Systems Design and Implementation II.1 – L4 API Crash Course Part II

System Architecture Group, SS 2009

University of Karlsruhe

April 30, 2009

Jan Stoess

University of Karlsruhe

Microkernel System Calls

KernelInterface IPC Unmap ExchangeRegisters ThreadSwitch Schedule SystemClock ThreadControl SpaceControl ProcessorControl

Address Spaces and Mapping

- Map
- Unmap
- Grant

Faulting user-level IP				MR_2	
Fault address					MR_1
-2	0rwx	0 ₍₄₎	0	2	MR_0

- Short message
 - No further page faults
- Applications can synthesize page fault messages
 - Not a problem the application could do it anyway by directly accessing the memory it wishes to cause a fault on

- How is the mapping to be sent specified?
- How is the mapping to be received specified?
- How do they combine? What is the result?

- Specifies a region of the address space that is
 - A power of 2 in size
 - Aligned to its size
- Note: Smallest supported size is architecture specific
 - IA-32 supports 4K (s = 12)

0
$$s=1_{(6)}$$
 ~(4)

Nilpage

See I4/types.h

Rcv Window (fpage)

000s

- BR₀ Specifies
 - Willingness to receive StringItems
 - S = 1
 - Target sting locations in other BRs
 - The receive window for mappings
 - Region of the address space to accept mappings
 - Nilpage: No mappings accepted

© 2009 University of Karlsruhe, System Architecture Group

Snd Fpage		
Snd base/1024	0 ₍₆₎	10gC

- Permissions
 - r: read
 - w: write
 - x: execute
 - Note: Not all architectures support all combinations
 - IA-32: rx and rwx are supported by hardware
- g: mapping (0) or granting (1)

Receive window > mapping size

Mappings and Window Sizes

- See reference manual for precise definition of what happens for mismatched mappings and window sizes
- Advice:
 - Simply use 4K pages for all mappings

- For page faults, the kernel expects the following map message response
 - No untyped words
 - 1 MapItem

Snd Fpage				
Snd base/1024		0 ₍₆₎	10gC	
label	0	2		0

- BR₀ determines whether a receive/wait IPC can include strings or a mapping
 - Set it prior to invoking IPC receive/wait

```
L4_Acceptor_t L4_UntypedWordsAcceptor
L4_Acceptor_t L4_StringItemsAcceptor
L4_Acceptor_t L4_MapGrantItems (
L4_Fpage_t RcvWindow
)
void L4 Accept (L4 Acceptor t a)
```


Unmap

- Revoke mappings
 - That were derived from mappings in the current address space
- Revoke access rights
 - To existing mappings
 - Example: RW -> RO
- The mappings to revoke are specified by fpages in MRs

- Control
 - *f:* specifies whether fpages are *flushed* from the current address space in addition to revoking derived mapping
 - k: specifies the highest number MR that contains an Fpage to unmap
- Fpages
 - Fpages specify the regions in the local address space
 - *rwx:* the access rights to revoke

Fpage	0 <i>rwx</i>	MR_2
Fpage	0 <i>rwx</i>	MR_1
Fpage	0 <i>rwx</i>	MR_0

 $f_{(1)}$

 $\theta_{(25)}$

 $k_{(6)}$

	•••
Fpage0K	WX MR ₂
Fpage0K	WX MR ₁
Fpage 0 K	MR ₀

- RWX
 - Reference (r), Dirty (w), and Executed (x) bits
 - Bit returned set if corresponding access has occurred on any derived mapping
 - Reset as a result of the unmap operation
- Supported combinations are arch-dependent

L4 Fpage t * fpages)

L4 Fpage t * fpages)

- Used to control the layout of newly created address spaces
 - Specifically
 - Location of Kernel Info Page fpage
 - Location of UTCB region fpage
- Redirector
 - All IPC from threads within the address space is redirected to a controlling thread
 - Used to enforce security policy
- Note: Should not need to change what is already done in the example code

