
Systems Design and Implementation
I.6 – Threads and Scheduling

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

June 2, 2009



Overview

 Motivation
 Threads and Processes 

 Thread and Process Management
 Usage scenarios
 Program execution

2© 2009 University of Karlsruhe, System 
Architecture Group

g
 Thread Scheduling

 Thread scheduling and accounting
 Classic scheduling approaches
 Scheduler activations et al.

 Multi-server systems
 Scheduling issues in multi-server systems 
 Case study: Scheduling in K42



Motivation

 Definition of Thread
 Short for “thread of execution”
 Represents an independent flow of execution

 Purposes of threads 
 Expressing independent flow of execution
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CPU CPU CPU

 Expressing independent flow of execution
 Dispatcher/Worker Models
 Serialized Threads

 Expressing concurrency:
 Multithreading via Time-Slicing
 Multithreading via Multiprocessing



Motivation

 Purposes of threads
 Resource management

 Overlap I/O and CPU
 Prioritize threads for QoS/RT/…

S it
CPU

1 2

CPU
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 Security
 Performance Isolation 



Thread usage scenarios

 Structuring programs
 Parallel loop

<parallel for> (i=1; i<n; i++) 
b[i] = (a[i] + a[i-1]) / 2.0

Parallel subprocedures
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 Parallel subprocedures
<parallel> {

i_am = get_thread_num();
n_threads = get_num_threads();
/* 
* do stuff
*/ 

}



Thread usage scenarios

 Structuring programs
 Fork/Join

<parallel fork> { 
aa = bb; // Unit 1
cc = dd; // Unit 2
ee = ff; // Unit 3

} < ll l j i >
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} <parallel join>

 Worker/Dispatcher
 Example: Webserver
 Dispatcher ready while work being done

Client

Client

Client

select



Thread usage scenarios
 Structuring programs

 Pipelines
 Difference to procedures?
 Threads do parallel processing PDUn

PDUn+1
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 Signal/Call-back threads
 Modeling asynchronous events
 Thread can be created dynamically 

(pop-up thread)
 Arriving messages, interrupts, …

irq
msg
…



Motivation
 Thread management

 How to manage thread state
 How to create, destroy, dispatch, … threads

 Program execution 
 How to create threads from a file
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 Thread scheduling
 How to schedule threads among processors

 Thread accounting
 How to track threads’ processor usage

 Resource management
 How to schedule and account threads on other 

resources



Thread and process management

 Thread state
 Independent flow of execution
 Execution state:

 Instruction pointer
 Stack pointer
 … Enough? 

call chain
referenced data
register state

current control flow
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 Broader thread state

 Scheduling/accounting state
 thread state, ready queue
 current processor
 priority, scheduling class
 timeslice, budget, latency 

 Memory state
 reference to address space 
 (text/data/heap) segments
 swap state

gang

ready running

meprev next

blocked

real-time regular

10ms irq: 1ms

limitlimit

base

limitlimit

base M
AI

N
 M

EM



Thread and process management

 Broader thread state
 Communication state

 Thread used as 
communication endpoint

 communication state 
 wait queue send queue

sender1me sender2

send towait for
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 wait queue, send queue

Process

T … …

…

…

……

 Process state
 Process id 
 Process hierarchy



Thread and process management

 Broader thread state
 Security

 user, group, security class
 Other resource state

 File references
executing file

stoess i30staff

/bin/ls

foo bar
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 executing file
 open files

 I/O resources
 Open network handles
 Open peripheral devices
 …

 Storing thread state
 Thread Control Block
 Pointer lists 

 May be stored within TCB

socket

fd0

TCB

next
prev

TCB

next
prev

TCB

next
prev



Thread and process management

 Basic Thread operations
 Create

 Like asynchronous procedure call
 Allocate and initialize TCB

 Initial IP, SP
 Enqueue thread in ready queue
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 Enqueue thread in ready queue
 Startup

 Remove from ready queue
 Why not create and startup in one step?

