
Systems Design and Implementation
I.6 – Threads and Scheduling

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

June 2, 2009

Overview

 Motivation
 Threads and Processes

 Thread and Process Management
 Usage scenarios
 Program execution

2© 2009 University of Karlsruhe, System
Architecture Group

g
 Thread Scheduling

 Thread scheduling and accounting
 Classic scheduling approaches
 Scheduler activations et al.

 Multi-server systems
 Scheduling issues in multi-server systems
 Case study: Scheduling in K42

Motivation

 Definition of Thread
 Short for “thread of execution”
 Represents an independent flow of execution

 Purposes of threads
 Expressing independent flow of execution

3© 2009 University of Karlsruhe, System
Architecture Group

CPU CPU CPU

 Expressing independent flow of execution
 Dispatcher/Worker Models
 Serialized Threads

 Expressing concurrency:
 Multithreading via Time-Slicing
 Multithreading via Multiprocessing

Motivation

 Purposes of threads
 Resource management

 Overlap I/O and CPU
 Prioritize threads for QoS/RT/…

S it
CPU

1 2

CPU

4© 2009 University of Karlsruhe, System
Architecture Group

 Security
 Performance Isolation

Thread usage scenarios

 Structuring programs
 Parallel loop

<parallel for> (i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0

Parallel subprocedures

5© 2009 University of Karlsruhe, System
Architecture Group

 Parallel subprocedures
<parallel> {

i_am = get_thread_num();
n_threads = get_num_threads();
/*
* do stuff
*/

}

Thread usage scenarios

 Structuring programs
 Fork/Join

<parallel fork> {
aa = bb; // Unit 1
cc = dd; // Unit 2
ee = ff; // Unit 3

} < ll l j i >

6© 2009 University of Karlsruhe, System
Architecture Group

} <parallel join>

 Worker/Dispatcher
 Example: Webserver
 Dispatcher ready while work being done

Client

Client

Client

select

Thread usage scenarios
 Structuring programs

 Pipelines
 Difference to procedures?
 Threads do parallel processing PDUn

PDUn+1

7© 2009 University of Karlsruhe, System
Architecture Group

 Signal/Call-back threads
 Modeling asynchronous events
 Thread can be created dynamically

(pop-up thread)
 Arriving messages, interrupts, …

irq
msg
…

Motivation
 Thread management

 How to manage thread state
 How to create, destroy, dispatch, … threads

 Program execution
 How to create threads from a file

8© 2009 University of Karlsruhe, System
Architecture Group

 Thread scheduling
 How to schedule threads among processors

 Thread accounting
 How to track threads’ processor usage

 Resource management
 How to schedule and account threads on other

resources

Thread and process management

 Thread state
 Independent flow of execution
 Execution state:

 Instruction pointer
 Stack pointer
 … Enough?

call chain
referenced data
register state

current control flow

9© 2009 University of Karlsruhe, System
Architecture Group

g
 Broader thread state

 Scheduling/accounting state
 thread state, ready queue
 current processor
 priority, scheduling class
 timeslice, budget, latency

 Memory state
 reference to address space
 (text/data/heap) segments
 swap state

gang

ready running

meprev next

blocked

real-time regular

10ms irq: 1ms

limitlimit

base

limitlimit

base M
AI

N
 M

EM

Thread and process management

 Broader thread state
 Communication state

 Thread used as
communication endpoint

 communication state
 wait queue send queue

sender1me sender2

send towait for

10© 2009 University of Karlsruhe, System
Architecture Group

 wait queue, send queue

Process

T … …

…

…

……

 Process state
 Process id
 Process hierarchy

Thread and process management

 Broader thread state
 Security

 user, group, security class
 Other resource state

 File references
executing file

stoess i30staff

/bin/ls

foo bar

11© 2009 University of Karlsruhe, System
Architecture Group

 executing file
 open files

 I/O resources
 Open network handles
 Open peripheral devices
 …

 Storing thread state
 Thread Control Block
 Pointer lists

 May be stored within TCB

socket

fd0

TCB

next
prev

TCB

next
prev

TCB

next
prev

Thread and process management

 Basic Thread operations
 Create

 Like asynchronous procedure call
 Allocate and initialize TCB

 Initial IP, SP
 Enqueue thread in ready queue

12© 2009 University of Karlsruhe, System
Architecture Group

 Enqueue thread in ready queue
 Startup

 Remove from ready queue
 Why not create and startup in one step?