Microkernel System Calls

KernelInterface IPC Unmap ExchangeRegisters ThreadSwitch Schedule SystemClock ThreadControl SpaceControl ProcessorControl

- Privileged system call
- Sets processor frequency, voltage and other processor specific stuff
 - ... once implemented

- Privileged system call
- Set cache architecture attributes on pages in memory
 - Machine specific
 - Not implemented for IA-32
 - Obsoleted by MapControl proposal

Microkernel System Calls

KernelInterface IPC Unmap ExchangeRegisters ThreadSwitch Schedule SystemClock ThreadControl SpaceControl ProcessorControl MemoryControl

That's it.

- Page Fault
- Thread Start
- Interrupt
- Preemption
- Exception
- Sigma0

- Exception IPC to exception handler thread
 - On behalf of faulting thread
 - The IPC contains
 - IP of where to resume the thread after handling the exception
 - Exception type
 - Other machine specific stuff
 - The exception handler can respond with an IPC specifying a new IP and other state to recover from the exception
 - See the IA-32 appendix in the manual

- Owns all physical memory in the machine
 - Except that reserved for kernel use
 - Mapped idempotently
 - One-to-one
 - Various memory classes
 - Conventional
 - Shared (VGA screen memory, ...)
 - Architecture-specific (ACPI tables, ...)
 - Boot-loader specific (modules, initial servers, ...)
 - Maps each page once (and once only)
- Sigma0 protocol
 - Request specific page
 - Request any page
 - Request larger regions

Pager of initial threads (root task)

- Also implements page fault protocol
- Responds with idempotent mapping

- Requested attributes
 - Architecture specific
 - Use default = 0
- Requested Fpage
 - B != -1
 - Request a specific region of physical memory

Found in I4/sigma0.h

 Request a specific page
 L4_Fpage_t L4_Sigma0_GetPage (L4_ThreadId_t s0, L4_Fpage_t f, L4 Fpage t RcvWindow)

 Request some page
 L4_Fpage_t L4_Sigma0_GetAny (L4_ThreadId_t s0, L4_Word_t s, L4 Fpage t RcvWindow)

- Kernel
 - L4Ka::Pistachio 0.4 ia32-kernel
- Supporting applications
 - Kickstart
 - Sigma0
- Custom applications
 - Roottask
 - Test client

Custom Applications

- Roottask
 - Locator
 - Log server
 - Pager
- Test Client
 - Locates log server
 - Sends a message to the log server

- Only 512 bytes available
- Stage1 starts
 - Searches disks for stage2
 - Loads GRUB stage2

stage1

0x7c00

- more complex part of GRUB
 - Understands various file systems
 - Supports network
 - Supports a menu
 - 60kb 80kb in size
 - Supports ELF loading
- Searches for menu.lst

test root sigma0

ia32-kerne

kickstart

Roottask

L4 kernel

sigma0

bootinfo

The Boot Sequence (5)

- L4 starts
 - allocates some upper memory for internal data structures
 - starts sigma0 and roottask
- Roottask starts
 - parses generic bootinfo
 - ELF-loads test client
 - starts test client

The Directory Structure

- /include
 - Global header files
 - Subdirectories
 - /l4 L4 systemcalls
 - /sdi Header for our system library
- /if
 - Global interface descriptions
- /lib/sdi
 - Our system library code
- /src
 - Custom application code

Next Week

- Tuesday : OS Interfaces
- Thursday: IDL4, Debugging on L4
- Homework
 - Change your group's password in the lab (R.149)
 - We will lock accounts with default passwords on Thursday
 - Get your build environment going
 - See the SDI Wiki at http://i30www.ira.uka.de/~sdi/wiki/
 - Create two threads in the roottask's address space
 - Let them send a few untyped words back and forth
 - Create an additional testclient-like binary
 - Run it in its own address space
 - Also available as assignment01.pdf