Systems Design and Implementation
/1.1 — L4 API Crash Course Part 1]

System Architecture Group, SS 2009
University of Karlsruhe

April 30, 2009 Jan Stoess

University of Karlsruhe

Microkernel System Calls

Kernel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSw t ch
Schedul e

Syst enCCl ock

Thr eadCont r ol
SpaceCont r ol

Pr ocessor Cont r ol
Menor yCont r ol

Address Spaces and Mapping

a Basic Operations

« Map

« Unmap

l e Grant

Recursive Address Spaces

Application

Application Application

Application
e /

\ /

AN N e
N

Driver

Initial AS o,

N
Physical Memory

© 2009 University of Karlsruhe, System
o Architecture Group

a Page Fault Handling

map msg

Page Fault Protocol

"PF" msg
MR,=access type
MR, = faulting address
MR, = IP of faulting instruction

—

—

map msg

Contains Mapltem

© 2009 University of Karlsruhe, System
o Architecture Group

Page Fault Message

= Short message
= No further page faults
= Applications can synthesize page fault messages

= Not a problem - the application could do it anyway by
directly accessing the memory it wishes to cause a fault on

© 2009 University of Karlsruhe, System
o Architecture Group

Mapping Questions
O

= How is the mapping to be sent specified?
= How is the mapping to be received specified?
= How do they combine? What is the result?

[") Fpage Data Type

= Fpage

base/ 1024 S(G) ~(4)

fpage size = 2°

= Specifies a region of the address space that is
= A power of 2 in size
= Aligned to its size
= Note: Smallest supported size is architecture specific

= |A-32 supports 4K (s = 12)

© 2009 University of Karlsruhe, System
Architecture Group

[") Fpage Data Type

= Complete Address Space

o= 1(6)

(4

= Nilpage

O

O

= See l4/types.h

11

Recelving a mapping

"PF" msg
MR, = 0x00002002
MR, = OXXXXXXXXX

—

0x3000

x2000 BR, Rcv Fpage (window)

Ox8 126 | 04

© 2009 University of Karlsruhe, System

o Architecture Group

[") Buffer Register 0

Rcv Window (fpage) 000s

= BR, Specifies
= Willingness to receive Stringltems
nS=1
= Target sting locations in other BRs
= The receive window for mappings

= Region of the address space to accept mappings
= Nilpage: No mappings accepted

13

Normal Page Fault

"PF" msg
MR, = 0x00002002
MR, = OXXXXXXXXX

—

0x2000
Application
BR, Rcv Fpage (window)

Set by kernel to complete
address space

0 L) | O

© 2009 University of Karlsruhe, System
o Architecture Group

Mapltem/Grantltem Data Type

= Permissions
= I read
= W: write
= X. execute

= Note: Not all architectures support all combinations
= I1A-32: rx and rwx are supported by hardware

= g: mapping (0) or granting (1)

© 2009 University of Karlsruhe, System
itecture

15

Application

Receive window > mapping size

Mapltem

0x40 s=12(0rwx

0x8 O 1000

0x2000

0x10000

map msg

Sndbase determines
location in receive
window

16

aSending a mapping

Mapltem

© 2009 University of Karlsruhe, System
o Architecture Group

[-) Mappings and Window Sizes

= See reference manual for precise definition of what
happens for mismatched mappings and window sizes

= Advice:
= Simply use 4K pages for all mappings

A Map Message

= For page faults, the kernel expects the following map
message response

= No untyped words
= 1 Mapltem

19

[7) Explicit Mapping Receive

= BR, determines whether a receive/wait IPC can
Include strings or a mapping

= Set it prior to invoking IPC receive/walt

L4 Acceptor t L4 UntypedWrdsAccept or
L4 Acceptor t L4 StringltensAcceptor
L4 Acceptor t L4 MapGantltens (

L4 Fpage_ t RcvW ndow

)
voi d L4 Accept (L4 Acceptor t a)