 Block (on resource, ipc, …)
 Save register state and IP on stack
 Enqueue into wait queue
 Update thread’s state
 Resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions of Computers 38:12 1989

Thread and process management
 Basic Thread operations

 Signal Thread
 Remove thread from wait queue
 Place thread on ready queue
 Update thread’s state

13© 2009 University of Karlsruhe, System
Architecture Group

p

 Resume thread
 Remove thread from ready queue
 Restore register state
 Continue executing at IP

 Thread finish
 Deallocate stack and TCB
 Find and resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions of Computers 38:12 1989

Thread and process management
 Thread management considerations

 Performance optimizations
 Do not waste stack space

 put initial Arguments in the TCB

 Reduce overhead of finding free memory

14© 2009 University of Karlsruhe, System
Architecture Group

 Use free memory lists for stacks
 Use free memory lists for TCBs

 Synchronization
 Must serialize concurrent access
 Latency and throughput concerns

 Latency: how fast is the uncontended case?
 Throughput: how many operations per time are possible?

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Thread and process management
 Synchronization alternatives

 Single lock
 Single lock for all thread data structures
 Low latency in non-contended case
 Limits throughput

 Multiple locks

15© 2009 University of Karlsruhe, System
Architecture Group

p
 Separate locks for ready queues, wait queues, free lists, …
 Higher latency, but better throughput expected

 (Processor-)Local free lists:
 Use local memory allocation pools
 Reduces contention when allocating TCBs or stacks
 Trades space for time (why?)
 May induce additional memory allocation costs
 May require to balance pools

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Thread and process management
 Synchronization alternatives

 Local ready queues:
 Use local queues for starting/resuming threads
 Reduces contention for queuing threads in the ready

queue(s)
 May require to balance thread load

16© 2009 University of Karlsruhe, System
Architecture Group

 Requires synchronization during load balancing

 Implementing synchronization
 Cannot use threading (obviously)
 Use spin locks

 Locks are held shortly
 Use hardware facilities

 cmpxchg et al.
 incurs bus locking overhead

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Computers 38:12 1989

Program execution

 The road to a running program:

Compiler/
Assembler

D i
Source
C d

.cc

Object
Fil

.o

17© 2009 University of Karlsruhe, System
Architecture Group

Other
Object
Files

.o

Other
Object
Files

.o

Other
Object
Files

.oLinker

Loader

Dynamic
System
Libraries

Runnable
In-memory

Image

Code File

Exe-
cutable

prog

Program execution
 Loading an executable

 What do we need to load?
 Execution context

 Initial instruction pointer
 Initial stack pointer
 Program arguments

M t t

18© 2009 University of Karlsruhe, System
Architecture Group

 Memory context
 Code
 Data

 Where do we load it?
 Static code/data specified by linker

 Encoded in executable file
 Developers can tweak linker to modify layout

 Dynamic code/data specified by operating system
 Virtual memory subsystem

Example program layout

Initial Task (pager) Runnable Image

stack

Location defined
by convention in

VM system

19© 2009 University of Karlsruhe, System
Architecture Group

data

code

Location defined
by linker

Location defined
by linker

Dynamic
data

Location defined
by VM system

Executable file format

 Case study: ELF format
 Executable and Linkable Format
 Four major parts in ELF file

 ELF header
 roadmap

ELF header

Prog. Hdrs

.text

odata

Section Hdrs

20© 2009 University of Karlsruhe, System
Architecture Group

p
 Program headers

 describe segments directly related to
program loading

 Section headers
 describe contents of the file

 The data itself

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
unsigned char e_ident[EI_NIDENT]; /* Magic number & other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32 Addr e entry; /* Entry point virtual address */

 ELF header
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

21© 2009 University of Karlsruhe, System
Architecture Group

_ _ y y p
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize;/* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize;/* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
Elf32_Word sh_name; /* Section name (str tbl index)*/
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr */
Elf32 Off sh offset;/* Section file offset */

 Section headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

22© 2009 University of Karlsruhe, System
Architecture Group

Elf32_Off sh_offset;/ Section file offset /
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section info */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds

table */
} Elf32_Shdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

typedef struct
{
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; /* Segment virt. address */
Elf32_Addr p_paddr; /* Segment phys. address */
Elf32 W d fil /* S t i i fil */

Prog.