 Block (on resource, ipc, …)
 Save register state and IP on stack
 Enqueue into wait queue
 Update thread’s state
 Resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory  
Multiprocessors. IEEE Transactions of Computers 38:12 1989



Thread and process management
 Basic Thread operations

 Signal Thread 
 Remove thread from wait queue
 Place thread on ready queue
 Update thread’s state
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 Resume thread
 Remove thread from ready queue
 Restore register state
 Continue executing at IP

 Thread finish
 Deallocate stack and TCB
 Find and resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory  
Multiprocessors. IEEE Transactions of Computers 38:12 1989



Thread and process management
 Thread management considerations

 Performance optimizations 
 Do not waste stack space 

 put initial Arguments in the TCB

 Reduce overhead of finding free memory
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 Use free memory lists for stacks
 Use free memory lists for TCBs

 Synchronization
 Must serialize concurrent access
 Latency and throughput concerns

 Latency: how fast is the uncontended case?
 Throughput: how many operations per time are possible?

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory  
Multiprocessors. IEEE Transactions on Computers 38:12 1989



Thread and process management
 Synchronization alternatives

 Single lock
 Single lock for all thread data structures
 Low latency in non-contended case
 Limits throughput

 Multiple locks
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 Separate locks for ready queues, wait queues, free lists, …
 Higher latency, but better throughput expected

 (Processor-)Local free lists:
 Use local memory allocation pools
 Reduces contention when allocating TCBs or stacks
 Trades space for time (why?)
 May induce additional memory allocation costs
 May require to balance pools

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory  
Multiprocessors. IEEE Transactions on Computers 38:12 1989



Thread and process management
 Synchronization alternatives

 Local ready queues:
 Use local queues for starting/resuming threads
 Reduces contention for queuing threads in the ready 

queue(s)
 May require to balance thread load
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 Requires synchronization during load balancing

 Implementing synchronization
 Cannot use threading (obviously)
 Use spin locks

 Locks are held shortly
 Use hardware facilities

 cmpxchg et al.
 incurs bus locking overhead

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory  
Multiprocessors. IEEE Transactions on Computers 38:12 1989



Program execution

 The road to a running program:

Compiler/
Assembler

D i
Source
C d

.cc

Object 
Fil

.o
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Other
Object 
Files

.o

Other
Object 
Files

.o

Other
Object 
Files

.oLinker

Loader

Dynamic
System
Libraries

Runnable
In-memory

Image

Code File

Exe-
cutable

prog



Program execution
 Loading an executable

 What do we need to load?
 Execution context

 Initial instruction pointer
 Initial stack pointer
 Program arguments

M t t
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 Memory context
 Code 
 Data

 Where do we load it?
 Static code/data specified by linker

 Encoded in executable file 
 Developers can tweak linker to modify layout

 Dynamic code/data specified by operating system
 Virtual memory subsystem



Example program layout

Initial Task (pager) Runnable Image

stack

Location defined 
by convention in 

VM system
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data

code

Location defined 
by linker

Location defined 
by linker

Dynamic
data

Location defined 
by VM system



Executable file format

 Case study: ELF format
 Executable and Linkable Format
 Four major parts in ELF file

 ELF header 
 roadmap

ELF header

Prog. Hdrs

.text

odata

Section Hdrs
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 Program headers 

 describe segments directly related to 
program loading

 Section headers 
 describe contents of the file

 The data itself

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note



Executable file format

typedef struct
{
unsigned char e_ident[EI_NIDENT]; /* Magic number & other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32 Addr e entry; /* Entry point virtual address */

 ELF header
ELF header

Prog. Hdrs

.text

odata

Section Hdrs
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Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize;/* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize;/* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note



Executable file format

typedef struct
{
Elf32_Word sh_name; /* Section name (str tbl index)*/
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr */
Elf32 Off sh offset;/* Section file offset */

 Section headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs
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Elf32_Off sh_offset;/  Section file offset /
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section info */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds

table */
} Elf32_Shdr;

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note



Executable file format

typedef struct
{
Elf32_Word p_type;   /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr;  /* Segment virt. address */
Elf32_Addr p_paddr; /* Segment phys. address */
Elf32 W d fil /* S t i i fil */

Prog. 