© 2009 University of Karlsruhe, System
Architecture Group

20

© 2009 University of Karlsrul
Arcl

he, Systel
hitecture Grou|

Unmap

= Revoke mappings

= That were derived from
mappings in the current address
space

= Revoke access rights
= To existing mappings
= Example: RW -> RO

= The mappings to revoke are
specified by fpages in MRs

21

Unnmap Arguments

= [specifies whether fpages are
flushed from the current address
space in addition to revoking
derived mapping

= Kk specifies the highest number
MR that contains an Fpage to
unmap

m Fpages
= Fpages specify the regions in the
local address space

= /wx. the access rights to revoke

22

© 2009 University of Karlsruhe, System
o Architecture Group

Unmap Results

= RWX

= Reference (r), Dirty (w), and Executed (x) bits

= Bit returned set if corresponding access has occurred on any
derived mapping

= Reset as a result of the unmap operation
= Supported combinations are arch-dependent

© 2009 University of Karlsruhe, System 23
o Architecture Group

) Unmap

= Derived mappings in other address spaces
L4 Fpage t L4 UnmapFpage (L4 Fpage t f)

= Derived mappings in own address space as well
L4 Fpage t L4 Flush (L4 _Fpage t f)

void L4 UnmapFpages (L4 Word t n,

L4 Fpage t * fpages)
void L4 FlushFpages (L4 Word t n,

L4 Fpage t * fpages)

L4 Bool t L4 WasWitten (L4 Fpage t f)
L4 Bool t L4 WasReferenced (L4 Fpage t f)
L4 Bool t L4 WaseXecuted (L4 Fpage t f)

© 2009 University of Karlsruhe, System 24
Architecture Group

[") SpaceCont r ol

= Used to control the layout of newly created address
spaces
= Specifically
= Location of Kernel Info Page - fpage
= Location of UTCB region - fpage

s Redirector

= All IPC from threads within the address space is
redirected to a controlling thread

= Used to enforce security policy

= Note: Should not need to change what is already
done in the example code

25

Microkernel System Calls

Kernel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSw t ch
Schedul e

Syst enCCl ock

Thr eadCont r ol
SpaceCont r ol

Pr ocessor Cont r ol
Menor yCont r ol

D Pr ocessor Cont r ol

= Privileged system call

= Sets processor frequency, voltage and other
processor specific stuff

= ... Once implemented

27

) Menor yCont r ol

= Privileged system call

= Set cache architecture attributes on pages in memory
= Machine specific
= Not implemented for 1A-32
= Obsoleted by MapControl proposal

Microkernel System Calls

Ker nel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSwi t ch
Schedul e

Syst enCCl ock

Thr eadCont r ol
SpaceCont r ol
Processor Cont r ol
Menor yCont r ol

That's it.

29

d Protocols

s Page Fault
= [hread Start
n Interrupt

= Exception
= Sigma0

30

[_) Exception Protocol

= Exception IPC to exception handler thread
= On behalf of faulting thread

= The IPC contains

= IP of where to resume the thread after handling the
exception

= EXception type
= Other machine specific stuff

= The exception handler can respond with an IPC
specifying a new IP and other state to recover
from the exception
= See the 1A-32 appendix in the manual

31

[7) Sigmao

= Owns all physical memory in the machine
= Except that reserved for kernel use

= Mapped idempotently
« One-to-one

= Various memory classes
= Conventional
= Shared (VGA screen memory, ...)
= Architecture-specific (ACPI tables, ...)
= Boot-loader specific (modules, initial servers, ...)

