
Systems Design and Implementation
I.7 –Memory Management

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

June 9, 2009

Overview

 Loading a program into memory
 Case Studies

 4.3 BSD Virtual Memory on VAX-11
SVR4 VM Architecture

2© 2009 University of Karlsruhe, System
Architecture Group

 SVR4 VM Architecture
 Sawmill Dataspaces

The Road to a Running Program

Source
Code

Compiler/
Assembler

Object
File

h
Dynamic

3© 2009 University of Karlsruhe, System
Architecture Group

Other
Object
Files

Linker

Loader
Executable

File

System
Libraries

Runnable
In-memory

Image

How do we get there?

 What do we load?
 Where do we load it?

4© 2009 University of Karlsruhe, System
Architecture Group

Runnable
In-memory

Image

What do we load ?

 What we load is partially defined by ELF.
 Executable and Linkable Format
 Four major parts in ELF file

 ELF header – roadmap
 Program headers describe segments directly

ELF header

Prog. Hdrs

.text

.rodata

.data

5© 2009 University of Karlsruhe, System
Architecture Group

g g y
related to program loading

 Section headers describe contents of the file
 The data itself

.eh_frame

.sbss

.bss

.comment

.note

Section Hdrs

An Example

Root Task (pager) Runnable Image

stack

Location defined
by convention in

VM system

6© 2009 University of Karlsruhe, System
Architecture Group

data

code

Location defined
by linker

Location defined
by linker

Dynamic
data

Location defined
by VM system

Load directly in physical memory?

Root task

Root Task

Test client

Test Client

Test client

 Pros
 Simple one-to-one virtual-to-physical

mapping
 Easy

7© 2009 University of Karlsruhe, System
Architecture Group

Testclient
module

y

 Cons
 Only one image per executable
 Must link at the correct address

 error prone and cumbersome
 Fragmentation is a problem
 Limited to physical memory size

Dynamic relocation

Root task

Root Task

Test client

Test Client 2

Test clientTest client
 Pros

 Simple one-to-one virtual-to-physical
mapping

8© 2009 University of Karlsruhe, System
Architecture Group

 Cons
 PIC code has performance penalty,

or relocation has a startup penalty
 Fragmentation is still a problem
 Still limited to physical memory size

Testclient
module

Address Translation / Segmentation

Root task

Root Task

Test client

Test Client 2

Test client

Test client
 Pros

 Multiple instances of same executable
 No a priori constructed load map
 No relocation or PIC

9© 2009 University of Karlsruhe, System
Architecture Group

 No relocation or PIC
 Can use more than available physical

memory

 Cons
 Need a translation table (base,limit)
 Fragmentation is still a problem (why?)
 Swapping is coarse grained

Testclient
module

Paged Virtual Memory

 Pros
 Multiple instances of same executable
 No a priori constructed load map
 No relocation or PIC
 Simple physical memory management
 Fragmentation dramatically reduced

Root Task Client 2

P1

P2

P1

P1

Client 1

10© 2009 University of Karlsruhe, System
Architecture Group

g y
(internal fragmentation only)

 Can use more than available physical
memory

 Cons
 Need a page-based translation table

and hardware
 This is not free

P2

P3

P3

P2

P3

P1

P1

P2

P3

P1

P2

P3

Case Study
4.3 BSD Virtual Memory on VAX-11

 Three major components
1. Core map

 Global frame table

2 Page tables

11© 2009 University of Karlsruhe, System
Architecture Group

2. Page tables
 Per Process translation table

3. Swap maps
 Per-process mapping table from virtual pages

space to disk blocks in swap space

Core Map

P l d ib d b f t i

Nonpaged

pool

paged

pool

Error

buffer

Physical Memory

12© 2009 University of Karlsruhe, System
Architecture Group

 Page pool described by an array of cmap entries
 Cmap entries contain

 Name <type, owner, virtual page number>
 Free list pointers <next, prev>
 For text pages <device, block number>
 Synchronization flags

Virtual Address Space

text data stack kernel

P0 ReservedS0P1
0Gb 1Gb 2Gb 3G 4Gb

13© 2009 University of Karlsruhe, System
Architecture Group

 Note: Data and stack areas are free to grow.
 The page tables describe the layout of the address

space.

