
Systems Design and Implementation
I.6 – Threads and Scheduling

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

June 2, 2009

Overview

 Motivation
 Threads and Processes

 Thread and Process Management
 Usage scenarios
 Program execution

2© 2009 University of Karlsruhe, System
Architecture Group

g
 Thread Scheduling

 Thread scheduling and accounting
 Classic scheduling approaches
 Scheduler activations et al.

 Multi-server systems
 Scheduling issues in multi-server systems
 Case study: Scheduling in K42

Motivation

 Definition of Thread
 Short for “thread of execution”
 Represents an independent flow of execution

 Purposes of threads
 Expressing independent flow of execution

3© 2009 University of Karlsruhe, System
Architecture Group

CPU CPU CPU

 Expressing independent flow of execution
 Dispatcher/Worker Models
 Serialized Threads

 Expressing concurrency:
 Multithreading via Time-Slicing
 Multithreading via Multiprocessing

Motivation

 Purposes of threads
 Resource management

 Overlap I/O and CPU
 Prioritize threads for QoS/RT/…

S it
CPU

1 2

CPU

4© 2009 University of Karlsruhe, System
Architecture Group

 Security
 Performance Isolation

Thread usage scenarios

 Structuring programs
 Parallel loop

<parallel for> (i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0

Parallel subprocedures

5© 2009 University of Karlsruhe, System
Architecture Group

 Parallel subprocedures
<parallel> {

i_am = get_thread_num();
n_threads = get_num_threads();
/*
* do stuff
*/

}

Thread usage scenarios

 Structuring programs
 Fork/Join

<parallel fork> {
aa = bb; // Unit 1
cc = dd; // Unit 2
ee = ff; // Unit 3

} < ll l j i >

6© 2009 University of Karlsruhe, System
Architecture Group

} <parallel join>

 Worker/Dispatcher
 Example: Webserver
 Dispatcher ready while work being done

Client

Client

Client

select

Thread usage scenarios
 Structuring programs

 Pipelines
 Difference to procedures?
 Threads do parallel processing PDUn

PDUn+1

7© 2009 University of Karlsruhe, System
Architecture Group

 Signal/Call-back threads
 Modeling asynchronous events
 Thread can be created dynamically

(pop-up thread)
 Arriving messages, interrupts, …

irq
msg
…

Motivation
 Thread management

 How to manage thread state
 How to create, destroy, dispatch, … threads

 Program execution
 How to create threads from a file

8© 2009 University of Karlsruhe, System
Architecture Group

 Thread scheduling
 How to schedule threads among processors

 Thread accounting
 How to track threads’ processor usage

 Resource management
 How to schedule and account threads on other

resources

Thread and process management

 Thread state
 Independent flow of execution
 Execution state:

 Instruction pointer
 Stack pointer
 … Enough?

call chain
referenced data
register state

current control flow

9© 2009 University of Karlsruhe, System
Architecture Group

g
 Broader thread state

 Scheduling/accounting state
 thread state, ready queue
 current processor
 priority, scheduling class
 timeslice, budget, latency

 Memory state
 reference to address space
 (text/data/heap) segments
 swap state

gang

ready running

meprev next

blocked

real-time regular

10ms irq: 1ms

limitlimit

base

limitlimit

base M
AI

N
 M

EM

Thread and process management

 Broader thread state
 Communication state

 Thread used as
communication endpoint

 communication state
 wait queue send queue

sender1me sender2

send towait for

10© 2009 University of Karlsruhe, System
Architecture Group

 wait queue, send queue

Process

T … …

…

…

……

 Process state
 Process id
 Process hierarchy

Thread and process management

 Broader thread state
 Security

 user, group, security class
 Other resource state

 File references
executing file

stoess i30staff

/bin/ls

foo bar

11© 2009 University of Karlsruhe, System
Architecture Group

 executing file
 open files

 I/O resources
 Open network handles
 Open peripheral devices
 …

 Storing thread state
 Thread Control Block
 Pointer lists

 May be stored within TCB

socket

fd0

TCB

next
prev

TCB

next
prev

TCB

next
prev

Thread and process management

 Basic Thread operations
 Create

 Like asynchronous procedure call
 Allocate and initialize TCB

 Initial IP, SP
 Enqueue thread in ready queue

12© 2009 University of Karlsruhe, System
Architecture Group

 Enqueue thread in ready queue
 Startup

 Remove from ready queue
 Why not create and startup in one step?