Seg 1

 Program headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs

23© 2009 University of Karlsruhe, System
Architecture Group

Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in mem */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Seg 1

Prog.

Seg 2

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note

Executable file format

$ objdump -h test_client
testclient: file format elf32-i386
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000200d 00300000 00300000 00001000 2**4

CONTENTS ALLOC LOAD READONLY CODE

 Example: test_client section headers

24© 2009 University of Karlsruhe, System
Architecture Group

CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 000004b4 00302020 00302020 00003020 2**5

CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .data 00002038 00303000 00303000 00004000 2**12

CONTENTS, ALLOC, LOAD, CODE
3 .ctors 00000000 00306000 00306000 00007000 2**0

CONTENTS
4 .dtors 00000000 00306000 00306000 00007000 2**0

CONTENTS
5 .bss 00000404 00306000 00306000 00007000 2**2

ALLOC
6 .debug_abbrev 000008b5 00000000 00000000 00007000 2**0

CONTENTS, READONLY, DEBUGGING.

Executable file format

$ objdump -p test_client

testclient: file format elf32-i386

Program Header:
LOAD ff 0 00001000 dd 0 00300000 dd 0 00300000 li 2**12

 Example: test_client program headers

25© 2009 University of Karlsruhe, System
Architecture Group

LOAD off 0x00001000 vaddr 0x00300000 paddr 0x00300000 align 2**12
filesz 0x000024d4 memsz 0x000024d4 flags r-x

LOAD off 0x00004000 vaddr 0x00303000 paddr 0x00303000 align 2**12
filesz 0x00002038 memsz 0x00003404 flags rwx

$

 Note: memsz > filesz
 implicit .bss segment

 batman's shameful secret
 block started by symbol

 Reserved but uninitialized data
 Must be zero-filled

Thread scheduling and accounting

 Threads imply scheduling problems
 Who runs next on a processor?
 Which processor should a thread run?
 How long should a thread run?

26© 2009 University of Karlsruhe, System
Architecture Group

 …
 Wanted: separation of policy & mechanisms

 Mechanism:
 (re-)dispatching, preemption, migration, accounting

 Policy:
 Allocation, Budgeting, priorities, scheduling classes

latency constraints, …

Thread scheduling and accounting

 Problems:
 Scheduling may span multiple subsystems and

layers
 Distributed/hierarchical scheduling
 E.g., Web server: application-directed, OS-enforced

27© 2009 University of Karlsruhe, System
Architecture Group

g , pp ,
scheduling

 distributed resource managers distributed accounting

 Scheduling is tied to other OS-abstractions
 may imply scheduling decision
 Examples

 blocking I/O, IPC, interrupts, exceptions, …
 resource consumption/exhaustion (memory, energy, …)

 Policy and mechanism hard to distinguish

Thread scheduling and accounting

 Problems:
 Scheduling policies are complex

 Different environments
 Different policies

Multidimensional problems

28© 2009 University of Karlsruhe, System
Architecture Group

 Multidimensional problems

 Performance implications
 Scheduling distributed and entangled
 Diverse but frequently invoked scheduling-related

services
 Need simple and clean abstractions
 Separation of policy and mechanism may be complex

and inefficient

Thread scheduling policies

 Processor-based scheduling
 Service time

 Working set, execution signature
 Processor-internal characteristics

 Performance counters, HW sensors
 Processor-associated resources

Time-Based
Scheduling

Energy-aware
Scheduling

Affinity

29© 2009 University of Karlsruhe, System
Architecture Group

 Processor associated resources
 Caches, Memory
 Pinned components (e.g., devices, drivers)

