Systems Design and Implementation
1.6 — Threads and Scheaduling

System Architecture Group, SS 2009
University of Karlsruhe
June 2, 2009

Jan Stoess

University of Karlsruhe

[") Overview

= Motivation

= Threads and Processes
= Thread and Process Management
= Usage scenarios
= Program execution

= Thread Scheduling
= Thread scheduling and accounting
= Classic scheduling approaches
= Scheduler activations et al.

= Multi-server systems
= Scheduling issues in multi-server systems
= Case study: Scheduling in K42

[") Motivation

= Definition of Thread

= Short for “thread of execution”

= Represents an independent flow of execution
= Purposes of threads

= Expressing independent flow of execution
= Dispatcher/Worker Models /Y Y)\ § § §

- Serialized Threads [5”5 [5 5]

= EXxpressing concurrency:

= Multithreading via Time-Slicing
= Multithreading via Multiprocessing § § § §
o] [epu] [ery]

-
[_) Motivation

= Purposes of threads

= Resource management
= Overlap 1I/0 and CPU
= Prioritize threads for QoS/RT/...

= Security
= Performance Isolation

© 2009 University of Karlsruhe, System 4
Architecture Group

[_) Thread usage scenarios

= Structuring programs
= Parallel loop

<parallel for> (i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0

= Parallel subprocedures

<paral | el > {
i _am = get _thread_num();
n_threads = get_numthreads();
/*
* do stuff
*/
}

© 2009 University of Karlsruhe, System
Architecture Group

[_) Thread usage scenarios

= Structuring programs
= Fork/Join

<parallel fork> {
aa bb; // Unit 1
ccC dd; // Unit 2
ee ff; // Unit 3
} <parallel join>

= Worker/Dispatcher

= Example: Webserver
= Dispatcher ready while work being done

[_) Thread usage scenarios

= Structuring programs

= Pipelines
= Difference to procedures?
= Threads do parallel processing

= Signal/Call-back threads
= Modeling asynchronous events [H] ‘]

= Thread can be created dynamically
(pop-up thread)
= Arriving messages, interrupts, ...

irq
msg

[") Motivation

= Thread management

= How to manage thread state

= How to create, destroy, dispatch, ... threads
= Program execution

= How to create threads from a file
= Thread scheduling

= How to schedule threads among processors
= Thread accounting

= How to track threads’ processor usage
= Resource management

= How to schedule and account threads on other
resources

[_) Thread and process management

= Thread state
= Independent flow of execution
= Execution state:

current control flow

, i call chain
= Instruction pointer referenced data
= Stack pointer register state
= ... Enough?
= Broader thread state [blocked] [ready 1 [running]
= Scheduling/accounting state v —— O w——
» thread state, ready queue | | e | |
= current processor [10ms] (rq ims |

= priority, scheduling class
« timeslice, budget, latency _ ——

= Memory state == Tz
= reference to address space —L e § Y
= (text/data/heap) segments base ’_{ s 8

= Swap state it

base

© 2009 University of Karlsruhe, System 9
Architecture Group

[_) Thread and process management

s Broader thread state
= Communication state

= Thread used as tvattfor |- Lsendto J
communication endpoint sender 1 [sengerz

= communication state
= Wait queue, send queue

= Process state
= Process id
= Process hierarchy

\ Process /

© 2009 University of Karlsruhe, System 10
Architecture Group

[_) Thread and process management

s Broader thread state

= Security
= Uuser, group, security class
= Other resource state

= File references
executing file
open files

= |I/0 resources

Open network handles
Open peripheral devices

= Storing thread state
= Thread Control Block

= Pointer lists
= May be stored within TCB

© 2009 University of Karlsruhe, System
Architecture Group

stoess i30staff

/bin/ls

foo

bar

socket

fdo

TCB

prev

next

Ip we

[_) Thread and process management

= Basic Thread operations

= Create
= Like asynchronous procedure call

= Allocate and initialize TCB
Initial IP, SP
= Enqueue thread in ready queue

= Startup
= Remove from ready queue
= Why not create and startup in one step?