Page States

 Each individual page may be in one of the following states.
 Resident
 Fill-on-demand

Fill f t t

text data stack kernel

14© 2009 University of Karlsruhe, System
Architecture Group

 Fill-from-text
 Zero-fill

 Swapped out

 State encoded in
page table entries

Process creation

 Allocate page tables representing the address space.
 Initialize all page table entries as either

text data stack kernel

15© 2009 University of Karlsruhe, System
Architecture Group

p g
 Fill-from-text
 Zero-fill

Page-fault handling

 Bounds error – access to inaccessible area.
 Easy to detect bounds error if

text data stack kernel

16© 2009 University of Karlsruhe, System
Architecture Group

 Easy to detect, bounds error if
 access to invalid page table entry, or
 access to non-existent page table entry.

 Except, automatic stack/heap growth.

Page fault handling

17© 2009 University of Karlsruhe, System
Architecture Group

Disadvantages

 No support for shared memory.
 No support for memory mapped files.
 No support for shared libraries.
 No copy-on-write support.

18© 2009 University of Karlsruhe, System
Architecture Group

 VAX-specific architecture
 VAX specific optimisations and structure
 Not portable

 Code not modular – difficult to add features.

Memory mapped files

19© 2009 University of Karlsruhe, System
Architecture Group

Memory mapped files

20© 2009 University of Karlsruhe, System
Architecture Group

 Can be used as a mechanism to implement:
 Shared memory
 Shared libraries

Case Study
SVR4 VM Architecture

 The basic concepts are
 Page – a frame of physical memory
 Address space

Segment a region in an address space

21© 2009 University of Karlsruhe, System
Architecture Group

 Segment – a region in an address space
 Hardware address translation – page tables
 Anonymous page – page with no

permanent storage

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Case Study
SVR4 VM Architecture

22© 2009 University of Karlsruhe, System
Architecture Group

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Physical memory

P l d ib d b f t i

Nonpaged

pool

paged

pool

Error

buffer

Physical Memory

23© 2009 University of Karlsruhe, System
Architecture Group

 Page pool described by an array of page entries
 Page entries contain

 Name <vnode, offset>
 List pointers <next, prev> etc.

 Free, I/O, hash chains, vnode

 HAT info to locate all mappings
 Synchronization flags

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Virtual Address Space

 Address spaces are composed of memory objects
called segments

text data stack kernellibrary
Shared
mem file

24© 2009 University of Karlsruhe, System
Architecture Group

called segments.
 Segments are a mapping between address space

regions and backing-store objects (files, swap
space, etc.)

 Operations on an address space
 Alloc, free, dup, map, unmap, setprot, checkprot.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Anonymous memory

 Memory that is private to a process.
 Not externally referable to, thus is “anonymous”

 Memory that has no permanent storage.
 Contents are lost when process exits

25© 2009 University of Karlsruhe, System
Architecture Group

 Paged by the kernel to swap space.
 Zero-filled.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Hardware Address Translation Layer

 Machine dependent – page tables.
 Operations

 alloc, free.
 memload, devload, unload.

26© 2009 University of Karlsruhe, System
Architecture Group

 pageunload, pagesync.
 Data in the HAT layer is redundant – it can be rebuilt

from the machine independent layer.
 Interface is machine-independent.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Segments

 Each region has a segment driver associated with it
 seg_vn – Mappings to regular files and anonymous object

(vnodes).
 seg_dev – Mappings to devices (frame buffers)

 Segment driver data

27© 2009 University of Karlsruhe, System
Architecture Group

 Segment driver data
 Current and max protection
 Mapping type (shared or private)
 Pointer to vnode
 Offset to beginning of file

 Segment drivers support the following operations
 create, dup, fault, setprot, checkprot, unmap, swap out,

sync.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Creating a Mapping

 User calls mmap(“file”)
 Mmap checks permissions, existence, etc.
 Mmap calls as_map() to associate the file with a

region in the address space.

28© 2009 University of Karlsruhe, System
Architecture Group

 as_map() allocates segment data for the segment,
and calls create() in the appropriate segment driver.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Creating a process

 Simplistically, involves creating mappings
(segments):
 Text -> appropriate region of executable file.
 Data -> anonymous memory

29© 2009 University of Karlsruhe, System
Architecture Group

 Stack -> anonymous memory
 Shared libraries are mmaped by the client itself as

needed.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Page fault handling outline

 Kernel calls as_fault().
 Is the fault within a segment?