 Sharing
 Communication facilities
 IPC, shared memory, …

 Load balancers
 Run queue length
 Idle time
 Context switch rates

Affinity
Scheduling

Co-/Gang-
Scheduling

Load
Balancing

Traditional scheduling approaches

 Kernel level scheduling
 Kernel provides a notion of executable entity

 Kernel threads, processes, tasks, …
 Execution context initialized by the user

 Kernel responsible for threads
 Management

30© 2009 University of Karlsruhe, System
Architecture Group

g
 Scheduling
 Dispatching

 Central, in-kernel management
 Global state and visibility
 Low interaction with other subsystems/layers
 Kernel-managed scheduling policies (+tweaking)

 Execution contexts entangled with many other abstractions
 Memory protection
 Accounting
 Communication
 Other resources (files, I/O, …)

- General - Gang
- Real time - …

Traditional scheduling approaches

 Analysis
 Global scope

 All applications are subject to scheduling
 Kernel can enforce scheduling decisions

 Low-overhead scheduling

31© 2009 University of Karlsruhe, System
Architecture Group

 Low overhead scheduling
 central scheduling state
 no boundary crossing needed

 One-fits-it-all approach
 Fixed scheduling policies, tweaking at most
 Oblivious to application requirements
 Problems:

 Competing jobs? Different job requirements?
 Different number of threads/job?
 Different application QoS?

Traditional scheduling approaches

 Analysis
 Oblivious to special environments

 Linux as desktop system, Linux as scalable server?
 response time vs. throughput

 Complex and heavyweight abstractions
P it h h h d li t t t t

32© 2009 University of Karlsruhe, System
Architecture Group

 Process switch changes scheduling context, memory context,
I/O context,….

 OS oblivious to application boundaries
 application spanning multiple processes, threads, address

spaces?
 Extensibility is difficult

 Scheduling is deeply embedded within the kernel
 No modularization, no component boundaries

Further reading: H. Franke et al. PMQS: Scalable Linux Scheduling for High End Servers. Proceedings of the 5th Annual Linux
Showcase and Conference, 2001
G. Banga et al. Resource containers: A new facility for resource management in server systems. Proceedings of the 3rd Symposium on
Operating Systans Design and Implementation (OSDI-99).

Traditional scheduling approaches

 Application level scheduling
 Application provides its own thread notion

 Transparently mapped one or more kernel-provided
execution contexts

 Application responsible for

33© 2009 University of Karlsruhe, System
Architecture Group

pp p
 Thread management
 Thread scheduling
 Thread dispatching

 Decentralized, application-wise management
 Local state and visibility
 No interaction with other subsystems/layers
 Arbitrary policies and extension possible

Traditional scheduling approaches

 Analysis
 Library approach
 Very low overhead abstractions

 Only within application
 Thread switch only switches execution context

C t li ti l l Q S

34© 2009 University of Karlsruhe, System
Architecture Group

 Can respect application-level QoS
 Local scope

 OS-agnostic threads
 Application scheduler cannot respect

 OS-Kernel
 Other subsystems
 Other applications

 And vice versa
 Examples:

 Blocking on I/O
 Component-based systems

Scheduler activations

 Kernel-level threads alone
 Heavy-weight abstractions
 Not extensible, not customizable

 User-level threads alone

35© 2009 University of Karlsruhe, System
Architecture Group

 Oblivious to OS activity (pagefaults, I/O)
 Oblivious to multi-programming

 Idea:
 Combine user and kernel threads

Source: T. E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy Scheduler Activations: Effective Kernel Support for the User-Level Management of
Parallelism. ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, Pages 53-79.

Scheduler activations

 Basic assumption:
 Common case

 Thread operations without kernel intervention
 Communication, synchronization
 Use (pure) user-level threads

Infrequent case

36© 2009 University of Karlsruhe, System
Architecture Group

 Infrequent case
 Kernel intervention needed
 E.g., processor reallocation, page faults, …
 Use user-level threads but mimic kernel thread behavior
 When a thread blocks, the processor can run another

thread
 Requirement: Distributed scheduling control

 Kernel needs to know application state
 How much parallelism does the application contain?

 Applications need to know kernel scheduling state
 When does a thread block?

