
Systems Design and Implementation
II.1 – L4 API Crash Course Part I

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2007

University of Karlsruhe

22 April 2009

Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)
Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

Based on slides by Jochen Liedtke and Kevin Elphinstone

L4 X.2 API Reference Manual

 Available from http://l4ka.org/
 Latest version always in the news box on the right

 Defines the kernel API + ABI
 System call semantics and parameters
 C++ style API definition

2© 2009 University of Karlsruhe, System
Architecture Group

y
 Data types
 Header file to include
 Generic programming interface
 Convenience programming interface
 Support functions

 Binary interface for supported architectures
 Does not describe how to use the kernel

Fundamental L4 Concepts

 Two abstractions
 Address Spaces

 Units of protection
 Resource management

 Threads
 Execution entities

3© 2009 University of Karlsruhe, System
Architecture Group

 Carry unique identifiers

 Two mechanisms
 Communication – IPC

 Synchronous, between threads
 Identification: thread ids

 Rights delegation – Mapping
 Address space construction via IPC
 FlexPages

 Architecture independent page abstraction
 Describe range of virtual address space

Fundamental L4 Concepts

 User-level pagers
 Kernel turns page faults into IPC message
 Establish mapping in reply

 User-level device drivers
 Device drivers run as unprivileged user threads
 Hardware interrupts are delivered via IPC

4© 2009 University of Karlsruhe, System
Architecture Group

 Hardware interrupts are delivered via IPC
 Unless used by the kernel internally, e.g. timer interrupt

 Acknowledge interrupt in reply
 User-level exception handlers

 Exceptions are delivered via IPC
 Unless used by the kernel internally, e.g. FPU virtualization

 Fix exception cause or modify faulting thread in reply
 Goal: No policy in kernel

 Makes kernel universal

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

5© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

Initial Servers

 Created by kernel at boot time
 Sigma0

 Initial address space
 Root of all mappings
 “Owns” all physical memory

 Root task

6© 2009 University of Karlsruhe, System
Architecture Group

 First freely usable user thread
 Address space backed by sigma0

 Can perform privileged system calls
 ThreadControl
 SpaceControl
 ProcessorControl
 MemoryControl

Kernel Interface Page

 Kernel memory object in the address space of a task
 Placed on address space creation

 Location dictated by SpaceControl system call

 No page faults on access

 Contains information about the kernel and the machine

7© 2009 University of Karlsruhe, System
Architecture Group

 Contains information about the kernel and the machine
 API version, kernel features
 Kernel system call entry points
 Supported page sizes
 Format and number of thread IDs
 Memory layout – Physical memory, virtual address space
 Processors – core speed, bus speed
 ...

KernelInterface

 Locates the kernel interface page
 Special system call

 Illegal instruction on x86 – why?
 Doesn’t use KIP for calling
 Slow system call (expensive)

8© 2009 University of Karlsruhe, System
Architecture Group

void * L4_KernelInterface (L4_Word_t *ApiVersion,
L4_Word_t *ApiFlags,
L4_Word_t *KernelId)

 Returns
 Pointer to KIP
 API version and flags – revision, word width, endianess
 Kernel Id – identifies implementation

 Code, data

CodeThread
Execution
Path

Threads

9© 2009 University of Karlsruhe, System
Architecture Group

Data

Traditional Thread

 Abstraction for unit of execution
 Registers

 Current variables
 Instruction Pointer

 Next instruction to execute
Stack

CodeThread
Execution
Path

10© 2009 University of Karlsruhe, System
Architecture Group

 Stack
 Execution history of yet unreturned

procedures
 One stack frame per procedure

invocation

Data

Stack

L4 Thread = Thread + …

 A set of (virtual) registers and – see next slide
 A priority and a timeslice
 A unique thread identifier
 An associated address space

11© 2009 University of Karlsruhe, System
Architecture Group

 L4 provides a fixed number of threads in the entire
system
 Root task responsible for creating/deleting threads

and assigning them to address spaces
 System, User and “Hardware” threads

Virtual Registers

 Per-thread “register set” defined by the microkernel

 Map to real machine registers or memory locations
 Mapping depends on architecture and ABI