= Block (on resource, ipc, ...)
= Save register state and IP on stack
= Enqueue into wait queue
= Update thread’s state
= Resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory

Multiprocessors. |EEE Transactions of Computers 38:12 1989
© 2009 University of Karlsruhe, System
Architecture Group

12

[_) Thread and process management

= Basic Thread operations
= Signal Thread

= Remove thread from wait queue
= Place thread on ready queue
= Update thread’s state

= Resume thread
= Remove thread from ready queue
= Restore register state
= Continue executing at IP

= Thread finish

= Deallocate stack and TCB
= Find and resume next thread

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory

Multiprocessors. |EEE Transactions of Computers 38:12 1989
© 2009 University of Karlsruhe, System
Architecture Group

13

[_) Thread and process management

= Thread management considerations

= Performance optimizations
= Do not waste stack space
put initial Arguments in the TCB

= Reduce overhead of finding free memory
Use free memory lists for stacks
Use free memory lists for TCBs

= Synchronization
= Must serialize concurrent access

= Latency and throughput concerns
Latency: how fast is the uncontended case?
Throughput: how many operations per time are possible?

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory

Multiprocessors. IEEE Transactions on Computers 38:12 1989
© 2009 University of Karlsruhe, System 14
Architecture Group

[_) Thread and process management

= Synchronization alternatives

= Single lock
Single lock for all thread data structures
Low latency in non-contended case
Limits throughput
= Multiple locks
Separate locks for ready queues, wait queues, free lists, ...
Higher latency, but better throughput expected

= (Processor-)Local free lists:
Use local memory allocation pools
Reduces contention when allocating TCBs or stacks
Trades space for time (why?)
May induce additional memory allocation costs
May require to balance pools

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory

Multiprocessors. IEEE Transactions on Computers 38:12 1989
© 2009 University of Karlsruhe, System 15
Architecture Group

[_) Thread and process management

= Synchronization alternatives

= Local ready queues:
Use local queues for starting/resuming threads

Reduces contention for queuing threads in the ready
queue(s)

May require to balance thread load

Requires synchronization during load balancing

= Implementing synchronization
= Cannot use threading (obviously)
= Use spin locks
Locks are held shortly
=« Use hardware facilities
cnpxchg et al.
incurs bus locking overhead

Source: T. Anderson et. al. The Performance Implications of Thread Management Alternatives for Shared-Memory

Multiprocessors. IEEE Transactions on Computers 38:12 1989
© 2009 University of Karlsruhe, System 16
Architecture Group

D Program execution

= The road to a running program:

@) Compiler/ @)
. CC —] p— .0
Assembler
Source Object
Code File '
a j Dynamic
| 2 S > S.yste.m
— (@ Libraries
Linker [¢— 2 ¢
G { Other
| Object s ~
@ > %@ Ries
pr og G > Runnable
/ _‘.J_' In-memory
e | Lo
€ Loader Image
cutable \
© 2009 University of Karlsruhe, System (I) d \ K /

Architecture Gro

up

17

D Program execution

= Loading an executable

= What do we need to load?

= Execution context
Initial instruction pointer
Initial stack pointer
Program arguments

« Memory context
Code
Data

= Where do we load it?

= Static code/data specified by linker
Encoded in executable file
Developers can tweak linker to modify layout

= Dynamic code/data specified by operating system
Virtual memory subsystem

© 2009 University of Karlsruhe, System
Architecture Group

18

a Example program layout

Initial Task (pager)

