib t

B = Requested Fpage/1024

-6 2

Requested attributes

0(4)0(4)

MR2

MR1

MR0
0(6)

s(6) 0rwx(4)

34© 2009 University of Karlsruhe, System
Architecture Group

 Requested attributes
 Architecture specific

 Use default = 0
 Requested Fpage

 B != -1
 Request a specific region of physical memory

Some Sigma0 Helpers

 Found in l4/sigma0.h

 Request a specific page
L4_Fpage_t L4_Sigma0_GetPage (L4_ThreadId_t s0,

L4_Fpage_t f,
4 i d)

35© 2009 University of Karlsruhe, System
Architecture Group

L4_Fpage_t RcvWindow)

 Request some page
L4_Fpage_t L4_Sigma0_GetAny (L4_ThreadId_t s0,

L4_Word_t s,
L4_Fpage_t RcvWindow)

Example Code

 Kernel
 L4Ka::Pistachio 0.4

ia32-kernel
 Supporting applications

 Kickstart

roottask

testclient

Locator

LoggerPager

36© 2009 University of Karlsruhe, System
Architecture Group

 Kickstart
 Sigma0

 Custom applications
 Roottask
 Test client

sigma0

ia32-kernel

ggg

Custom Applications

 Roottask
 Locator
 Log server
 Pager

roottask

testclient

Locator

LoggerPager

37© 2009 University of Karlsruhe, System
Architecture Group

 Test Client
 Locates log server
 Sends a message to the log

server

sigma0

ia32-kernel

ggg

The Boot Sequence (1)

 BIOS loads the boot block
 Small loader, GRUB stage1
 Only 512 bytes available

 Stage1 starts

38© 2009 University of Karlsruhe, System
Architecture Group

 Searches disks for stage2
 Loads GRUB stage2

stage10x7c00

The Boot Sequence (2)

 Stage2
 more complex part of GRUB

 Understands various file systems
 Supports network

39© 2009 University of Karlsruhe, System
Architecture Group

 Supports network
 Supports a menu
 60kb – 80kb in size
 Supports ELF loading

 Searches for menu.lst

stage10x7c00
stage20x8000

stage2
0x80000

The Boot Sequence (3)

 Stage2 continues
 ELF-loads kickstart
 Appends additional modules after

kickstart

0x800000 kickstart

ia32-kernel

root

sigma0

test

40© 2009 University of Karlsruhe, System
Architecture Group

 Generates multiboot info
 Passes pointer to multiboot info to

kickstart
 Hands over execution to kickstart

multiboot0x1000
stage10x7c00
stage20x8000

stage2
0x80000

The Boot Sequence (4)

 Kickstart starts
 Converts multiboot info into generic

bootinfo
 ELF-loads

0x800000 kickstart

ia32-kernel

root

sigma0

test

41© 2009 University of Karlsruhe, System
Architecture Group

 L4 kernel
 Sigma 0
 Roottask

 Configures L4 via Kernel
Configuration Page

 Hands over control to kernel
sigma0

L4 kernel

Roottask0x300000

0x100000

0x20000

bootinfo0x1000

0x80000

The Boot Sequence (5)

 L4 starts
 allocates some upper memory for

internal data structures
 starts sigma0 and roottask

kmem

Test client0x600000

test

42© 2009 University of Karlsruhe, System
Architecture Group

 Roottask starts
 parses generic bootinfo
 ELF-loads test client
 starts test client

sigma0

L4 kernel

Roottask0x300000

0x100000

0x20000

bootinfo0x1000

The Directory Structure

 /include
 Global header files
 Subdirectories

 /l4 - L4 systemcalls
 /sdi - Header for our system library

43© 2009 University of Karlsruhe, System
Architecture Group

 /sdi Header for our system library
 /if

 Global interface descriptions
 /lib/sdi

 Our system library code
 /src

 Custom application code

Next Week

 Tuesday : OS Interfaces
 Thursday: IDL4, Debugging on L4
 Homework

 Change your group’s password in the lab (R.149)
 We will lock accounts with default passwords on Thursday

44© 2009 University of Karlsruhe, System
Architecture Group

 Get your build environment going
 See the SDI Wiki at http://i30www.ira.uka.de/~sdi/wiki/

 Create two threads in the roottask’s address space
 Let them send a few untyped words back and forth

 Create an additional testclient-like binary
 Run it in its own address space

 Also available as assignment01.pdf