 Block (on resource, ipc, …)
 Save register state and IP on stack
 Enqueue into wait queue
 Update thread’s state
 Resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions of Computers 38:12 1989

Thread and process management
 Basic Thread operations

 Signal Thread
 Remove thread from wait queue
 Place thread on ready queue
 Update thread’s state

13© 2009 University of Karlsruhe, System
Architecture Group

p

 Resume thread
 Remove thread from ready queue
 Restore register state
 Continue executing at IP

 Thread finish
 Deallocate stack and TCB
 Find and resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions of Computers 38:12 1989

Thread and process management
 Thread management considerations

 Performance optimizations
 Do not waste stack space

 put initial Arguments in the TCB

 Reduce overhead of finding free memory

14© 2009 University of Karlsruhe, System
Architecture Group

 Use free memory lists for stacks
 Use free memory lists for TCBs

 Synchronization
 Must serialize concurrent access
 Latency and throughput concerns

 Latency: how fast is the uncontended case?
 Throughput: how many operations per time are possible?

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Thread and process management
 Synchronization alternatives

 Single lock
 Single lock for all thread data structures
 Low latency in non-contended case
 Limits throughput

 Multiple locks

15© 2009 University of Karlsruhe, System
Architecture Group

p
 Separate locks for ready queues, wait queues, free lists, …
 Higher latency, but better throughput expected

 (Processor-)Local free lists:
 Use local memory allocation pools
 Reduces contention when allocating TCBs or stacks
 Trades space for time (why?)
 May induce additional memory allocation costs
 May require to balance pools

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Thread and process management
 Synchronization alternatives

 Local ready queues:
 Use local queues for starting/resuming threads
 Reduces contention for queuing threads in the ready

queue(s)
 May require to balance thread load

16© 2009 University of Karlsruhe, System
Architecture Group

 Requires synchronization during load balancing

 Implementing synchronization
 Cannot use threading (obviously)
 Use spin locks

 Locks are held shortly
 Use hardware facilities

 cmpxchg et al.
 incurs bus locking overhead

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Program execution

 The road to a running program:

Compiler/
Assembler

D i
Source
C d

.cc

Object
Fil

.o

17© 2009 University of Karlsruhe, System
Architecture Group

Other
Object
Files

.o

Other
Object
Files

.o

Other
Object
Files

.oLinker

Loader

Dynamic
System
Libraries

Runnable
In-memory

Image

Code File

Exe-
cutable

prog

Program execution
 Loading an executable

 What do we need to load?
 Execution context

 Initial instruction pointer
 Initial stack pointer
 Program arguments

M t t

18© 2009 University of Karlsruhe, System
Architecture Group

 Memory context
 Code
 Data

 Where do we load it?
 Static code/data specified by linker

 Encoded in executable file
 Developers can tweak linker to modify layout

 Dynamic code/data specified by operating system
 Virtual memory subsystem

Example program layout

Initial Task (pager) Runnable Image

stack

Location defined
by convention in

VM system

19© 2009 University of Karlsruhe, System
Architecture Group

data

code

Location defined
by linker

Location defined
by linker

Dynamic
data

Location defined
by VM system

Executable file format

 Case study: ELF format
 Executable and Linkable Format
 Four major parts in ELF file

 ELF header
 roadmap

ELF header

Prog. Hdrs

.text

odata

Section Hdrs

20© 2009 University of Karlsruhe, System
Architecture Group

p
 Program headers

 describe segments directly related to
program loading

 Section headers
 describe contents of the file

 The data itself

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
unsigned char e_ident[EI_NIDENT]; /* Magic number & other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32 Addr e entry; /* Entry point virtual address */

 ELF header
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

21© 2009 University of Karlsruhe, System
Architecture Group

_ _ y y p
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize;/* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize;/* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
Elf32_Word sh_name; /* Section name (str tbl index)*/
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr */
Elf32 Off sh offset;/* Section file offset */

 Section headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

22© 2009 University of Karlsruhe, System
Architecture Group

Elf32_Off sh_offset;/ Section file offset /
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section info */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds

table */
} Elf32_Shdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; /* Segment virt. address */
Elf32_Addr p_paddr; /* Segment phys. address */
Elf32 W d fil /* S t i i fil */

Prog.