/

~

Runnable Image

-

19

Executable file format

= Case study: ELF format
= Executable and Linkable Format

= Four major parts in ELF file
« ELF header
roadmap

= Program headers

describe segments directly related to
program loading

= Section headers
describe contents of the file
= The data itself

© 2009 University of Karlsruhe, System 20
o Architecture Group

Executable file format
s ELF header

t ypedef struct

{
unsi gned char e_ident[El _N DENT]; /* Magic nunber & other info */
El f 32_Hal f e_type; /* Cbject file type */
El f 32_Hal f e _machine; [/* Architecture */
El f32_Word e version; [/* Object file version */
El f 32_Addr e entry; /[* Entry point virtual address */
Elf32_Of e_phoff; /* Program header table file offset */
Elf32_Of e_shoff; /* Section header table file offset */
El f32_ Word e fl ags; /| * Processor-specific flags */
El f 32_Hal f e_ehsi ze; /* ELF header size in bytes */
El f 32_Hal f e_phentsize;/* Program header table entry size */
El f 32_Hal f e_phnum /* Program header table entry count */
El f 32_Hal f e _shentsize;/* Section header table entry size */
El f 32_Hal f e_shnum /* Section header table entry count */
El f 32_Hal f e _shstrndx; /* Section header string table index */
} Elf32_Ehdr;

© 2009 University of Karlsruhe, System 2 1
o Architecture Group

Executable file format

s Section headers

t ypedef struct

{
El f32_Word sh_name; /* Section nane (str tbl index)*/
El f32_Word sh _type; [/* Section type */
El f32_Wrd sh flags; /* Section flags */
El f 32_Addr sh_addr; /* Section virtual addr */
Elf32_Of sh _offset;/* Section file offset */
El f32_Wrd sh_size; [/* Section size in bytes */
El f32_Word sh_link; /* Link to another section */
El f32_Word sh_info; /* Additional section info */
El f32_Word sh_addralign; /* Section alignnent */
El f32_Word sh_entsize; /* Entry size if section holds

table */
} Elf32_Shdr;
© 2009 University of Karlsruhe, System 22

o Architecture Group

Executable file format

= Program headers

t ypedef struct

{
El f32_Word p_type; /* Segnment type */
Elf32_Of p_offset; /* Segnent file offset */
El f 32_Addr p_vaddr; /* Segnent virt. address */ Prog._ T
El f 32_Addr p_paddr; /* Segnent phys. address */
El f32_Wrd p filesz; /* Segnent size in file */ Seg 1
El f 32_Word p_memsz; /* Segment size in mem*/ I
El f32_Word p_flags; /* Segnent flags */
El f32_Wbrd p_align; [/* Segnent alignment */ Prog.
} Elf32_Phdr; Seg 2

© 2009 University of Karlsruhe, System 23
o Architecture Group

[") Executable file format

= Example: test client section headers

$ objdunp -h test client
testclient: file fornat
Secti ons:
| dx Nane Si ze
0 .text 0000200d
CONTENTS,
1 .rodata 000004b4
CONTENTS,
2 .data 00002038
CONTENTS,
3 .ctors 00000000
CONTENTS
4 .dtors 00000000
CONTENTS
5 .Dbss 00000404
ALLCC
6 .debug_abbrev 000008b5
CONTENTS,

© 2009 University of Karlsruhe, System
Architecture Group

el f 32-1 386

VVA LMVA File off
00300000 00300000 00001000
ALLOC, LOAD, READONLY, CODE
00302020 00302020 00003020
ALLOC, LOAD, READONLY, DATA
00303000 00303000 00004000
ALLOC, LOAD, CODE

00306000 00306000 00007000

00306000 00306000 00007000
00306000 00306000 00007000

00000000 00000000 00007000
READONLY, DEBUGE NG

Al gn
2** 4

2**5
2**12
2**0
2**0
2**2

2**0

24

[") Executable file format

= Example: test cl i ent program headers

$ objdunp -p test_client
testclient: file format el f32-i 386

Pr ogr am Header :

LOAD of f 0x00001000 vaddr 0x00300000 paddr 0x00300000 align 2**12
filesz 0x000024d4 nensz 0x000024d4 flags r-x

LOAD of f 0x00004000 vaddr 0x00303000 paddr 0x00303000 align 2**12
filesz J0x00002038 Jmensz J0x00003404 |f | ags rwx

$ -_— . - _-— s . -

= Note: memsz > filesz
= iImplicit .bss segment
= Batmansshamefat-secret
= block started by symbol
= Reserved but uninitialized data

= Must be zero-filled

© 2009 University of Karlsruhe, System
Architecture Group

25

[") Thread scheduling and accounting

= Threads imply scheduling problems

Who runs next on a processor?
Which processor should a thread run?
How long should a thread run?