 IA-32: 1-3 virtual registers in GPRs, others in memory
 IA-64: 8 in GPRs

12© 2009 University of Karlsruhe, System
Architecture Group

 Three basic types
 Thread Control Registers (TCRs)

 Share information about threads between kernel and user level

 Message Registers (MRs)
 Contain the message (or description of it, e.g. region of memory)

 Buffer Registers (BRs)
 Specify where complex message parts are received

Thread Control Blocks (TCBs)

 State of a thread is stored in its thread control block
 Security considerations

 Some state can only be modified via a controlled interface
(system calls)
e.g., address space associated with the thread

 Other state can be freely accessible by user-level

13© 2009 University of Karlsruhe, System
Architecture Group

 Other state can be freely accessible by user level
applications without compromising the system
e.g., pager thread associated with the thread

 Put uncritical state in a user-level TCB (UTCB)
 more efficient access

Thread Control Registers

ErrorCode (ro, IPC)

IntendedReceiver (ro, IPC)

Virtual/ActualSender (rw, IPC)

ThreadWord0

ThreadWord1
 Stored in UTCB

 Pinned memory, no page faults on
access

 UTCB area dictated at address
space creation using SpaceControl

 UTCBs assigned via ThreadControl

14© 2009 University of Karlsruhe, System
Architecture Group

MyGlobalId (ro, Threads & IPC)

ProcessorNo (ro)

UserDefinedHandle (rw, Threads)

Pager (rw, VM)

ExceptionHandler (rw)

Preempt (rw)

XferTimeouts (rw, IPC)

Cop (wo)~
 Never access them directly

 Only modified via provided
programming interface

 Most TCRs are set/read in the context
of other actions (e.g. IPC)

Thread No (18) Version (14)

Interrupt No (18) 1 (14)

Global Thread Id

Global Interrupt Id

Thread Identifiers

 Global Identifiers
 Identify a thread uniquely within

the system
 No policy – freely assignable

 Local Identifiers

15© 2009 University of Karlsruhe, System
Architecture Group

Local Id/64 (26) 000000

Local Thread Id

 Identify a thread within an
address space
 Unique and useable only within an

address space
 Typically the address of the

thread’s UTCB
 Can translate one to another

 Special Identifiers
 nilthread – no thread
 anythread – wildcard

0 (32)

nilthread

-1 (32)

anythread

ThreadControl

 Create, destroy, or modify threads

 Determines a thread’s
 Global thread identifier
 Address space it executes in
 Scheduler (thread permitted to control scheduling parameters)

16© 2009 University of Karlsruhe, System
Architecture Group

 Pager (thread that receives page fault messages)
 Location of the UTCB within the address space’s allotted UTCB

area (See SpaceControl later)

 Threads can be created active or inactive
 Inactive

 Create and manipulate a new address space
 Allocate a new thread to an existing address space

ThreadControl

L4_Word_t L4_ThreadControl (L4_ThreadId_t dest,
L4_ThreadId_t SpaceSpecifier,
L4_ThreadId_t Scheduler,
L4_ThreadId_t Pager,
void * UtcbLocation)

 SpaceSpecifier != dest

17© 2009 University of Karlsruhe, System
Architecture Group

Creates thread dest in the address space of thread SpaceSpecifier
Note: implicit naming of address spaces

 SpaceSpecifier == dest
Creates thread dest in its own (new) address space

 SpaceSpecifier == nilthread
Deletes existing thread dest

 pager == nilthread
Inactive, otherwise active

Steps in Creating a New “Task”

 Task = Address Space + Thread
 A task has

 Thread state
 Identifier, IP, SP, pager, scheduler, UTCB location

 Address space state

18© 2009 University of Karlsruhe, System
Architecture Group

 Address space state
 UTCB area, kernel interface page area, redirector

 Code, data, and stack mapped to address space

Steps in Creating a New “Task”

1. Create an inactive thread in a new address space.

L4_ThreadControl (
task, /* new tid */
task, /* new space identifier */
me /* scheduler of new thread */

19© 2009 University of Karlsruhe, System
Architecture Group

me, /* scheduler of new thread */
L4_nilthread, /* pager = nil, inactive */
(void *) -1 /* NOP Utcb location */

);

Steps in Creating a New “Task”

