
Systems Design and Implementation
I.7 –Memory Management

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

June 9, 2009

Overview

 Loading a program into memory
 Case Studies

 4.3 BSD Virtual Memory on VAX-11
SVR4 VM Architecture

2© 2009 University of Karlsruhe, System
Architecture Group

 SVR4 VM Architecture
 Sawmill Dataspaces

The Road to a Running Program

Source
Code

Compiler/
Assembler

Object
File

h
Dynamic

3© 2009 University of Karlsruhe, System
Architecture Group

Other
Object
Files

Linker

Loader
Executable

File

System
Libraries

Runnable
In-memory

Image

How do we get there?

 What do we load?
 Where do we load it?

4© 2009 University of Karlsruhe, System
Architecture Group

Runnable
In-memory

Image

What do we load ?

 What we load is partially defined by ELF.
 Executable and Linkable Format
 Four major parts in ELF file

 ELF header – roadmap
 Program headers describe segments directly

ELF header

Prog. Hdrs

.text

.rodata

.data

5© 2009 University of Karlsruhe, System
Architecture Group

g g y
related to program loading

 Section headers describe contents of the file
 The data itself

.eh_frame

.sbss

.bss

.comment

.note

Section Hdrs

An Example

Root Task (pager) Runnable Image

stack

Location defined
by convention in

VM system

6© 2009 University of Karlsruhe, System
Architecture Group

data

code

Location defined
by linker

Location defined
by linker

Dynamic
data

Location defined
by VM system

Load directly in physical memory?

Root task

Root Task

Test client

Test Client

Test client

 Pros
 Simple one-to-one virtual-to-physical

mapping
 Easy

7© 2009 University of Karlsruhe, System
Architecture Group

Testclient
module

y

 Cons
 Only one image per executable
 Must link at the correct address

 error prone and cumbersome
 Fragmentation is a problem
 Limited to physical memory size

Dynamic relocation

Root task

Root Task

Test client

Test Client 2

Test clientTest client
 Pros

 Simple one-to-one virtual-to-physical
mapping

8© 2009 University of Karlsruhe, System
Architecture Group

 Cons
 PIC code has performance penalty,

or relocation has a startup penalty
 Fragmentation is still a problem
 Still limited to physical memory size

Testclient
module

Address Translation / Segmentation

Root task

Root Task

Test client

Test Client 2

Test client

Test client
 Pros

 Multiple instances of same executable
 No a priori constructed load map
 No relocation or PIC

9© 2009 University of Karlsruhe, System
Architecture Group

 No relocation or PIC
 Can use more than available physical

memory

 Cons
 Need a translation table (base,limit)
 Fragmentation is still a problem (why?)
 Swapping is coarse grained

Testclient
module

Paged Virtual Memory

 Pros
 Multiple instances of same executable
 No a priori constructed load map
 No relocation or PIC
 Simple physical memory management
 Fragmentation dramatically reduced

Root Task Client 2

P1

P2

P1

P1

Client 1

10© 2009 University of Karlsruhe, System
Architecture Group

g y
(internal fragmentation only)

 Can use more than available physical
memory

 Cons
 Need a page-based translation table

and hardware
 This is not free

P2

P3

P3

P2

P3

P1

P1

P2

P3

P1

P2

P3

Case Study
4.3 BSD Virtual Memory on VAX-11

 Three major components
1. Core map

 Global frame table

2 Page tables

11© 2009 University of Karlsruhe, System
Architecture Group

2. Page tables
 Per Process translation table

3. Swap maps
 Per-process mapping table from virtual pages

space to disk blocks in swap space

Core Map

P l d ib d b f t i

Nonpaged

pool

paged

pool

Error

buffer

Physical Memory

12© 2009 University of Karlsruhe, System
Architecture Group

 Page pool described by an array of cmap entries
 Cmap entries contain

 Name <type, owner, virtual page number>
 Free list pointers <next, prev>
 For text pages <device, block number>
 Synchronization flags

Virtual Address Space

text data stack kernel

P0 ReservedS0P1
0Gb 1Gb 2Gb 3G 4Gb

13© 2009 University of Karlsruhe, System
Architecture Group

 Note: Data and stack areas are free to grow.
 The page tables describe the layout of the address

space.