Scheduler activations

 Approach:
 Abstractions:

 Kernel provides virtual multiprocessors
 Address spaces have a dedicated scheduler

M h i

37© 2009 University of Karlsruhe, System
Architecture Group

 Mechanisms:
 Scheduler notifies the kernel on the thread operations

that affect processor allocation
 Kernel notifies scheduler on all address-space-related

kernel scheduling events
 The latter is termed scheduler activation

Scheduler activations

 Virtual processors (VPs):
 One or more VPs per address space
 AS scheduler freely allocates threads to VPs
 Kernel vectors re-allocations to the AS scheduler

AS scheduler notifies kernel if it needs more/less

38© 2009 University of Karlsruhe, System
Architecture Group

 AS scheduler notifies kernel if it needs more/less
VPs

 Upcall points:
 Processor added
 Processor preempted
 Scheduler activation blocked
 Scheduler activation unblocked

Scheduler activations

 Scheduler activation:
 Execution context for user-level threads
 Notification system for kernel
 Scratch space for saving user-level contexts

 Application start:
Kernel creates scheduler activation

39© 2009 University of Karlsruhe, System
Architecture Group

 Kernel creates scheduler activation
 Assigns activation to a virtual processor
 Upcalls into application at fixed entry (scheduler)
 Scheduler initializes itself
 Scheduler dispatches the first user-level thread to activation

 Scheduling-related kernel-events
 Kernel creates a new scheduler activation
 Assigns the activation to the VP
 Upcalls into application at fixed entry (scheduler)
 Scheduler processes the event

Scheduler activations

 Example: I/O request

Application

A AAA

40© 2009 University of Karlsruhe, System
Architecture Group

Kernel
UPCALLUPCALLBLOCK

CPU CPU

VP VP

ADD ADDUNBLOCK

A

Scheduler activations

 Conclusion & Analysis
 Basic idea:

 Combined application-level and kernel-level scheduler
 Synchronous vectoring to notify user level scheduler

 Extensible, keeps policy out of the kernel
K l l di t h

41© 2009 University of Karlsruhe, System
Architecture Group

 Kernel only dispatches
 Users may develop arbitrary policies

 Limited to threads within a single address-space
 One user-level scheduler per address-space
 User-level scheduler can not dispatch threads in other

protection domains
 Performance penalties

 Needs 2 user-kernel transitions per upcall
 Depends on the number of scheduling related events

Scheduler activations: similar approaches

 Process control
 Improve multiprocessing in multiprogrammed

systems
 Fair behavior while maximizing throughput

 Basic idea:
A li ti f b t if

42© 2009 University of Karlsruhe, System
Architecture Group

 Application performance best if
 #application processes = #processors

 Employ centralized scheduler
 Calculates optimal number of processes for each application
 Requests applications to dynamically change their number of

processes
 Relies on polling and cooperativeness of applications

Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM
Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,
25(5), pp. 110-121, 1991

Scheduler activations: similar approaches

 1st class user-level threads
 Kernel-threads are heavy-weight
 User-level threads have a second-class status

 Not known by kernel
 Lack of interaction methodology between different user-

level thread packages

43© 2009 University of Karlsruhe, System
Architecture Group

level thread packages
 Basic idea:

 Grant user-level threads 1st-class status
 Use shared memory for interaction between kernel and

user
 Use software-interrupts for events that require

synchronous interaction
 Develop scheduler interface convention for interaction

between schedulers
Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM

Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,
25(5), pp. 110-121, 1991

Scheduler activations: similar approaches

 CPU inheritance scheduling
 Most OSes only support rigid scheduling

 Set of scheduling classes
 Implementations tied together in the OS

 Basic idea:
Th d d t th i ti t th th d

44© 2009 University of Karlsruhe, System
Architecture Group

 Threads can donate their time to other threads
 Threads can wait for timing events

 interrupts, timers, blocking of time donatees,,,
 Hierarchical control over processing time
 Threads schedule themselves
 Allow for arbitrary relations and administrative domains

 Limitations:
 Timing hard to virtualize
 Not fully evaluated

Source: B.Ford et al. CPU inheritance scheduling. Proceedings of the 2nd Usenix Symposium on Operating Systems Design and Implementation (OSDI), p91-105. 1996

Scheduling in multi-server systems

 Threads represent different entities
 Servers, Clients, Resources

 IPC is “the” mechanism for everything
 Requests
 Dispatching

Synchronization

45© 2009 University of Karlsruhe, System
Architecture Group

 Synchronization
 Interrupts
 Resource allocations
 Permission faults

 IPC is tied to scheduling
 IPC operations may block/unblock entities

 Who runs after a unblocking operation?
 Who runs after a blocking operation?