Seg 1

 Program headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

23© 2009 University of Karlsruhe, System
Architecture Group

Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in mem */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Seg 1

Prog.

Seg 2

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

$ objdump -h test_client
testclient: file format elf32-i386
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000200d 00300000 00300000 00001000 2**4

CONTENTS ALLOC LOAD READONLY CODE

 Example: test_client section headers

24© 2009 University of Karlsruhe, System
Architecture Group

CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 000004b4 00302020 00302020 00003020 2**5

CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .data 00002038 00303000 00303000 00004000 2**12

CONTENTS, ALLOC, LOAD, CODE
3 .ctors 00000000 00306000 00306000 00007000 2**0

CONTENTS
4 .dtors 00000000 00306000 00306000 00007000 2**0

CONTENTS
5 .bss 00000404 00306000 00306000 00007000 2**2

ALLOC
6 .debug_abbrev 000008b5 00000000 00000000 00007000 2**0

CONTENTS, READONLY, DEBUGGING.

Executable file format

$ objdump -p test_client

testclient: file format elf32-i386

Program Header:
LOAD ff 0 00001000 dd 0 00300000 dd 0 00300000 li 2**12

 Example: test_client program headers

25© 2009 University of Karlsruhe, System
Architecture Group

LOAD off 0x00001000 vaddr 0x00300000 paddr 0x00300000 align 2**12
filesz 0x000024d4 memsz 0x000024d4 flags r-x

LOAD off 0x00004000 vaddr 0x00303000 paddr 0x00303000 align 2**12
filesz 0x00002038 memsz 0x00003404 flags rwx

$

 Note: memsz > filesz
 implicit .bss segment

 batman's shameful secret
 block started by symbol

 Reserved but uninitialized data
 Must be zero-filled

Thread scheduling and accounting

 Threads imply scheduling problems
 Who runs next on a processor?
 Which processor should a thread run?
 How long should a thread run?

26© 2009 University of Karlsruhe, System
Architecture Group

 …
 Wanted: separation of policy & mechanisms

 Mechanism:
 (re-)dispatching, preemption, migration, accounting

 Policy:
 Allocation, Budgeting, priorities, scheduling classes

latency constraints, …

Thread scheduling and accounting

 Problems:
 Scheduling may span multiple subsystems and

layers
 Distributed/hierarchical scheduling
 E.g., Web server: application-directed, OS-enforced

27© 2009 University of Karlsruhe, System
Architecture Group

g , pp ,
scheduling

 distributed resource managers  distributed accounting

 Scheduling is tied to other OS-abstractions
 may imply scheduling decision
 Examples

 blocking I/O, IPC, interrupts, exceptions, …
 resource consumption/exhaustion (memory, energy, …)

 Policy and mechanism hard to distinguish

Thread scheduling and accounting

 Problems:
 Scheduling policies are complex

 Different environments
 Different policies

Multidimensional problems

28© 2009 University of Karlsruhe, System
Architecture Group

 Multidimensional problems

 Performance implications
 Scheduling distributed and entangled
 Diverse but frequently invoked scheduling-related

services
 Need simple and clean abstractions
 Separation of policy and mechanism may be complex

and inefficient

Thread scheduling policies

 Processor-based scheduling
 Service time

 Working set, execution signature
 Processor-internal characteristics

 Performance counters, HW sensors
 Processor-associated resources

Time-Based
Scheduling

Energy-aware
Scheduling

Affinity

29© 2009 University of Karlsruhe, System
Architecture Group

 Processor associated resources
 Caches, Memory
 Pinned components (e.g., devices, drivers)