Page States

 Each individual page may be in one of the following states.
 Resident
 Fill-on-demand

Fill f t t

text data stack kernel

14© 2009 University of Karlsruhe, System
Architecture Group

 Fill-from-text
 Zero-fill

 Swapped out

 State encoded in
page table entries

Process creation

 Allocate page tables representing the address space.
 Initialize all page table entries as either

text data stack kernel

15© 2009 University of Karlsruhe, System
Architecture Group

p g
 Fill-from-text
 Zero-fill

Page-fault handling

 Bounds error – access to inaccessible area.
 Easy to detect bounds error if

text data stack kernel

16© 2009 University of Karlsruhe, System
Architecture Group

 Easy to detect, bounds error if
 access to invalid page table entry, or
 access to non-existent page table entry.

 Except, automatic stack/heap growth.

Page fault handling

17© 2009 University of Karlsruhe, System
Architecture Group

Disadvantages

 No support for shared memory.
 No support for memory mapped files.
 No support for shared libraries.
 No copy-on-write support.

18© 2009 University of Karlsruhe, System
Architecture Group

 VAX-specific architecture
 VAX specific optimisations and structure
 Not portable

 Code not modular – difficult to add features.

Memory mapped files

19© 2009 University of Karlsruhe, System
Architecture Group

Memory mapped files

20© 2009 University of Karlsruhe, System
Architecture Group

 Can be used as a mechanism to implement:
 Shared memory
 Shared libraries

Case Study
SVR4 VM Architecture

 The basic concepts are
 Page – a frame of physical memory
 Address space

Segment a region in an address space

21© 2009 University of Karlsruhe, System
Architecture Group

 Segment – a region in an address space
 Hardware address translation – page tables
 Anonymous page – page with no

permanent storage

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Case Study
SVR4 VM Architecture

22© 2009 University of Karlsruhe, System
Architecture Group

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Physical memory

P l d ib d b f t i

Nonpaged

pool

paged

pool

Error

buffer

Physical Memory

23© 2009 University of Karlsruhe, System
Architecture Group

 Page pool described by an array of page entries
 Page entries contain

 Name <vnode, offset>
 List pointers <next, prev> etc.

 Free, I/O, hash chains, vnode

 HAT info to locate all mappings
 Synchronization flags

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Virtual Address Space

 Address spaces are composed of memory objects
called segments

text data stack kernellibrary
Shared
mem file

24© 2009 University of Karlsruhe, System
Architecture Group

called segments.
 Segments are a mapping between address space

regions and backing-store objects (files, swap
space, etc.)

 Operations on an address space
 Alloc, free, dup, map, unmap, setprot, checkprot.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Anonymous memory

 Memory that is private to a process.
 Not externally referable to, thus is “anonymous”

 Memory that has no permanent storage.
 Contents are lost when process exits

25© 2009 University of Karlsruhe, System
Architecture Group

 Paged by the kernel to swap space.
 Zero-filled.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Hardware Address Translation Layer

 Machine dependent – page tables.
 Operations

 alloc, free.
 memload, devload, unload.

26© 2009 University of Karlsruhe, System
Architecture Group

 pageunload, pagesync.
 Data in the HAT layer is redundant – it can be rebuilt

from the machine independent layer.
 Interface is machine-independent.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Segments

 Each region has a segment driver associated with it
 seg_vn – Mappings to regular files and anonymous object

(vnodes).
 seg_dev – Mappings to devices (frame buffers)

 Segment driver data

27© 2009 University of Karlsruhe, System
Architecture Group

 Segment driver data
 Current and max protection
 Mapping type (shared or private)
 Pointer to vnode
 Offset to beginning of file

 Segment drivers support the following operations
 create, dup, fault, setprot, checkprot, unmap, swap out,

sync.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Creating a Mapping

 User calls mmap(“file”)
 Mmap checks permissions, existence, etc.
 Mmap calls as_map() to associate the file with a

region in the address space.

28© 2009 University of Karlsruhe, System
Architecture Group

 as_map() allocates segment data for the segment,
and calls create() in the appropriate segment driver.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Creating a process

 Simplistically, involves creating mappings
(segments):
 Text -> appropriate region of executable file.
 Data -> anonymous memory

29© 2009 University of Karlsruhe, System
Architecture Group

 Stack -> anonymous memory
 Shared libraries are mmaped by the client itself as

needed.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Page fault handling outline

 Kernel calls as_fault().
 Is the fault within a segment?