Seg 1

 Program headers
ELF header

Prog. Hdrs

.text

odata

Section Hdrs
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Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz;  /* Segment size in mem */
Elf32_Word p_flags;  /* Segment flags */
Elf32_Word p_align;  /* Segment alignment */

} Elf32_Phdr;

Seg 1

Prog. 

Seg 2

.rodata

.data

.eh_frame

.sbss

.bss

.comment

.note



Executable file format

$ objdump -h test_client 
testclient:     file format elf32-i386
Sections:
Idx Name          Size      VMA       LMA       File off  Algn
0 .text         0000200d  00300000  00300000  00001000  2**4

CONTENTS ALLOC LOAD READONLY CODE

 Example: test_client section headers
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CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata       000004b4  00302020  00302020  00003020  2**5

CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .data         00002038  00303000  00303000  00004000  2**12

CONTENTS, ALLOC, LOAD, CODE
3 .ctors        00000000  00306000  00306000  00007000  2**0

CONTENTS
4 .dtors        00000000  00306000  00306000  00007000  2**0

CONTENTS
5 .bss          00000404  00306000  00306000  00007000  2**2

ALLOC
6 .debug_abbrev 000008b5  00000000  00000000  00007000  2**0

CONTENTS, READONLY, DEBUGGING.



Executable file format

$ objdump -p test_client 

testclient:     file format elf32-i386

Program Header:
LOAD ff 0 00001000 dd 0 00300000 dd 0 00300000 li 2**12

 Example: test_client program headers
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LOAD off    0x00001000 vaddr 0x00300000 paddr 0x00300000 align 2**12
filesz 0x000024d4 memsz 0x000024d4 flags r-x

LOAD off    0x00004000 vaddr 0x00303000 paddr 0x00303000 align 2**12
filesz 0x00002038 memsz 0x00003404 flags rwx

$

 Note: memsz > filesz
 implicit .bss segment

 batman's shameful secret 
 block started by symbol

 Reserved but uninitialized data
 Must be zero-filled



Thread scheduling and accounting

 Threads imply scheduling problems
 Who runs next on a processor?
 Which processor should a thread run?
 How long should a thread run?
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 …
 Wanted: separation of policy & mechanisms

 Mechanism: 
 (re-)dispatching, preemption, migration, accounting

 Policy:
 Allocation, Budgeting, priorities, scheduling classes 

latency constraints,  …



Thread scheduling and accounting

 Problems:
 Scheduling may span multiple subsystems and 

layers
 Distributed/hierarchical scheduling
 E.g., Web server: application-directed, OS-enforced 
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scheduling

 distributed resource managers  distributed accounting

 Scheduling is tied to other OS-abstractions
 may imply scheduling decision
 Examples

 blocking I/O, IPC, interrupts, exceptions, … 
 resource consumption/exhaustion (memory, energy, …)

 Policy and mechanism hard to distinguish



Thread scheduling and accounting

 Problems:
 Scheduling policies are complex

 Different environments
 Different policies

Multidimensional problems
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 Multidimensional problems

 Performance implications
 Scheduling distributed and entangled
 Diverse but frequently invoked scheduling-related 

services
 Need simple and clean abstractions
 Separation of policy and mechanism may be complex 

and inefficient 



Thread scheduling policies

 Processor-based scheduling
 Service time

 Working set, execution signature
 Processor-internal characteristics

 Performance counters, HW sensors
 Processor-associated resources

Time-Based
Scheduling

Energy-aware
Scheduling

Affinity
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 Processor associated resources
 Caches, Memory 
 Pinned components (e.g., devices, drivers)