 Sharing
 Communication facilities
 IPC, shared memory, …

 Load balancers
 Run queue length
 Idle time
 Context switch rates

Affinity
Scheduling

Co-/Gang-
Scheduling

Load
Balancing

Traditional scheduling approaches

 Kernel level scheduling
 Kernel provides a notion of executable entity

 Kernel threads, processes, tasks, …
 Execution context initialized by the user

 Kernel responsible for threads
 Management

30© 2009 University of Karlsruhe, System
Architecture Group

g
 Scheduling
 Dispatching

 Central, in-kernel management
 Global state and visibility
 Low interaction with other subsystems/layers
 Kernel-managed scheduling policies (+tweaking)

 Execution contexts entangled with many other abstractions
 Memory protection
 Accounting
 Communication
 Other resources (files, I/O, …)

- General - Gang
- Real time - …

Traditional scheduling approaches

 Analysis
 Global scope

 All applications are subject to scheduling
 Kernel can enforce scheduling decisions

 Low-overhead scheduling

31© 2009 University of Karlsruhe, System
Architecture Group

 Low overhead scheduling
 central scheduling state
 no boundary crossing needed

 One-fits-it-all approach
 Fixed scheduling policies, tweaking at most
 Oblivious to application requirements
 Problems:

 Competing jobs? Different job requirements?
 Different number of threads/job?
 Different application QoS?

Traditional scheduling approaches

 Analysis
 Oblivious to special environments

 Linux as desktop system, Linux as scalable server?
 response time vs. throughput

 Complex and heavyweight abstractions
P it h h h d li t t t t

32© 2009 University of Karlsruhe, System
Architecture Group

 Process switch changes scheduling context, memory context,
I/O context,….

 OS oblivious to application boundaries
 application spanning multiple processes, threads, address

spaces?
 Extensibility is difficult

 Scheduling is deeply embedded within the kernel
 No modularization, no component boundaries

Further reading: H. Franke et al. PMQS: Scalable Linux Scheduling for High End Servers. Proceedings of the 5th Annual Linux
Showcase and Conference, 2001
G. Banga et al. Resource containers: A new facility for resource management in server systems. Proceedings of the 3rd Symposium on
Operating Systans Design and Implementation (OSDI-99).

Traditional scheduling approaches

 Application level scheduling
 Application provides its own thread notion

 Transparently mapped one or more kernel-provided
execution contexts

 Application responsible for

33© 2009 University of Karlsruhe, System
Architecture Group

pp p
 Thread management
 Thread scheduling
 Thread dispatching

 Decentralized, application-wise management
 Local state and visibility
 No interaction with other subsystems/layers
 Arbitrary policies and extension possible

Traditional scheduling approaches

 Analysis
 Library approach
 Very low overhead abstractions

 Only within application
 Thread switch only switches execution context

C t li ti l l Q S

34© 2009 University of Karlsruhe, System
Architecture Group

 Can respect application-level QoS
 Local scope

 OS-agnostic threads
 Application scheduler cannot respect

 OS-Kernel
 Other subsystems
 Other applications

 And vice versa
 Examples:

 Blocking on I/O
 Component-based systems

Scheduler activations

 Kernel-level threads alone
 Heavy-weight abstractions
 Not extensible, not customizable

 User-level threads alone

35© 2009 University of Karlsruhe, System
Architecture Group

 Oblivious to OS activity (pagefaults, I/O)
 Oblivious to multi-programming

 Idea:
 Combine user and kernel threads

Source: T. E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy Scheduler Activations: Effective Kernel Support for the User-Level Management of
Parallelism. ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, Pages 53-79.

Scheduler activations

 Basic assumption:
 Common case

 Thread operations without kernel intervention
 Communication, synchronization
 Use (pure) user-level threads

Infrequent case

36© 2009 University of Karlsruhe, System
Architecture Group

 Infrequent case
 Kernel intervention needed
 E.g., processor reallocation, page faults, …
 Use user-level threads but mimic kernel thread behavior
 When a thread blocks, the processor can run another

thread
 Requirement: Distributed scheduling control

 Kernel needs to know application state
 How much parallelism does the application contain?

 Applications need to know kernel scheduling state
 When does a thread block?