2. Set location of KIP and UTCB area in the new address space.

L4_SpaceControl (
task,
0, /* control (ignore) */
kip_area,
utcb area,

KIP

UTCB

20© 2009 University of Karlsruhe, System
Architecture Group

_ ,
L4_anythread, /* redirector */
&control /* output (ignore) */

);

 kip_area and utcb_area are flexpage descriptors
 redirector = anythread

 Threads in the space can talk to all other threads
 control is an architecture-specific parameter, ignore for now

Steps in Creating a New “Task”

3. Specify the UTCB location and assign a pager to the new thread
to activate it.

L4_ThreadControl (
task, task, me,

KIP

UTCB

21© 2009 University of Karlsruhe, System
Architecture Group

pager, /* new pager */
(void *) utcb_base /* utcb location */

);

 The thread will wait for an IPC from the pager.
 The message must contain the IP and SP of the new thread.

Steps in Creating a New “Task”

4. Send an IPC to the new thread with the IP and SP in the first
two words of the message.

22© 2009 University of Karlsruhe, System
Architecture Group

 The thread will start executing at the received IP with the SP
set as received.

Adding extra inactive threads to a
task

 Use ThreadControl to assign new inactive threads to an existing
address space

L4_ThreadControl (
newtid, /* new thread id */

23© 2009 University of Karlsruhe, System
Architecture Group

ExistingId, /* address space identifier */
me, /* scheduler of new thread */
L4_nilthread, /* pager = nil, inactive */
(void *) -1 /* NOP Utcb location */

);

 Note: Can also add active threads

 Manipulating threads within an AS
 IP, SP
 User-defined handle
 Pager

 Suspend/resume (i.e. activate/deactivate)
 Convert thread IDs – local global

ExchangeRegisters

24© 2009 University of Karlsruhe, System
Architecture Group

g

L4_ThreadId_t L4_ExchangeRegisters (
L4_ThreadId_t dest,
L4_Word_t control,
L4_Word_t sp, L4_Word_t ip,
L4_Word_t flags, L4_Word_t UserDefHandle,
L4_ThreadId_t pager,
L4_Word_t *old_control,
L4_Word_t *old_sp, L4_Word_t *old_ip,
L4_Word_t *old_flags, L4_Word_t *old_UserDefHandle,
L4_ThreadId_t *old_pager);

Thread management

 The microkernel only preserves the user-
level IP and SP
 ... and registers if preempted

 Everything else is managed by
user-level applications

Code

25© 2009 University of Karlsruhe, System
Architecture Group

user level applications
This means by you!
 User stack area

 Allocation, size, deallocation
 Thread identifiers

 Allocation, deallocation
 Entry point – initial IP/SP values
 Thread exit

Data

Stack of t1

Stack of t2

Stack corruption

 Common beginner’s problem
 Really weird failure scenarios

 First printf works, second fails
 Pointer messed up after calling foo()
 Random exception when returning

Code

26© 2009 University of Karlsruhe, System
Architecture Group

 ...
 Hard to diagnose/debug

 Corruption of completely unrelated
code and/or data

 Adding debug code makes problem
go away

 Works fine when single-stepping

DataStack

Communication

(Ignoring Address Spaces)

IPC Registers

 Message Registers
 64 “registers”
 Form a message
 Used to transfer

 Buffer Registers
 34 “registers”
 Specify where typed

items are received

28© 2009 University of Karlsruhe, System
Architecture Group

typed items and
untyped words
 Typed items

 StringItem
 MapItem
 GrantItem

 Typed items
 StringItem
 MapItem
 GrantItem

if any are permitted
to be in the message

Message Register Only IPC

MR13
...

MR63

MR12
MR11

MR13
...