 Sharing
 Communication facilities
 IPC, shared memory, …

 Load balancers
 Run queue length
 Idle time
 Context switch rates

Affinity
Scheduling

Co-/Gang-
Scheduling

Load 
Balancing



Traditional scheduling approaches

 Kernel level scheduling
 Kernel provides a notion of executable entity

 Kernel threads, processes, tasks, …
 Execution context initialized by the user

 Kernel responsible for threads
 Management
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 Scheduling
 Dispatching 

 Central, in-kernel management
 Global state and visibility 
 Low interaction with other subsystems/layers
 Kernel-managed scheduling policies (+tweaking)

 Execution contexts entangled with many other abstractions
 Memory protection 
 Accounting 
 Communication 
 Other resources (files, I/O, …)

- General - Gang
- Real time - …



Traditional scheduling approaches

 Analysis
 Global scope 

 All applications are subject to scheduling
 Kernel can enforce scheduling decisions

 Low-overhead scheduling
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 Low overhead scheduling
 central scheduling state 
 no boundary crossing needed

 One-fits-it-all approach
 Fixed scheduling policies, tweaking at most
 Oblivious to application requirements
 Problems:

 Competing jobs? Different job requirements?
 Different number of threads/job?
 Different application QoS? 



Traditional scheduling approaches

 Analysis
 Oblivious to special environments

 Linux as desktop system, Linux as scalable server?
 response time vs. throughput

 Complex and heavyweight abstractions
P it h h h d li t t t t
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 Process switch changes scheduling context, memory context, 
I/O context,….

 OS oblivious to application boundaries 
 application spanning multiple processes, threads, address 

spaces?
 Extensibility is difficult

 Scheduling is deeply embedded within the kernel
 No modularization, no component boundaries

Further reading: H. Franke et al. PMQS: Scalable Linux Scheduling for High End Servers. Proceedings of the 5th Annual Linux   
Showcase and Conference, 2001
G. Banga et al. Resource containers: A new facility for resource management in server systems. Proceedings of the 3rd Symposium on                  
Operating Systans Design and Implementation (OSDI-99). 



Traditional scheduling approaches

 Application level scheduling
 Application provides its own thread notion

 Transparently mapped one or more kernel-provided 
execution contexts

 Application responsible for
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 Thread management
 Thread scheduling
 Thread dispatching 

 Decentralized, application-wise management
 Local state and visibility 
 No interaction with other subsystems/layers
 Arbitrary policies and extension possible



Traditional scheduling approaches

 Analysis
 Library approach 
 Very low overhead abstractions 

 Only within application
 Thread switch only switches execution context

C t li ti l l Q S
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 Can respect application-level QoS
 Local scope

 OS-agnostic threads
 Application scheduler cannot respect 

 OS-Kernel
 Other subsystems 
 Other applications

 And vice versa
 Examples:

 Blocking on I/O
 Component-based systems



Scheduler activations

 Kernel-level threads alone
 Heavy-weight abstractions
 Not extensible, not customizable

 User-level threads alone
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 Oblivious to OS activity (pagefaults, I/O)
 Oblivious to multi-programming

 Idea: 
 Combine user and kernel threads

Source: T. E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy Scheduler Activations: Effective Kernel Support for the User-Level Management of 
Parallelism. ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, Pages 53-79.



Scheduler activations

 Basic assumption:
 Common case

 Thread operations without kernel intervention
 Communication, synchronization
 Use (pure) user-level threads

Infrequent case
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 Infrequent case
 Kernel intervention needed 
 E.g., processor reallocation, page faults, …
 Use user-level threads but mimic kernel thread behavior
 When a thread blocks, the processor can run another 

thread
 Requirement: Distributed scheduling control 

 Kernel needs to know application state
 How much parallelism does the application contain?

 Applications need to know kernel scheduling state
 When does a thread block?