Scheduler activations

 Approach:
 Abstractions:

 Kernel provides virtual multiprocessors
 Address spaces have a dedicated scheduler

M h i

37© 2009 University of Karlsruhe, System
Architecture Group

 Mechanisms:
 Scheduler notifies the kernel on the thread operations

that affect processor allocation
 Kernel notifies scheduler on all address-space-related

kernel scheduling events
 The latter is termed scheduler activation

Scheduler activations

 Virtual processors (VPs):
 One or more VPs per address space
 AS scheduler freely allocates threads to VPs
 Kernel vectors re-allocations to the AS scheduler

AS scheduler notifies kernel if it needs more/less

38© 2009 University of Karlsruhe, System
Architecture Group

 AS scheduler notifies kernel if it needs more/less
VPs

 Upcall points:
 Processor added
 Processor preempted
 Scheduler activation blocked
 Scheduler activation unblocked

Scheduler activations

 Scheduler activation:
 Execution context for user-level threads
 Notification system for kernel
 Scratch space for saving user-level contexts

 Application start:
Kernel creates scheduler activation

39© 2009 University of Karlsruhe, System
Architecture Group

 Kernel creates scheduler activation
 Assigns activation to a virtual processor
 Upcalls into application at fixed entry (scheduler)
 Scheduler initializes itself
 Scheduler dispatches the first user-level thread to activation

 Scheduling-related kernel-events
 Kernel creates a new scheduler activation
 Assigns the activation to the VP
 Upcalls into application at fixed entry (scheduler)
 Scheduler processes the event

Scheduler activations

 Example: I/O request

Application

A AAA

40© 2009 University of Karlsruhe, System
Architecture Group

Kernel
UPCALLUPCALLBLOCK

CPU CPU

VP VP

ADD ADDUNBLOCK

A

Scheduler activations

 Conclusion & Analysis
 Basic idea:

 Combined application-level and kernel-level scheduler
 Synchronous vectoring to notify user level scheduler

 Extensible, keeps policy out of the kernel
K l l di t h

41© 2009 University of Karlsruhe, System
Architecture Group

 Kernel only dispatches
 Users may develop arbitrary policies

 Limited to threads within a single address-space
 One user-level scheduler per address-space
 User-level scheduler can not dispatch threads in other

protection domains
 Performance penalties

 Needs 2 user-kernel transitions per upcall
 Depends on the number of scheduling related events

Scheduler activations: similar approaches

 Process control
 Improve multiprocessing in multiprogrammed

systems
 Fair behavior while maximizing throughput

 Basic idea:
A li ti f b t if

42© 2009 University of Karlsruhe, System
Architecture Group

 Application performance best if
 #application processes = #processors

 Employ centralized scheduler
 Calculates optimal number of processes for each application
 Requests applications to dynamically change their number of

processes
 Relies on polling and cooperativeness of applications

Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM
Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,
25(5), pp. 110-121, 1991

Scheduler activations: similar approaches

 1st class user-level threads
 Kernel-threads are heavy-weight
 User-level threads have a second-class status

 Not known by kernel
 Lack of interaction methodology between different user-

level thread packages

43© 2009 University of Karlsruhe, System
Architecture Group

level thread packages
 Basic idea:

 Grant user-level threads 1st-class status
 Use shared memory for interaction between kernel and

user
 Use software-interrupts for events that require

synchronous interaction
 Develop scheduler interface convention for interaction

between schedulers
Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM

Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,
25(5), pp. 110-121, 1991

Scheduler activations: similar approaches

 CPU inheritance scheduling
 Most OSes only support rigid scheduling

 Set of scheduling classes
 Implementations tied together in the OS

 Basic idea:
Th d d t th i ti t th th d

44© 2009 University of Karlsruhe, System
Architecture Group

 Threads can donate their time to other threads
 Threads can wait for timing events

 interrupts, timers, blocking of time donatees,,,
 Hierarchical control over processing time
 Threads schedule themselves
 Allow for arbitrary relations and administrative domains

 Limitations:
 Timing hard to virtualize
 Not fully evaluated

Source: B.Ford et al. CPU inheritance scheduling. Proceedings of the 2nd Usenix Symposium on Operating Systems Design and Implementation (OSDI), p91-105. 1996

Scheduling in multi-server systems

 Threads represent different entities
 Servers, Clients, Resources

 IPC is “the” mechanism for everything
 Requests
 Dispatching

Synchronization

45© 2009 University of Karlsruhe, System
Architecture Group

 Synchronization
 Interrupts
 Resource allocations
 Permission faults

 IPC is tied to scheduling
 IPC operations may block/unblock entities

 Who runs after a unblocking operation?
 Who runs after a blocking operation?