MR63

MR12
MR11

Thread A Thread B

Message
transferred
from one
thread’s MRs

29© 2009 University of Karlsruhe, System
Architecture Group

MR9
MR10
MR11

MR8

MR5
MR6
MR7

MR4

MR1
MR2
MR3

MR0

MR9
MR10
MR11

MR8

MR5
MR6
MR7

MR4

MR1
MR2
MR3

MR0

to the other
thread’s MRs

Guaranteed to
to not cause
page faults

Overview of IPC operations

 L4_Ipc system call performs all IPC operations
 Arguments determine actual operation
 Helper functions for frequent operations (see <l4/ipc.h>)

 L4_Send
 Send a message to a thread (blocking)

30© 2009 University of Karlsruhe, System
Architecture Group

 L4_Receive
 Receive a message from a specified thread

 L4_Wait
 Receive a message from any sender

 L4_ReplyWait
 Send a response to a thread and wait for the next message

 L4_Call
 Send a message to a particular thread and wait for it to

respond (usual RPC operation)

MR0

 Message content specified by sender’s MR0

label(16) flags(4) t(6) u(6)

31© 2009 University of Karlsruhe, System
Architecture Group

 u - number of untyped words
 t - number of words holding typed items
 label - free for the sender to use as part of the message

(usually a “label” or “tag”)
 flags - specifies option for the IPC operation

 E.g., propagated message
 Not used for SDI project (set = 0)

Example: Sending 4 untyped words

L4_Msg_t msg;
L4_MsgTag_t tag;

L4_MsgClear(&msg);
L4_MsgAppendWord(&msg, word1);
L4_MsgAppendWord(&msg, word2);
L4_MsgAppendWord(&msg, word3);

32© 2009 University of Karlsruhe, System
Architecture Group

word 1

MR5

label 0 0 4

word 2

word 3

word 4

L4_MsgAppendWord(&msg, word4);
L4_MsgLoad(&msg);

tag = L4_Send(tid);

IPC result MR0

 Message result in receiver’s MR0

 MsgTag [MR0]
 u - untyped words received (u = 0, send only IPC)
 t - typed words received (t = 0, send only IPC)
 Flags EXrp

 E: error occurred (send or receive), see ErrorCode TCR for details

33© 2009 University of Karlsruhe, System
Architecture Group

 E: error occurred (send or receive), see ErrorCode TCR for details
 X: received cross processor IPC (ignore)
 r: received redirected IPC (ignore)
 p: received propagated IPC (ignore)

label(48) flags(4) t(6) u(6)

The StringItem Type

 Specifies base address and length
 Uninterpreted block of bytes

 Used to send a message in place
 Avoid marshalling costs

 Example sends a single simple string

Note: The typed
items always follow
the untyped words

C: specifies whether
more typed items
follow (redundant

34© 2009 University of Karlsruhe, System
Architecture Group

+ two untyped words .. with t in MR0)

In-memory message

word 1

MR5

word 2

string ptr

String size 0 0 000C

label 0 2 2

Receiving Strings

 Buffer Registers used to specify area and size of memory region
to receive strings

 Simple example
 A single receive buffer

35© 2009 University of Karlsruhe, System
Architecture Group

Rcv Window

buff ptr

buff size 0 0 000C

1

BR2

BR1

BR0

IPC Timeouts

 Used to bound the duration of IPC

 Two timeout types

 Receive/Send Timeouts
 Used to control how long the IPC syscall will block prior to

36© 2009 University of Karlsruhe, System
Architecture Group

 The send phase beginning (SndTimeout)
 The receive phase beginning (RcvTimeout)

 XferTimeouts (Snd/Rcv)
 Used to limit how long the IPC transfer takes

 Only used for StringItems (Why?)
 Limit time waiting for sender/receiver pagefaults on memory

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

t
wait for send send message

(xfer) wait for reply receive message
(xfer)

Timeouts

37© 2009 University of Karlsruhe, System
Architecture Group

 snd to
 min (xfer to snd, xfer to rcv)
 rcv to
 min (xfer to rcv, xfer to snd)

(xfer) (xfer)

 Specifying timeouts
 Mantissa/exponent representation

 Relative timeout values
0

Timeouts

38© 2009 University of Karlsruhe, System
Architecture Group

 0
 infinite
 1µs … 610 h (log) 2em µs

0(16)

0(10)0 1(5)

m(10)0 e(5)