 No -> bounds error!
 Yes -> call the fault() routine of the associated segment

driver

30© 2009 University of Karlsruhe, System
Architecture Group

driver.
 The segment driver locates/allocates the data associated

with the fault, and returns.

 All the complexity is in the segment specific drivers.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Advantages

 Design is modular
 Easier to extend, modify

 Highly portable
 Machine-dependent translation functionality in HAT layer

 Various types of memory sharing
R d h i l

31© 2009 University of Karlsruhe, System
Architecture Group

 Reduces physical memory usage
 Powerful Mmap

 Supports file access, shared memory, and shared libraries
 Flexibility through segment drivers

 Allows use of any object representable by vnode
e.g. NFS files.

J. Moran, "SunOS Virtual Memory Implementation", European UNIX Users Group (EUUG) Conference, Spring 1988

Disadvantages

 Kernel consumes more memory
 State associated with all the abstractions

 More complex and slower algorithms
 Modularity restricts flexibility

 Framework may prevent machine-specific optimizations

32© 2009 University of Karlsruhe, System
Architecture Group

y p p p
 Copy-on-write not always faster than anticipatory copying

 However, in general the benefits of new functionality outweighs
the performance penalties.

Implementing a Multi-Server OS
with Dataspaces

Concept & Implementation

Traditional OSes:
 Kernel-based VM
 Application-control impossible
 Extensibility limited

Motivation

34© 2009 University of Karlsruhe, System
Architecture Group

 Extensibility limited

Multi-Server OSes:
 Kernel-based VM management primitives only
 VM management defined and implemented by user-

level pagers

Observation: Address Space

Consists of regions
 Different semantics
 Different types

Diff t

35© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeap

 Different resources

Task A

File

Involved Parties

 Tasks that need „data“
 Pager(s),
 Providers of „data“

36© 2009 University of Karlsruhe, System
Architecture Group

We want...

 Diversity
 Customizable
 Control over policies

 Dynamic extensibility

37© 2009 University of Karlsruhe, System
Architecture Group

y a s b y
 Code reuse
 Easy implementation of policies

 Performance
 Abstractions should not limit optimizations

The SawMill framework for VM diversity

 Framework to build and customize VMM
 Policy-free abstractions for VM management
 Decomposing of VMM into components

Dynamic configurability

38© 2009 University of Karlsruhe, System
Architecture Group

 Dynamic configurability

Microkernel Provides:

 Threads
 Address spaces
 IPC

Hierarchical VM system

39© 2009 University of Karlsruhe, System
Architecture Group

 Hierarchical VM system
 Mapping IPC
 Grant IPC

 User-level-pager
(per thread) map

grant

Microkernel Provides:

 Pagefault IPC
 Source tid
 Address

R/W

40© 2009 University of Karlsruhe, System
Architecture Group

map

grant

 R/W
 IP
 Mapping

The Dataspace Concept

 A dataspace is
 is memory concept
 denotes an abstract data container

represents unstructured data

41© 2009 University of Karlsruhe, System
Architecture Group

 represents unstructured data
 can be associated with files, memory, frame

buffers, …

Dataspace vs. Region

Dataspace
 Entity of a dataspace

manager
 No size associated

Region
 In client‘s address

space
 fpage

42© 2009 University of Karlsruhe, System
Architecture Group

 Logical object  Has a size
 Makes part of a

dataspace accessible

 accessing dataspaces

Dataspaces Server and Client

Dataspace Manager A Dataspace Manager B

43© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeap

Region

File

Dataspace

Client

Region

Dataspace

Multiple Dataspace Managers

DSM 0
(i.e. files)

DSM 1
(i.e. mem...)

44© 2009 University of Karlsruhe, System
Architecture Group

Task D

Task A

Task C

Task B

Region Mapper (RM)

 One user level pager per task
 Customizable
 Efficient

45© 2009 University of Karlsruhe, System
Architecture Group

Task A
RM
Pager

Worker Threads

Attach
Scenario

Stack File

Dataspace Manager

1. open
2. return dataspace
3. attach dataspace

46© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Client

Worker

RM

2. return

3. attach

1. open

Involved Parties

 Client address space
 Pagefault handler (region mapper)
 Dataspace manager

47© 2009 University of Karlsruhe, System
Architecture Group

Pagefault

Stack File

Dataspace Manager

1. access memory
2. kernel pagefault IPC
3. identify region
4. request page mapping