 IPC operations may imply scheduling decisions
 Depends on the usage scenario

Scheduling in multi-server systems

 Server requests
- Servers model resources
- Requests imply resource
donation

- Do not change scheduling
t t i

ipcClient

Server

46© 2009 University of Karlsruhe, System
Architecture Group

context on ipc

 Resource faults

ipc
Client Pager

- Resource managers shouldn’t
run in clients’ contexts only

- They may have insufficient
resources

- Do change client contexts

Scheduling in multi-server systems

 Synchronization
ipc

T1 T2

- Threads are independent
- IPC used for notification
- Do change scheduling context

47© 2009 University of Karlsruhe, System
Architecture Group

 RT subsystem
- May want strict priorities
- Perform scheduling decision
during IPC

ipc

Prio 1

Prio 3

Prio 2

Scheduling in multi-server systems

 The Dilemma:
 Policy should be controlled by applications
 IPC performance is critical

 Alternatives:
 Policy upcalls:

Vector every scheduling event (i e every IPC)

48© 2009 University of Karlsruhe, System
Architecture Group

 Vector every scheduling event (i.e., every IPC)
 expensive

 Type-safe description languages:
 Download scheduling code into the kernel
 complex, insecure, no timing guarantees

 Default policies (L4 state of the art behavior)
 Pistachio:

 Kernel-level round robin scheduler
 Always donate time slice

 Fiasco:
 In-kernel RT scheduling policy

 Fast but often inappropriate

Case study: scheduling in K42

 K42 is
 A high performance, open source, general-purpose research

operating system kernel for cache-coherent multiprocessors
 Linux-compatible

 Main goals:

49© 2009 University of Karlsruhe, System
Architecture Group

 Scalability and performance
 Adaptability
 Extensibility and maintainability
 Open-source compatibility

 Approach:
 Modular, object-oriented code
 No centralized code-paths, global data structures, locks
 Move system functionality from kernel to servers and users

Case study: scheduling in K42

 K42 structure
 User-mode libraries

 Thread scheduling
 Linux emulation
 Application libraries (GLIBC, …)

 System layers

50© 2009 University of Karlsruhe, System
Architecture Group

y y
 NFS
 K42 scalable FS
 Name server
 Socket server
 Pipe server

 Kernel
 Memory management
 IPC
 Base scheduling
 Networking
 Devices

Sources J. Appavoo et al. Experience with K42, an Open Source, Linux-compatible, Scalable Operating-system Kernel. IBM Systems Journal, 44:2 2005

Case study: scheduling in K42

 Scheduling in K42
 Partitioned between kernel and user
 Processes consist of

 One address space and
 One or more dispatchers

 Kernel schedules dispatchers

51© 2009 University of Karlsruhe, System
Architecture Group

p
 Uses kernel resources (e.g., pinned memory)

 Dispatchers schedule threads
 Threads are oblivious to the kernel
 Applications have a customizable thread model
 Can create arbitrary number of threads
 Can not exhaust kernel resources

 Multiple dispatchers
 Attain parallelism
 Establish different scheduling paradigms (QoS, Prio, …)

 Similar to scheduler-activations
Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Dispatchers

 bound to a processor
 belong to resource domains

 Resource domains
 own resource rights (e.g.,

D

52© 2009 University of Karlsruhe, System
Architecture Group

RDbg

g (g
processor share)

 are accountable entities
 belong to one of five scheduling

classes

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D

RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Scheduling classes

1. system, hard real time
2. gang-scheduled
3. soft real time
4. general purpose

D

53© 2009 University of Karlsruhe, System
Architecture Group

RDbg
5. Background

 Classes are strictly prioritized
 Within scheduling classes

 Weighted proportional sharing
 Admission controls for real time and gang scheduling

 On scheduling events
 Kernel chooses resource domain based on kernel policies
 Kernel chooses a dispatcher from that domain
 Kernel does not ensure fairness within a domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D