Timeout Value Range
e m = 1 m = 1023

0 1.00E-06 1.02E-03

1 2.00E-06 2.05E-03

2 4.00E-06 4.09E-03

3 8.00E-06 8.18E-03

4 1.60E-05 1.64E-02

5 3.20E-05 3.27E-02

e m = 1 m = 1023

16 6.55E-02 6.70E+01

17 1.31E-01 1.34E+02

18 2.62E-01 2.68E+02

19 5.24E-01 5.36E+02

20 1.05E+00 1.07E+03

21 2.10E+00 2.15E+03

39© 2009 University of Karlsruhe, System
Architecture Group

6 6.40E-05 6.55E-02

7 1.28E-04 1.31E-01

8 2.56E-04 2.62E-01

9 5.12E-04 5.24E-01

10 1.02E-03 1.05E+00

11 2.05E-03 2.10E+00

12 4.10E-03 4.19E+00

13 8.19E-03 8.38E+00

14 1.64E-02 1.68E+01

15 3.28E-02 3.35E+01

22 4.19E+00 4.29E+03

23 8.39E+00 8.58E+03

24 1.68E+01 1.72E+04

25 3.36E+01 3.43E+04

26 6.71E+01 6.87E+04

27 1.34E+02 1.37E+05

28 2.68E+02 2.75E+05

29 5.37E+02 5.49E+05

30 1.07E+03 1.10E+06

31 2.15E+03 2.20E+06

Timeouts

 Specifying timeouts
 Mantissa/exponent representation

 Relative timeout values
0

40© 2009 University of Karlsruhe, System
Architecture Group

clock + 2(e+10)clock + 2(e+10) m(10) 0

0(16)

0(10)0 1(5)

m(10)0 e(5)

m(10)1 e(4) c

clock m(10) 0=

e10

 0
 infinite
 1µs … 610 h (log) 2em µs

 Absolute timeout values

IPC system call

 to from
 FromSpecifier
 Timeouts

MR

41© 2009 University of Karlsruhe, System
Architecture Group

 MR0

IPC system call

 Receive
from dest to from

 FromSpecifier
 Timeouts

MR

nilthread

dest

42© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

IPC system call

 to from
 FromSpecifier
 Timeouts

MR

 Send dest
nilthread

43© 2009 University of Karlsruhe, System
Architecture Group

 MR0

me

dest

 to from
 FromSpecifier
 Timeouts

MR

nilthread

anythread

IPC system call

 Wait
Receive from anyone

44© 2009 University of Karlsruhe, System
Architecture Group

 MR0

me

IPC system call

 Call
 to from
 FromSpecifier
 Timeouts

MR

dest

dest

45© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

IPC system call

 ReplyWait

next

 to from
 FromSpecifier
 Timeouts

MR

dest

anythread

46© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

 Interrupts: messages from
“hardware” threads

 Acknowledge hardware interrupt
via replying to interrupt message

Driver

Interrupts

intr IPC

47© 2009 University of Karlsruhe, System
Architecture Group

INTR

ACK

The interrupt message is
sent to the hardware
thread’s “pager”

Kernel

IRQ thread

Device
ack IPC

Interrupt Association

 Association is done via the privileged thread (root task) using
ThreadControl.

 To associate a thread to an interrupt
 Set the pager of the hardware thread ID to the thread ID of

48© 2009 University of Karlsruhe, System
Architecture Group

the interrupt handler
 To disassociate the thread from an interrupt

 Set the pager of the hardware thread ID to the hardware
thread ID itself

Sample Code
L4_ThreadId_t tid;
int res;

tid.global.X.thread_no = irq;
tid.global.X.version = 1;

res = L4_ThreadControl(tid, /* irq thread id */
tid,

49© 2009 University of Karlsruhe, System
Architecture Group

L4_nilthread,
driver_tid, /* pager, the

thread we
want the irq
to be associated
with */

(void*) -1);
if (res != 1) {

printf("BADNESS ON THREAD CONTROL\n");
}

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

50© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

ThreadSwitch

 Yields the current thread’s remaining time slice, or donates
remaining time slice to another thread
 You should not need to do this, but…

 Can use to reduce impact of busy-wait
 Ensure progress of resource (lock) holder

51© 2009 University of Karlsruhe, System
Architecture Group

 L4_ThreadSwitch (thread);

 Thread = nilthread: Yield the processor
 Thread = threadID: Donate time slice
 See <l4/schedule.h> for derived functions

Schedule

 L4 implements a mostly multi-level round robin scheduler
 Static priorities
 Time slice donation on IPC