= Wanted: separation of policy & mechanisms

Mechanism:
= (re-)dispatching, preemption, migration, accounting
Policy:

= Allocation, Budgeting, priorities, scheduling classes
latency constraints, ...

26

[") Thread scheduling and accounting

s Problems:

= Scheduling may span multiple subsystems and
layers
= Distributed/hierarchical scheduling

« E.g., Web server: application-directed, OS-enforced
scheduling

= distributed resource managers - distributed accounting

= Scheduling is tied to other OS-abstractions
= may imply scheduling decision
= Examples

blocking 1/0, IPC, interrupts, exceptions, ...
resource consumption/exhaustion (memory, energy, ...)

= Policy and mechanism hard to distinguish

[") Thread scheduling and accounting

s Problems:

= Scheduling policies are complex
= Different environments
= Different policies
= Multidimensional problems

= Performance implications
= Scheduling distributed and entangled

= Diverse but frequently invoked scheduling-related
services

= Need simple and clean abstractions

= Separation of policy and mechanism may be complex
and inefficient

28

[_) Thread scheduling policies

= Processor-based scheduling

= Service time
= Working set, execution signature

= Processor-internal characteristics
= Performance counters, HW sensors

s Processor-associated resources
= Caches, Memory

Time-Based
Scheduling

Energy-aware
Scheduling

Affinity
Scheduling

= Pinned components (e.g., devices, drivers)

= Sharing
= Communication facilities
= IPC, shared memory, ...

= Load balancers
= Run queue length
= |dle time
= Context switch rates

© 2009 University of Karlsruhe, System
Architecture Group

Co-/Gang-
Scheduling

Load
Balancing

[_) Traditional scheduling approaches

= Kernel level scheduling
= Kernel provides a notion of executable entity

= Kernel threads, processes, tasks, ...
= EXxecution context initialized by the user

= Kernel responsible for threads —
= Management m 5 m
= Scheduling =
= Dispatching - General - Gang
= Central, in-kernel management SRS S

= Global state and visibility
= Low interaction with other subsystems/layers
= Kernel-managed scheduling policies (+tweaking)
= Execution contexts entangled with many other abstractions

= Memory protection
= Accounting
= Communication

= Other resources (files, 1/0, ...)
30

© 2009 University of Karlsruhe, System
Architecture Group

[_) Traditional scheduling approaches

= Analysis

= Global scope
= All applications are subject to scheduling
= Kernel can enforce scheduling decisions

= Low-overhead scheduling
= central scheduling state
= N0 boundary crossing needed

= One-fits-it-all approach
= Fixed scheduling policies, tweaking at most
= Oblivious to application requirements

= Problems:
Competing jobs? Different job requirements?
Different number of threads/job?
Different application QoS?

© 2009 University of Karlsruhe, System
Architecture Group

31

[_) Traditional scheduling approaches

= Analysis

= Oblivious to special environments
= Linux as desktop system, Linux as scalable server?
= response time vs. throughput

= Complex and heavyweight abstractions

= Process switch changes scheduling context, memory context,
I/0 context,....

= OS oblivious to application boundaries
= application spanning multiple processes, threads, address
spaces?
= Extensibility is difficult
= Scheduling is deeply embedded within the kernel
= No modularization, no component boundaries

Further reading: H. Franke et al. PMQS: Scalable Linux Scheduling for High End Servers. Proceedings of the 5th Annual Linux
Showcase and Conference, 2001
G. Banga et al. Resource containers: A new facility for resource management in server systems. Proceedings of the 3rd Symposium on 3 2
© 2009 University Of/friﬂft;“c’t‘ﬁreséjgi’g Operating Systans Design and Implementation (OSDI-99).