Case study: scheduling in K42

 Kernel scheduling
 Soft preemptions:

 Approach:
 Upcall to dispatcher
 Dispatcher saves its state
 Dispatcher yields voluntarily after short time

Assumptions:

54© 2009 University of Karlsruhe, System
Architecture Group

 Assumptions:
 Current and next dispatcher reside in the same scheduling

class and
 Current dispatcher is well-behaving

 Hard preemptions:
 Assumptions:

 Current dispatcher resides in a lower-prioritized class than the
next dispatcher or

 Current dispatcher hasn’t responded timely to upcall

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel IPC
 Protected procedure call (PPC) semantics
 RPC invocation and return plus address space switch

 syscall  switch AS  sysret

 Kernel IPC and scheduling:
 PPC is an explicit handoff from one to another

Process

55© 2009 University of Karlsruhe, System
Architecture Group

RD

 PPC is an explicit handoff from one to another
dispatcher

 How to integrate this handoff?
 Pure Variant 1: strict scheduling

 Switch dispatcher
 Switch resource domain
 Pursue scheduling decision in between

 Analysis
 Respects kernel scheduling
 Degrades performance!

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

RD

Process Process

D D

PPC

RD D

?

Case study: scheduling in K42

 Kernel IPC and scheduling:
 Pure Variant 2: resource donation

 Switch dispatcher but
 Keep caller’s resource domain

 Clients donate their domain
 Server’s consumption accounted

Process Process

D DRD

56© 2009 University of Karlsruhe, System
Architecture Group

 Server s consumption accounted
to clients

 Analysis
 Allows for efficient implementation
 Complex

 Kernel must schedule server dispatchers in client domains
 Servers must be able to switch resource domains

 Biggest problem: Priority inversion (!)
 Resource-constrained client calls server
 Server acquires a lock and suffers resource exhaustion
 Only solution: enhance locking; too expensive

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel IPC and scheduling:
 Final approach: mix variants 1 and 2

 Switch dispatcher
 Keep caller’s resource domain until next in-kernel

scheduling
 Then switch resource domain

57© 2009 University of Karlsruhe, System
Architecture Group

 Then switch resource domain
 Analysis:

 Efficient in the common case
 Avoids priority inversion
 Reduces the precision and determination of accounting

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel/Dispatcher interface
 Dispatcher structure

 Mostly based on shared memory
 Disable-interrupts bit
 Pending interrupts vector
 Machine-state save area
 Control registers message buffers

58© 2009 University of Karlsruhe, System
Architecture Group

 Control registers, message buffers
 Current dispatcher location

 Stored in read-only page at fixed
virtual address

 Different mappings per processor
 Entry points

 Code addresses for different kernel
events

 Changed via system call
 Initialized by dispatcher

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 User-Level Scheduling
 Library code providing thread

implementations
 Thread object

 Contains current Stack pointer
Oth t t d t k

59© 2009 University of Karlsruhe, System
Architecture Group

 Other state saved on stack
 CurrentThread

 Points to currently running thread
 Can be special register or hard-coded virtual

address
 ThreadIDs

 64-bit handle
 Identifies thread and dispatcher

 ID changes on migration

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 User-Level Scheduling
 Thread operations

 Creation
 Allocate thread object from free list, initialize it
 Put into dispatcher ready queue

 Block

60© 2009 University of Karlsruhe, System
Architecture Group

 Block
 Saves threadID in some data structure
 (Thread must prevent migration for ID to remain

valid)
 Unblock

 Resume threadID from data structure
 Call dispatcher to resume thread

 Migration
 Load balancing: migrate to idle dispatcher
 QoS change: migrate to dispatcher with other

resource domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Conclusion:
 Two-level scheduling approach

 Dispatchers
 Kernel-level scheduling classes and domains
 User-level threads

61© 2009 University of Karlsruhe, System
Architecture Group

 Soft preemptions (acitvations) for user-visible
scheduling

 Hard preemptions for enforcement
 IPC/PPC and scheduling:

 Restricted resource donation model
 Default in-kernel policy that assumes client/server

relations
 Trades off accuracy for performance

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Thursday

 File / Task Service
Design Presentations

62© 2009 University of Karlsruhe, System
Architecture Group