 IPC operations may imply scheduling decisions
 Depends on the usage scenario

Scheduling in multi-server systems

 Server requests
- Servers model resources
- Requests imply resource
donation

- Do not change scheduling
t t i

ipcClient

Server

46© 2009 University of Karlsruhe, System
Architecture Group

context on ipc

 Resource faults

ipc
Client Pager

- Resource managers shouldn’t
run in clients’ contexts only

- They may have insufficient
resources

- Do change client contexts

Scheduling in multi-server systems

 Synchronization
ipc

T1 T2

- Threads are independent
- IPC used for notification
- Do change scheduling context

47© 2009 University of Karlsruhe, System
Architecture Group

 RT subsystem
- May want strict priorities
- Perform scheduling decision
during IPC

ipc

Prio 1

Prio 3

Prio 2

Scheduling in multi-server systems

 The Dilemma:
 Policy should be controlled by applications
 IPC performance is critical

 Alternatives:
 Policy upcalls:

Vector every scheduling event (i e every IPC)

48© 2009 University of Karlsruhe, System
Architecture Group

 Vector every scheduling event (i.e., every IPC)
 expensive

 Type-safe description languages:
 Download scheduling code into the kernel
 complex, insecure, no timing guarantees

 Default policies (L4 state of the art behavior)
 Pistachio:

 Kernel-level round robin scheduler
 Always donate time slice

 Fiasco:
 In-kernel RT scheduling policy

 Fast but often inappropriate

Case study: scheduling in K42

 K42 is
 A high performance, open source, general-purpose research

operating system kernel for cache-coherent multiprocessors
 Linux-compatible

 Main goals:

49© 2009 University of Karlsruhe, System
Architecture Group

 Scalability and performance
 Adaptability
 Extensibility and maintainability
 Open-source compatibility

 Approach:
 Modular, object-oriented code
 No centralized code-paths, global data structures, locks
 Move system functionality from kernel to servers and users

Case study: scheduling in K42

 K42 structure
 User-mode libraries

 Thread scheduling
 Linux emulation
 Application libraries (GLIBC, …)

 System layers

50© 2009 University of Karlsruhe, System
Architecture Group

y y
 NFS
 K42 scalable FS
 Name server
 Socket server
 Pipe server

 Kernel
 Memory management
 IPC
 Base scheduling
 Networking
 Devices

Sources J. Appavoo et al. Experience with K42, an Open Source, Linux-compatible, Scalable Operating-system Kernel. IBM Systems Journal, 44:2 2005

Case study: scheduling in K42

 Scheduling in K42
 Partitioned between kernel and user
 Processes consist of

 One address space and
 One or more dispatchers

 Kernel schedules dispatchers

51© 2009 University of Karlsruhe, System
Architecture Group

p
 Uses kernel resources (e.g., pinned memory)

 Dispatchers schedule threads
 Threads are oblivious to the kernel
 Applications have a customizable thread model
 Can create arbitrary number of threads
 Can not exhaust kernel resources

 Multiple dispatchers
 Attain parallelism
 Establish different scheduling paradigms (QoS, Prio, …)

 Similar to scheduler-activations
Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Dispatchers

 bound to a processor
 belong to resource domains

 Resource domains
 own resource rights (e.g.,

D

52© 2009 University of Karlsruhe, System
Architecture Group

RDbg

g (g
processor share)

 are accountable entities
 belong to one of five scheduling

classes

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D

RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Scheduling classes

1. system, hard real time
2. gang-scheduled
3. soft real time
4. general purpose

D

53© 2009 University of Karlsruhe, System
Architecture Group

RDbg
5. Background

 Classes are strictly prioritized
 Within scheduling classes

 Weighted proportional sharing
 Admission controls for real time and gang scheduling

 On scheduling events
 Kernel chooses resource domain based on kernel policies
 Kernel chooses a dispatcher from that domain
 Kernel does not ensure fairness within a domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D

Case study: scheduling in K42

 Kernel scheduling
 Soft preemptions:

 Approach:
 Upcall to dispatcher
 Dispatcher saves its state
 Dispatcher yields voluntarily after short time

Assumptions:

54© 2009 University of Karlsruhe, System
Architecture Group

 Assumptions:
 Current and next dispatcher reside in the same scheduling

class and
 Current dispatcher is well-behaving

 Hard preemptions:
 Assumptions:

 Current dispatcher resides in a lower-prioritized class than the
next dispatcher or

 Current dispatcher hasn’t responded timely to upcall

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel IPC
 Protected procedure call (PPC) semantics
 RPC invocation and return plus address space switch

 syscall switch AS sysret

 Kernel IPC and scheduling:
 PPC is an explicit handoff from one to another

Process

55© 2009 University of Karlsruhe, System
Architecture Group

RD

 PPC is an explicit handoff from one to another
dispatcher

 How to integrate this handoff?
 Pure Variant 1: strict scheduling

 Switch dispatcher
 Switch resource domain
 Pursue scheduling decision in between

 Analysis
 Respects kernel scheduling
 Degrades performance!

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

RD

Process Process

D D

PPC

RD D

?

Case study: scheduling in K42

 Kernel IPC and scheduling:
 Pure Variant 2: resource donation

 Switch dispatcher but
 Keep caller’s resource domain

 Clients donate their domain
 Server’s consumption accounted

Process Process

D DRD

56© 2009 University of Karlsruhe, System
Architecture Group

 Server s consumption accounted
to clients

 Analysis
 Allows for efficient implementation
 Complex

 Kernel must schedule server dispatchers in client domains
 Servers must be able to switch resource domains

 Biggest problem: Priority inversion (!)
 Resource-constrained client calls server
 Server acquires a lock and suffers resource exhaustion
 Only solution: enhance locking; too expensive

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel IPC and scheduling:
 Final approach: mix variants 1 and 2

 Switch dispatcher
 Keep caller’s resource domain until next in-kernel

scheduling
 Then switch resource domain

57© 2009 University of Karlsruhe, System
Architecture Group

 Then switch resource domain
 Analysis:

 Efficient in the common case
 Avoids priority inversion
 Reduces the precision and determination of accounting

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Kernel/Dispatcher interface
 Dispatcher structure

 Mostly based on shared memory
 Disable-interrupts bit
 Pending interrupts vector
 Machine-state save area
 Control registers message buffers

58© 2009 University of Karlsruhe, System
Architecture Group

 Control registers, message buffers
 Current dispatcher location

 Stored in read-only page at fixed
virtual address

 Different mappings per processor
 Entry points

 Code addresses for different kernel
events

 Changed via system call
 Initialized by dispatcher

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 User-Level Scheduling
 Library code providing thread

implementations
 Thread object

 Contains current Stack pointer
Oth t t d t k

59© 2009 University of Karlsruhe, System
Architecture Group

 Other state saved on stack
 CurrentThread

 Points to currently running thread
 Can be special register or hard-coded virtual

address
 ThreadIDs

 64-bit handle
 Identifies thread and dispatcher

 ID changes on migration

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 User-Level Scheduling
 Thread operations

 Creation
 Allocate thread object from free list, initialize it
 Put into dispatcher ready queue

 Block

60© 2009 University of Karlsruhe, System
Architecture Group

 Block
 Saves threadID in some data structure
 (Thread must prevent migration for ID to remain

valid)
 Unblock

 Resume threadID from data structure
 Call dispatcher to resume thread

 Migration
 Load balancing: migrate to idle dispatcher
 QoS change: migrate to dispatcher with other

resource domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Case study: scheduling in K42

 Conclusion:
 Two-level scheduling approach

 Dispatchers
 Kernel-level scheduling classes and domains
 User-level threads

61© 2009 University of Karlsruhe, System
Architecture Group

 Soft preemptions (acitvations) for user-visible
scheduling

 Hard preemptions for enforcement
 IPC/PPC and scheduling:

 Restricted resource donation model
 Default in-kernel policy that assumes client/server

relations
 Trades off accuracy for performance

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

Thursday

 File / Task Service
Design Presentations

62© 2009 University of Karlsruhe, System
Architecture Group