Scheduler activations

 Approach:
 Abstractions:

 Kernel provides virtual multiprocessors
 Address spaces have a dedicated scheduler

M h i
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 Mechanisms:
 Scheduler notifies the kernel on the thread operations 

that affect processor allocation
 Kernel notifies scheduler on all address-space-related 

kernel scheduling events
 The latter is termed scheduler activation



Scheduler activations

 Virtual processors (VPs):
 One or more VPs per address space
 AS scheduler freely allocates threads to VPs
 Kernel vectors re-allocations to the AS scheduler

AS scheduler notifies kernel if it needs more/less
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 AS scheduler notifies kernel if it needs more/less 
VPs

 Upcall points:
 Processor added
 Processor preempted
 Scheduler activation blocked
 Scheduler activation unblocked



Scheduler activations

 Scheduler activation:
 Execution context for user-level threads
 Notification system for kernel
 Scratch space for saving user-level contexts

 Application start:
Kernel creates scheduler activation
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 Kernel creates scheduler activation
 Assigns activation to a virtual processor
 Upcalls into application at fixed entry (scheduler)
 Scheduler initializes itself
 Scheduler dispatches the first user-level thread to activation

 Scheduling-related kernel-events
 Kernel creates a new scheduler activation
 Assigns the activation to the VP
 Upcalls into application at fixed entry (scheduler)
 Scheduler processes the event



Scheduler activations

 Example: I/O request

Application

A AAA
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Kernel
UPCALLUPCALLBLOCK

CPU CPU

VP VP

ADD ADDUNBLOCK

A



Scheduler activations

 Conclusion & Analysis
 Basic idea: 

 Combined application-level and kernel-level scheduler
 Synchronous vectoring to notify user level scheduler

 Extensible, keeps policy out of the kernel
K l l di t h
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 Kernel only dispatches
 Users may develop arbitrary policies

 Limited to threads within a single address-space
 One user-level scheduler per address-space
 User-level scheduler can not dispatch threads in other 

protection domains
 Performance penalties

 Needs 2 user-kernel transitions per upcall
 Depends on the number of scheduling related events



Scheduler activations: similar approaches

 Process control 
 Improve multiprocessing in multiprogrammed 

systems
 Fair behavior while maximizing throughput

 Basic idea: 
A li ti f b t if
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 Application performance best if 
 #application processes = #processors

 Employ centralized scheduler
 Calculates optimal number of processes for each application
 Requests applications to dynamically change their number of 

processes
 Relies on polling and cooperativeness of applications

Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM   
Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,   
25(5), pp. 110-121, 1991 



Scheduler activations: similar approaches

 1st class user-level threads
 Kernel-threads are heavy-weight
 User-level threads have a second-class status

 Not known by kernel
 Lack of interaction methodology between different user-

level thread packages
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level thread packages
 Basic idea:

 Grant user-level threads 1st-class status
 Use shared memory for interaction between kernel and 

user
 Use software-interrupts for events that require 

synchronous interaction
 Develop scheduler interface convention for interaction 

between schedulers
Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM   

Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13th ACM Symposium on Operating Systems Principles, Operating Systems Review,   
25(5), pp. 110-121, 1991 



Scheduler activations: similar approaches

 CPU inheritance scheduling
 Most OSes only support rigid scheduling

 Set of scheduling classes
 Implementations tied together in the OS

 Basic idea:
Th d d t th i ti t th th d
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 Threads can donate their time to other threads
 Threads can wait for timing events 

 interrupts, timers, blocking of time donatees,,,
 Hierarchical control over processing time
 Threads schedule themselves
 Allow for arbitrary relations and administrative domains

 Limitations:
 Timing hard to virtualize
 Not fully evaluated

Source: B.Ford et al. CPU inheritance scheduling. Proceedings of the 2nd Usenix Symposium on Operating Systems Design and Implementation (OSDI), p91-105. 1996



Scheduling in multi-server systems

 Threads represent different entities
 Servers, Clients, Resources

 IPC is “the” mechanism for everything
 Requests 
 Dispatching

Synchronization

45© 2009 University of Karlsruhe, System 
Architecture Group

 Synchronization
 Interrupts
 Resource allocations
 Permission faults

 IPC is tied to scheduling
 IPC operations may block/unblock entities

 Who runs after a unblocking operation? 
 Who runs after a blocking operation?