 No -> bounds error!
 Yes -> call the fault() routine of the associated segment

driver

30© 2009 University of Karlsruhe, System
Architecture Group

driver.
 The segment driver locates/allocates the data associated

with the fault, and returns.

 All the complexity is in the segment specific drivers.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Advantages

 Design is modular
 Easier to extend, modify

 Highly portable
 Machine-dependent translation functionality in HAT layer

 Various types of memory sharing
R d h i l

31© 2009 University of Karlsruhe, System
Architecture Group

 Reduces physical memory usage
 Powerful Mmap

 Supports file access, shared memory, and shared libraries
 Flexibility through segment drivers

 Allows use of any object representable by vnode
e.g. NFS files.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Disadvantages

 Kernel consumes more memory
 State associated with all the abstractions

 More complex and slower algorithms
 Modularity restricts flexibility

 Framework may prevent machine-specific optimizations

32© 2009 University of Karlsruhe, System
Architecture Group

y p p p
 Copy-on-write not always faster than anticipatory copying

 However, in general the benefits of new functionality outweighs
the performance penalties.

Implementing a Multi-Server OS
with Dataspaces

Concept & Implementation

Traditional OSes:
 Kernel-based VM
 Application-control impossible
 Extensibility limited

Motivation

34© 2009 University of Karlsruhe, System
Architecture Group

 Extensibility limited

Multi-Server OSes:
 Kernel-based VM management primitives only
 VM management defined and implemented by user-

level pagers

Observation: Address Space

Consists of regions
 Different semantics
 Different types

Diff t

35© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeap

 Different resources

Task A

File

Involved Parties

 Tasks that need „data“
 Pager(s),
 Providers of „data“

36© 2009 University of Karlsruhe, System
Architecture Group

We want...

 Diversity
 Customizable
 Control over policies

 Dynamic extensibility

37© 2009 University of Karlsruhe, System
Architecture Group

y a s b y
 Code reuse
 Easy implementation of policies

 Performance
 Abstractions should not limit optimizations

The SawMill framework for VM diversity

 Framework to build and customize VMM
 Policy-free abstractions for VM management
 Decomposing of VMM into components

Dynamic configurability

38© 2009 University of Karlsruhe, System
Architecture Group

 Dynamic configurability

Microkernel Provides:

 Threads
 Address spaces
 IPC

Hierarchical VM system

39© 2009 University of Karlsruhe, System
Architecture Group

 Hierarchical VM system
 Mapping IPC
 Grant IPC

 User-level-pager
(per thread) map

grant

Microkernel Provides:

 Pagefault IPC
 Source tid
 Address

R/W

40© 2009 University of Karlsruhe, System
Architecture Group

map

grant

 R/W
 IP
 Mapping

The Dataspace Concept

 A dataspace is
 is memory concept
 denotes an abstract data container

represents unstructured data

41© 2009 University of Karlsruhe, System
Architecture Group

 represents unstructured data
 can be associated with files, memory, frame

buffers, …

Dataspace vs. Region

Dataspace
 Entity of a dataspace

manager
 No size associated

Region
 In client‘s address

space
 fpage

42© 2009 University of Karlsruhe, System
Architecture Group

 Logical object Has a size
 Makes part of a

dataspace accessible

 accessing dataspaces

Dataspaces Server and Client

Dataspace Manager A Dataspace Manager B

43© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeap

Region

File

Dataspace

Client

Region

Dataspace

Multiple Dataspace Managers

DSM 0
(i.e. files)

DSM 1
(i.e. mem...)