[_) Traditional scheduling approaches

= Application level scheduling

= Application provides /ts own thread notion

« Transparently mapped one or more kernel-provided
execution contexts

= Application responsible for ﬁ
= Thread management §/

= Thread scheduling

= Thread dispatching

= Decentralized, application-wise management
= Local state and visibility
= MNo interaction with other subsystems/layers
= Arbitrary policies and extension possible

33

[_) Traditional scheduling approaches

= Analysis
= Library approach

= Very low overhead abstractions
= Only within application
= Thread switch only switches execution context

= Can respect application-level QoS

= Local scope

= OS-agnostic threads

= Application scheduler cannot respect
OS-Kernel
Other subsystems
Other applications

= And vice versa

= Examples:
Blocking on 1/0
Component-based systems

© 2009 University of Karlsruhe, System
Architecture Group

34

[_) Scheduler activations

= Kernel-level threads alone
= Heavy-weight abstractions
= Not extensible, not customizable
= User-level threads alone
= Oblivious to OS activity (pagefaults, 1/0)
= Oblivious to multi-programming
= ldea:
= Combine user and kernel threads

Source: T. E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy Scheduler Activations: Effective Kernel Support for the User-Level Management of
Parallelism. ACM Transactions on Computer Systems, Vol. 10, No. 1, February 1992, Pages 53-79.

© 2009 University of Karlsruhe, System
Architecture Group

35

[_) Scheduler activations

= Basic assumption:

= Common case
= Thread operations without kernel intervention
= Communication, synchronization
= Use (pure) user-level threads
= Infrequent case
= Kernel intervention needed
= E.g., processor reallocation, page faults, ...
= Use user-level threads but mimic kernel thread behavior

= When a thread blocks, the processor can run another
thread

= Requirement: Distributed scheduling control
= Kernel needs to know application state
= How much parallelism does the application contain?

= Applications need to know kernel scheduling state
cmoumessoe o \NMPeN does a thread block? 36

Architecture Group

[_) Scheduler activations

= Approach:

= Abstractions:
= Kernel provides virtual multiprocessors
= Address spaces have a dedicated scheduler

= Mechanisms:

= Scheduler notifies the kernel on the thread operations
that affect processor allocation

= Kernel notifies scheduler on all address-space-related
kernel scheduling events

= The latter is termed scheaduler activation

© 2009 University of Karlsruhe, System
Architecture Group

37

[_) Scheduler activations

= Virtual processors (VPs):
= One or more VPs per address space
= AS scheduler freely allocates threads to VPs
= Kernel vectors re-allocations to the AS scheduler

= AS scheduler notifies kernel If it needs more/less
VPs

= Upcall points:
= Processor added
= Processor preempted
= Scheduler activation blocked
= Scheduler activation unblocked

38

[_) Scheduler activations

= Scheduler activation:
= Execution context for user-level threads
= Notification system for kernel
= Scratch space for saving user-level contexts

= Application start:
= Kernel creates scheduler activation
= Assigns activation to a virtual processor
= Upcalls into application at fixed entry (scheduler)
= Scheduler initializes itself
= Scheduler dispatches the first user-level thread to activation

= Scheduling-related kernel-events
= Kernel creates a new scheduler activation
= Assigns the activation to the VP
= Upcalls into application at fixed entry (scheduler)
= Scheduler processes the event

© 2009 University of Karlsruhe, System 39
Architecture Group

e
[_) Scheduler activations

= Example: 1/0 request
/Application <~ I

f
{Keme' UEEDBRK| [ADD |ADD }

40

[_) Scheduler activations

= Conclusion & Analysis
= Basic idea:

= Combined application-level and kernel-level scheduler
= Synchronous vectoring to notify user level scheduler

= Extensible, keeps policy out of the kernel

= Kernel only dispatches
= Users may develop arbitrary policies

Limited to threads within a single address-space

= One user-level scheduler per address-space

= User-level scheduler can not dispatch threads in other
protection domains

Performance penalties
= Needs 2 user-kernel transitions per upcall
= Depends on the number of scheduling related events

41

D Scheduler activations: similar approaches

s Process control

= Improve multiprocessing in multiprogrammed
systems

= Fair behavior while maximizing throughput

= Basic idea:

= Application performance best if
#application processes = #processors

= Employ centralized scheduler
Calculates optimal number of processes for each application