5. memory „prepared“
6 i

48© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Client

Worker

RM

2. kernel pagefault IPC

4. map_page
y p p

6. mapping to rm
7. empty ipc to worker
8. resuming

1. memory access

6. mapping

Paging of the Region Mapper

External Region Mapper

RM External

49© 2009 University of Karlsruhe, System
Architecture Group

Stack BinaryHeapFile

Task A

RM

Dataspace Operations

Dataspace manager
 open

(signature depends on type of
dataspace)

 close

Region mapper
 attach
 detach
 pagefault

50© 2009 University of Karlsruhe, System
Architecture Group

close
 map page
 share / transfer

Hierachical Dataspaces

 Stacking - build dataspaces with different semantics
out of simple dataspaces

 Specializing data container, allowing code reuse

51© 2009 University of Karlsruhe, System
Architecture Group

C-O-W Dataspace

C-O-W DS

read:
1. read
2. mapping from source

read olny
write:
1. write
2. pf
3. attach anonym backing
4. copy from source
5. return mapping

C-O-W DS

52© 2009 University of Karlsruhe, System
Architecture Group

Anonym. Mem DS Source DS

C-O-W DSM
Address Space Source

copy

Summary Dataspaces

Pros:
+ decomposing
+ distribution
+ simple user pager

possible

Cons:
- overhead (on pf.

crossing multiple
protection domains)

- large virtual address

53© 2009 University of Karlsruhe, System
Architecture Group

possible
+ easy sharing
+ flexible
+ customizable

g
space needed

- leads to confusion on
first contact

Further reading

 The Design and Implementation of the 4.3BSD UNIX
Operating System
S.J. Leffler, M.K. McKusick, M.J. Karels, J.S. Quarterman
Addison Wesley, May 1989

 SunOS Virtual Memory Implementation
J.P. Moran
Sun Microsystems, Inc.

54© 2009 University of Karlsruhe, System
Architecture Group

y ,

 The Sawmill Framework for Virtual Memory Diversity
M. Aron, L. Deller, K. Elphinstone, T. Jaeger, J. Liedtke, and Y. Park
Sixth Australasian Computer Systems Architecture Conference (ACSAC2001),
Bond University, Gold Coast, Queensland,
January 29 - February 2, 2001

Tasks and Virtual Memory in SDI OS

Test
Client

?

Test
Client 2

 Wanted:
 Paged virtual memory for tasks

 Multiple instances of the same binary

F t
? ?

Test
Client 3

55© 2009 University of Karlsruhe, System
Architecture Group

L4 Micro kernel

Name
Server

Simple
Pager

Log
Server

Sigma0

GRUB
Fileserver

 Features
 Create new task from executable file
 Command line support?
 Destroy tasks
 More?

 What else do we need?

PrivSC
Server

SDI OS

 We will implement page-based virtual
memory

 What are the implementation issues???

56© 2009 University of Karlsruhe, System
Architecture Group

 What are the implementation issues???

Bits and Pieces

 Frame Table – maintains usable memory
 What info needs to be in there?
 Initialize based on available memory

 Where does the memory come from?
 Anonymous memory server

Page Table maintains virtual memory layout

57© 2009 University of Karlsruhe, System
Architecture Group

 Page Table – maintains virtual memory layout
 Suggest 2-level x86-like

 Advantage of having 4K node sizes, easy (de)allocation
 Alternative: Section list

 Process Table
 Bookkeeping about processes

 Pointer to page table
 Thread id, state, etc

Bits and Pieces

 Loader
 Takes an ELF file

 Builds an image using physical frames
 Builds a page table to map virtual page in the new address space to

frames in the root task

 Don’t forget: You need a convention for stack handling.

58© 2009 University of Karlsruhe, System
Architecture Group

g g

 Pager
 Receives page faults.
 Sends mappings based on information about task

 Stored in a page table
 Stored in section list

 Process Manager
 Creating processes
 Destroying processes
 Listing processes?

Upcoming talks (thursday in a week)

 Memory and device server groups
 Think up how to achieve paged virtual

memory to support multiple testclients
 What components?

59© 2009 University of Karlsruhe, System
Architecture Group

 What components?
 How do they interact?

 Thursday: Holiday
 Tuesday Lecture:

 Device drivers