 Schedule is used
T h h d li t f th d

52© 2009 University of Karlsruhe, System
Architecture Group

 To change scheduling parameters of threads
 Priority
 Time slice
 Total quantum (don’t use, set to infinity)

 For controlling preemption parameters
 Not implemented

 Set the processor the thread should run on
 Not needed, you have only one

Schedule

 Only a thread’s scheduler can invoke the system call
 The scheduler is set using thread control

 Typically the root task will remain the scheduler

L4_Schedule (L4_ThreadId_t dest,
L4 Word t TimeControl

53© 2009 University of Karlsruhe, System
Architecture Group

L4_Word_t TimeControl,
L4_Word_t ProcessorControl,
L4_Word_t prio,
L4_Word_t PreemptionControl,
L4_Word_t * old_TimeControl)

 Derived functions in <l4/schedule.h>

SystemClock

 Returns the current system clock
 64-bit number that counts µ-seconds since boot-up

 Not always a real system call (no kernel entry)
 i.e., may use user-accessible processor cycle counter

54© 2009 University of Karlsruhe, System
Architecture Group

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

55© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

System Design and
Implementation

L4 API Crash Course
Part II

... next week

Next week

 Change your group password

 Get your build environment going
 See Wiki (http://i30www.ira.uka.de/teaching/courses/sdi)
 Room 149 is accessible till 6pm (often longer)

57© 2009 University of Karlsruhe, System
Architecture Group

p (g)
 Wiki User: student Password: sdi2009

Example Code

 Binaries
 KickStart – 3rd stage loader
 Kernel
 Sigma0

 Root Task
N

Test
Client

58© 2009 University of Karlsruhe, System
Architecture Group

 Name server
 Log Server
 Pager
 Starts the test task

 Test Task
 Uses name server to locate

log server
 Prints message to the log L4 Micro kernel

Name
Server

Simple
Pager

Log
Server

Sigma0

The Boot Sequence

 BIOS loads the boot block – GRUB stage1
 Stage1 is a simple loader that fits into 512 bytes
 Responsible for loading stage2

59© 2009 University of Karlsruhe, System
Architecture Group

Stage 10x7c00

Phys. Mem

The Boot Sequence

 Stage 2 is loaded by stage 1
 Stage 2 is a more complex loader that

 Speaks various file system formats
 Supports loading via network
 Supports a menu providing a choice of load

configurations – menu.lst

60© 2009 University of Karlsruhe, System
Architecture Group

configurations menu.lst
 Approx 60Kb - 80Kb in size + stack and heap
 Supports ELF loading

Stage 10x7c00

Stage 2
0x8000

Stage 2

0x80000

Phys. Mem

The Boot Sequence

 KickStart is ELF loaded at its linked address
(8MB)

 GRUB thinks this is the kernel
 Modules are appended after the kernel

 Modules are loaded beginning on page
boundaries

0x800000 KickStart

Test client

Root task

l4kernel

sigma0

61© 2009 University of Karlsruhe, System
Architecture Group

Stage 2

boundaries
 A multiboot header is generated based on the

modules loaded
 KickStart is started and passed a pointer the

multiboot header

Stage 10x7c00

0x8000

Stage 20x80000

Phys. Mem

 KickStart copies the multiboot info
 It ELF loads

 The L4kernel (at 0x100000),
 Sigma0 (at 0x20000)
 Root task (at 0x200000).

root_task

test_client

l4kernel

0x800000 KickStart

Root task0x200000

sigma0

The Boot Sequence

62© 2009 University of Karlsruhe, System
Architecture Group

l4kernel

Root task (at 0x200000).
 It configures the kernel
 It finally starts the L4 kernel

Stage 10x7c00

Stage 2
0x8000

Stage 20x80000

Phys. Mem

0x200000
0x100000

sigma00x20000

The Boot Sequence

 L4 starts.
 The kernel grabs some upper memory for page

tables etc.
 L4 starts sigma0 and then starts the root task.
 Root task loads and starts test_client

kmem

test_client

0x300000 test_client

0x200000 Root task

63© 2009 University of Karlsruhe, System
Architecture Group

l4kernel

Phys. Mem

0x100000

sigma00x20000

0x200000