 IPC operations may imply scheduling decisions
 Depends on the usage scenario



Scheduling in multi-server systems

 Server requests
- Servers model resources
- Requests imply resource   
donation

- Do not change scheduling 
t t i

ipcClient

Server
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context on ipc

 Resource faults

ipc
Client Pager

- Resource managers shouldn’t 
run in clients’ contexts only

- They may have insufficient  
resources

- Do change client contexts



Scheduling in multi-server systems

 Synchronization
ipc

T1 T2

- Threads are independent
- IPC used for notification
- Do change scheduling context
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 RT subsystem
- May want strict priorities
- Perform scheduling decision 
during IPC 

ipc

Prio 1

Prio 3

Prio 2



Scheduling in multi-server systems

 The Dilemma: 
 Policy should be controlled by applications
 IPC performance is critical

 Alternatives:
 Policy upcalls:

Vector every scheduling event (i e every IPC)
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 Vector every scheduling event (i.e., every IPC)
 expensive

 Type-safe description languages: 
 Download scheduling code into the kernel
 complex, insecure, no timing guarantees

 Default policies (L4 state of the art behavior)
 Pistachio:

 Kernel-level round robin scheduler
 Always donate time slice

 Fiasco:
 In-kernel RT scheduling policy

 Fast but often inappropriate



Case study: scheduling in K42

 K42 is 
 A high performance, open source, general-purpose research 

operating system kernel for cache-coherent multiprocessors 
 Linux-compatible

 Main goals:
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 Scalability and performance
 Adaptability
 Extensibility and maintainability
 Open-source compatibility

 Approach:
 Modular, object-oriented code
 No centralized code-paths, global data structures, locks
 Move system functionality from kernel to servers and users



Case study: scheduling in K42

 K42 structure
 User-mode libraries

 Thread scheduling 
 Linux emulation
 Application libraries (GLIBC, …)

 System layers
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y y
 NFS
 K42 scalable FS
 Name server
 Socket server
 Pipe server

 Kernel
 Memory management
 IPC
 Base scheduling
 Networking
 Devices

Sources J. Appavoo et al. Experience with K42, an Open Source, Linux-compatible, Scalable Operating-system Kernel. IBM Systems Journal, 44:2 2005



Case study: scheduling in K42

 Scheduling in K42
 Partitioned between kernel and user
 Processes consist of

 One address space and 
 One or more dispatchers

 Kernel schedules dispatchers
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p
 Uses kernel resources (e.g., pinned memory)

 Dispatchers schedule threads
 Threads are oblivious to the kernel
 Applications have a customizable thread model
 Can create arbitrary number of threads
 Can not exhaust kernel resources 

 Multiple dispatchers 
 Attain parallelism
 Establish different scheduling paradigms (QoS, Prio, …)

 Similar to scheduler-activations
Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002



RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Dispatchers 

 bound to a processor
 belong to resource domains

 Resource domains 
 own resource rights (e.g., 

D
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RDbg

g ( g
processor share)

 are accountable entities
 belong to one of five scheduling 

classes

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D



RDgp

Process Process

Case study: scheduling in K42

 Kernel scheduling
 Scheduling classes

1. system, hard real time
2. gang-scheduled
3. soft real time
4. general purpose

D
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RDbg
5. Background

 Classes are strictly prioritized
 Within scheduling classes 

 Weighted proportional sharing 
 Admission controls for real time and gang scheduling

 On scheduling events
 Kernel chooses resource domain based on kernel policies
 Kernel chooses a dispatcher from that domain
 Kernel does not ensure fairness within a domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