44© 2009 University of Karlsruhe, System
Architecture Group

Task D

Task A

Task C

Task B

Region Mapper (RM)

 One user level pager per task
 Customizable
 Efficient

45© 2009 University of Karlsruhe, System
Architecture Group

Task A
RM
Pager

Worker Threads

Attach
Scenario

Stack File

Dataspace Manager

1. open
2. return dataspace
3. attach dataspace

46© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Client

Worker

RM

2. return

3. attach

1. open

Involved Parties

 Client address space
 Pagefault handler (region mapper)
 Dataspace manager

47© 2009 University of Karlsruhe, System
Architecture Group

Pagefault

Stack File

Dataspace Manager

1. access memory
2. kernel pagefault IPC
3. identify region
4. request page mapping

5. memory „prepared“
6 i

48© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Client

Worker

RM

2. kernel pagefault IPC

4. map_page
y p p

6. mapping to rm
7. empty ipc to worker
8. resuming

1. memory access

6. mapping

Paging of the Region Mapper

External Region Mapper

RM External

49© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Task A

RM

Dataspace Operations

Dataspace manager
 open

(signature depends on type of
dataspace)

 close

Region mapper
 attach
 detach
 pagefault

50© 2009 University of Karlsruhe, System
Architecture Group

close
 map page
 share / transfer

Hierachical Dataspaces

 Stacking - build dataspaces with different semantics
out of simple dataspaces

 Specializing data container, allowing code reuse

51© 2009 University of Karlsruhe, System
Architecture Group

C-O-W Dataspace

C-O-W DS

read:
1. read
2. mapping from source

read olny
write:
1. write
2. pf
3. attach anonym backing
4. copy from source
5. return mapping

C-O-W DS

52© 2009 University of Karlsruhe, System
Architecture Group

Anonym. Mem DS Source DS

C-O-W DSM
Address Space Source

copy

Summary Dataspaces

Pros:
+ decomposing
+ distribution
+ simple user pager

possible

Cons:
- overhead (on pf.

crossing multiple
protection domains)

- large virtual address

53© 2009 University of Karlsruhe, System
Architecture Group

possible
+ easy sharing
+ flexible
+ customizable

g
space needed

- leads to confusion on
first contact

Further reading

 The Design and Implementation of the 4.3BSD UNIX
Operating System
S.J. Leffler, M.K. McKusick, M.J. Karels, J.S. Quarterman
Addison Wesley, May 1989

 SunOS Virtual Memory Implementation
J.P. Moran
Sun Microsystems, Inc.

54© 2009 University of Karlsruhe, System
Architecture Group

y ,

 The Sawmill Framework for Virtual Memory Diversity
M. Aron, L. Deller, K. Elphinstone, T. Jaeger, J. Liedtke, and Y. Park
Sixth Australasian Computer Systems Architecture Conference (ACSAC2001),
Bond University, Gold Coast, Queensland,
January 29 - February 2, 2001

Tasks and Virtual Memory in SDI OS

Test
Client

?

Test
Client 2

 Wanted:
 Paged virtual memory for tasks

 Multiple instances of the same binary

F t
? ?

Test
Client 3

55© 2009 University of Karlsruhe, System
Architecture Group

L4 Micro kernel

Name
Server

Simple
Pager

Log
Server

Sigma0

GRUB
Fileserver

 Features
 Create new task from executable file
 Command line support?
 Destroy tasks
 More?

 What else do we need?

PrivSC
Server

SDI OS

 We will implement page-based virtual
memory

 What are the implementation issues???

56© 2009 University of Karlsruhe, System
Architecture Group

 What are the implementation issues???

Bits and Pieces

 Frame Table – maintains usable memory
 What info needs to be in there?
 Initialize based on available memory

 Where does the memory come from?
 Anonymous memory server

Page Table maintains virtual memory layout

57© 2009 University of Karlsruhe, System
Architecture Group

 Page Table – maintains virtual memory layout
 Suggest 2-level x86-like

 Advantage of having 4K node sizes, easy (de)allocation
 Alternative: Section list

 Process Table
 Bookkeeping about processes

 Pointer to page table
 Thread id, state, etc

Bits and Pieces

 Loader
 Takes an ELF file

 Builds an image using physical frames
 Builds a page table to map virtual page in the new address space to

frames in the root task

 Don’t forget: You need a convention for stack handling.

58© 2009 University of Karlsruhe, System
Architecture Group

g g

 Pager
 Receives page faults.
 Sends mappings based on information about task

 Stored in a page table
 Stored in section list

 Process Manager
 Creating processes
 Destroying processes
 Listing processes?

Upcoming talks (thursday in a week)

 Memory and device server groups
 Think up how to achieve paged virtual

memory to support multiple testclients
 What components?

59© 2009 University of Karlsruhe, System
Architecture Group

 What components?
 How do they interact?

 Thursday: Holiday
 Tuesday Lecture:

 Device drivers