Requests applications to dynamically change their number of
processes

= Relies on polling and cooperativeness of applications

Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12t ACM
Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13t ACM Symposium on Operating Systems Principles, Operating Systems Review,
25(5), pp. 110-121, 1991

© 2009 University of Karlsruhe, System
Architecture Group

42

D Scheduler activations: similar approaches

s 15t class user-level threads
= Kernel-threads are heavy-weight

= User-level threads have a second-class status
= Not known by kernel

= Lack of interaction methodology between different user-
level thread packages

= Basic idea:
= Grant user-level threads 1st-class status

= Use shared memory for interaction between kernel and
user

= Use software-interrupts for events that require
synchronous interaction

= Develop scheduler interface convention for interaction
between schedulers

Sources: A. Tucker et al. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM
Symposium on Operating Systems
B.D. Marsh et al. First-Class User-Level Theads. Proceedings of the 13t ACM Symposium on Operating Systems Principles, Operating Systems Review,

25(5), pp. 110-121, 1991 43
© 2009 University of Karlsruhe, System
Architecture Group

D Scheduler activations: similar approaches

= CPU inheritance scheduling

= Most OSes only support rigid scheduling
= Set of scheduling classes
= Implementations tied together in the OS

= Basic idea:
= Threads can donate their time to other threads

= Threads can wait for timing events
interrupts, timers, blocking of time donatees,,,

= Hierarchical control over processing time
= Threads schedule themselves
= Allow for arbitrary relations and administrative domains

= Limitations:

= Timing hard to virtualize
= Not fully evaluated

Source: B.Ford et al. CPU inheritance scheduling. Proceedings of the 277 Usenix Symposium on Operating Systems Design and Implementation (OSDI), p91-105. 1996

© 2009 University of Karlsruhe, System 44
Architecture Group

[*) Scheduling in multi-server systems

= Threads represent different entities
= Servers, Clients, Resources

= [PC is “the” mechanism for everything
= Requests
= Dispatching
= Synchronization
= Interrupts
= Resource allocations
Permission faults

U IPC IS tied to scheduling

= IPC operations may block/unblock entities
= Who runs after a unblocking operation?
= Who runs after a blocking operation?

= |PC operations may imply scheduling decisions
= Depends on the usage scenario

© 2009 University of Karlsruhe, System
Architecture Gro

45

[*) Scheduling in multi-server systems

= Server requests

Server

s Resource faults

_ - Resource managers shouldn’t
: ipc in cli ’
Client P | Pager run in clients co.ntext§ pnly
- They may have insufficient

resources
- Do change client contexts

© 2009 University of Karlsruhe, System 46
Architecture Group

- Servers model resources

- Requests imply resource
donation

- Do not change scheduling
context on ipc

[*) Scheduling in multi-server systems

= Synchronization
_ - Threads are independent
T1 IpC T2 - IPC used for notification
- Do change scheduling context

= RT subsystem

: S - May want strict priorities
AL & Prio 2 - Pgrform scheduling decision
during IPC
.)
Ipc :
Prio 3
N

© 2009 University of Karlsruhe, System 47
ecture Gro

[*) Scheduling in multi-server systems

= The Dilemma:
= Policy should be controlled by applications
= |PC performance is critical

s Alternatives:

= Policy upcalls:
= Vector every scheduling event (i.e., every IPC)
= expensive

= Type-safe description languages:
= Download scheduling code into the kernel
= complex, insecure, no timing guarantees

= Default policies (L4 state of the art behavior)
= Pistachio:
Kernel-level round robin scheduler
Always donate time slice
= Fiasco:
In-kernel RT scheduling policy
= Fast but often inappropriate

© 2009 University of Karlsruhe, System 48
Architecture Group

[_) Case study: scheduling in K42

s K42 is

= A high performance, open source, general-purpose research
operating system kernel for cache-coherent multiprocessors

= Linux-compatible

= Main goals:
= Scalability and performance
= Adaptability
= Extensibility and maintainability
= Open-source compatibility
= Approach:
= Modular, object-oriented code
= No centralized code-paths, global data structures, locks
= Move system functionality from kernel to servers and users