= Maps each page once (and once only)
= Sigma0 protocol

= Request specific page

= Request any page

= Request larger regions

© 2009 University of Karlsruhe, System
Architecture Group

32

[_) Sigma0 — Root Pager

= Pager of initial threads (root task)
= Also implements page fault protocol
= Responds with idempotent mapping

Root Task

AN \

N\ N\

Physical Memory

33

d Sigma0 Request Message

= Requested attributes

= Architecture specific
« Use default =0

= Requested Fpage
s Bl1=-1
= Request a specific region of physical memory

[*) Some Sigma0 Helpers

= Found in [4/sigma0.h

= Request a specific page
L4 Fpage t L4 Sigma0O_Get Page (L4 Threadld t sO,
L4 Fpage t f,
L4 Fpage t RcvW ndow)

= Request some page
L4 Fpage t L4 Sigma0 Get Any (L4 Threadld t sO,
L4 Word t s,
L4 Fpage t RcvW ndow)

© 2009 University of Karlsruhe, System
Architecture Group

35

[_) Example Code

s Kernel

= L4Ka::Pistachio 0.4
la32-kernel

= Supporting applications
= Kickstart
= Sigma0
= Custom applications
= Roottask
= Test client

testclient

roottask

sigma0

ia32-kernel

36

[=) Custom Applications

= Roottask
= Locator
= LOog server
= Pager
= Test Client
= Locates log server

= Sends a message to the log
server

© 2009 University of Karlsruhe, System
Architecture Group

testclient

roottask

sigma0

ia32-kernel

37

[_) The Boot Sequence

= BIOS loads the boot block
= Small loader, GRUB stagel
= Only 512 bytes available

= Stagel starts
= Searches disks for stage2
= Loads GRUB stage2

0x7c00

stagel

38

[_) The Boot Sequence

x Stage2

= more complex part of GRUB
=« Understands various file systems
= Supports network
= Supports a menu

= 60kb — 80kb In size
0x80000 stage?

= Supports ELF loading ;
= Searches for menu.lst

stage2
0x8000

0x7c00 |stagel

[_) The Boot Sequence)

= StageZ2 continues

© 2009 University of Karlsruhe, System

Architecture Group

ELF-loads kickstart

Appends additional modules after
Kickstart

Generates multiboot info

Passes pointer to multiboot info to
Kickstart

Hands over execution to kickstart

0x800000

0x80000

0x8000
0x7c00

0x1000

test

root

sigma0

ia32-kernel

kickstart

stage2

*

stage2

stagel

multiboot

40

[_) The Boot Sequence
. sigma0
= Kickstart starts pEr—
= Converts multiboot info into generic 0x800000 L
bootinfo
= ELF-loads
= L4 kernel 0x 300000 .
= Sigma 0
L4 kernel
=« Roottask 0x100000
] . 0x80000
= Configures L4 via Kernel
Configuration Page —
0x20000
= Hands over control to kernel
0x1000 bootinfo

© 2009 University of Karlsruhe, System 41
Architecture Group

[_) The Boot Sequence)

s L4 starts

= allocates some upper memory for
Internal data structures

= starts sigmaO and roottask
= Roottask starts

= parses generic bootinfo

= ELF-loads test client

= starts test client

© 2009 University of Karlsruhe, System
Architecture Group

0x600000

0x300000

0x100000

0x20000

0x1000

test

Test client

Roottask

L4 kernel

sigma0

bootinfo

42

[_) The Directory Structure

/include
= Global header files

= Subdirectories
= /14 - L4 systemcalls
= /sdi - Header for our system library

/if

= Global interface descriptions
/lib/sdi

= Our system library code
/src

= Custom application code

43

[2) Next Week

= Tuesday : OS Interfaces
= Thursday: IDL4, Debugging on L4
= Homework

= Change your group’s password in the lab (R.149)
= We will lock accounts with default passwords on Thursday
= Get your build environment going
= See the SDI Wiki at http://i30www.ira.uka.de/~sdi/wiki/
= Create two threads in the roottask’s address space
= Let them send a few untyped words back and forth
= Create an additional testclient-like binary
= Run it in its own address space

= Also available as assignmentO1.pdf