D D



Case study: scheduling in K42

 Kernel scheduling
 Soft preemptions:

 Approach:
 Upcall to dispatcher
 Dispatcher saves its state
 Dispatcher yields voluntarily after short time

Assumptions:
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 Assumptions:
 Current and next dispatcher reside in the same scheduling 

class and
 Current dispatcher is well-behaving

 Hard preemptions:
 Assumptions:

 Current dispatcher resides in a lower-prioritized class than the 
next dispatcher or

 Current dispatcher hasn’t responded timely to upcall

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002



Case study: scheduling in K42

 Kernel IPC
 Protected procedure call (PPC) semantics
 RPC invocation and return plus address space switch

 syscall  switch AS  sysret

 Kernel IPC and scheduling:
 PPC is an explicit handoff from one to another

Process
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RD

 PPC is an explicit handoff from one to another 
dispatcher

 How to integrate this handoff?
 Pure Variant 1: strict scheduling

 Switch dispatcher
 Switch resource domain
 Pursue scheduling decision in between

 Analysis
 Respects kernel scheduling
 Degrades performance!

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
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Case study: scheduling in K42

 Kernel IPC and scheduling:
 Pure Variant 2: resource donation

 Switch dispatcher but
 Keep caller’s resource domain

 Clients donate their domain
 Server’s consumption accounted

Process Process

D DRD
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 Server s consumption accounted 
to clients

 Analysis
 Allows for efficient implementation
 Complex

 Kernel must schedule server dispatchers in client domains
 Servers must be able to switch resource domains

 Biggest problem: Priority inversion (!)
 Resource-constrained client calls server
 Server acquires a lock and suffers resource exhaustion
 Only solution: enhance locking; too expensive

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
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 Kernel IPC and scheduling:
 Final approach: mix variants 1 and 2

 Switch dispatcher
 Keep caller’s resource domain until next in-kernel 

scheduling
 Then switch resource domain
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 Then switch resource domain
 Analysis:

 Efficient in the common case
 Avoids priority inversion
 Reduces the precision and determination of accounting

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002



Case study: scheduling in K42

 Kernel/Dispatcher interface
 Dispatcher structure

 Mostly based on shared memory
 Disable-interrupts bit
 Pending interrupts vector
 Machine-state save area 
 Control registers message buffers
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 Control registers, message buffers
 Current dispatcher location 

 Stored in read-only page at fixed 
virtual address

 Different mappings per processor
 Entry points

 Code addresses for different kernel 
events

 Changed via system call
 Initialized by dispatcher

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002



Case study: scheduling in K42

 User-Level Scheduling
 Library code providing thread 

implementations
 Thread object

 Contains current Stack pointer
Oth t t d t k

59© 2009 University of Karlsruhe, System 
Architecture Group

 Other state saved on stack
 CurrentThread

 Points to currently running thread
 Can be special register or hard-coded virtual 

address
 ThreadIDs

 64-bit handle
 Identifies thread and dispatcher

 ID changes on migration

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
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 User-Level Scheduling 
 Thread operations

 Creation
 Allocate thread object from free list, initialize it
 Put into dispatcher ready queue

 Block
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 Block
 Saves threadID in some data structure
 (Thread must prevent migration for ID to remain 

valid)
 Unblock

 Resume threadID from data structure
 Call dispatcher to resume thread

 Migration
 Load balancing: migrate to idle dispatcher
 QoS change: migrate to dispatcher with other 

resource domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
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 Conclusion:
 Two-level scheduling approach

 Dispatchers 
 Kernel-level scheduling classes and domains
 User-level threads
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 Soft preemptions (acitvations) for user-visible 
scheduling

 Hard preemptions for enforcement 
 IPC/PPC and scheduling:

 Restricted resource donation model
 Default in-kernel policy that assumes client/server 

relations
 Trades off accuracy for performance

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
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 File / Task Service 
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