© 2009 University of Karlsruhe, System 49
Architecture Gro

Case study: scheduling in K42

s K42 structure
s User-mode libraries
Chject Objzct

= Thread scheduling
= Linux emulation Lot =
= Application libraries (GLIBC, ...) e

= System layers
NFS

K42 scalable FS
Name server
Socket server
Pipe server

= Kernel

Memory management
IPC

Base scheduling B L ovenvion Of ke
Networking :
Devices

Sources J. Appavoo et al. Experience with K42, an Open Source, Linux-compatible, Scalable Operating-system Kernel. IBM Systems Journal, 44:2 2005

© 2009 University of Karlsruhe, System
Architecture Group

[_) Case study: scheduling in K42

= Scheduling in K42

= Partitioned between kernel and user
= Processes consist of
= One address space and
= One or more dispatchers
Kernel schedules dispatchers
= Uses kernel resources (e.g., pinned memory)
= Dispatchers schedule threads
= Threads are oblivious to the kernel
= Applications have a customizable thread model
= Can create arbitrary number of threads
= Can not exhaust kernel resources
Multiple dispatchers
= Attain parallelism
= Establish different scheduling paradigms (QoS, Prio, ...)
= Similar to scheduler-activations

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibom.com/K42, August 2002

© 2009 University of Karlsruhe, System
Architecture Group

51

[_) Case study: scheduling in K42

Gl e
= Kernel scheduling Process Process

= Dispatchers 77775 77

= bound to a processor
RDg, J

= belong to resource domains
= Resource domains

processor share)
= are accountable entities

(D)
= Own resource rights (e.qg.,
(D) (D)

= Dbelong to one of five scheduling
classes

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibom.com/K42, August 2002

© 2009 University of Karlsruhe, System
Architecture Group

[_) Case study: scheduling in K42

@Y 000)

O

= Kernel scheduling rocess locess
= Scheduling classes 77777 77
system, hard real time
gang-scheduled
soft real time @ RDg, J
general purpose
s. Background
= Classes are strictly prioritized @ @ RDbg}
= Within scheduling classes
= Weighted proportional sharing
= Admission controls for real time and gang scheduling
= On scheduling events
= Kernel chooses resource domain based on kernel policies
= Kernel chooses a dispatcher from that domain
« Kernel does not ensure fairness within a domain
Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibom.com/K42, August 2002

© 2009 University of Karlsruhe, System 53
Architecture Group

[_) Case study: scheduling in K42

= Kernel scheduling

= Soft preemptions:

= Approach:

Upcall to dispatcher

Dispatcher saves its state

Dispatcher yields voluntarily after short time
= Assumptions:

Current and next dispatcher reside in the same scheduling
class and

Current dispatcher is well-behaving
= Hard preemptions:

= Assumptions:

Current dispatcher resides in a lower-prioritized class than the
next dispatcher or

Current dispatcher hasn’t responded timely to upcall

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibom.com/K42, August 2002

© 2009 University of Karlsruhe, System 54
Architecture Group

[_) Case study: scheduling in K42

s Kernel IPC

= Protected procedure call (PPC) semantics

= RPC invocation and return plus address space switch
= syscall = switch AS - sysret

= Kernel IPC and scheduling: Progess
= PPC is an explicit handoff from one to another 77
dispatcher
= How to integrate this handoff? {RD @]
= Pure Variant 1: strict scheduling
= Switch dispatcher ?
= Switch resource domain Process PBC Progess
= Pursue scheduling decision in between ﬁﬁf > 77
= Analysis
= Respects kernel scheduling
= Degrades performance! @ RD} [RD @]

N

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibom.com/K42, August 2002

© 2009 University of Karlsruhe, System 55
Architecture Group

[_) Case study: scheduling in K42

= Kernel IPC and scheduling:
. .)
= Pure Variant 2: resource donation Process Process

- Switch dispatcher but ﬁfﬁ ﬁ

= Keep caller’s resource domain

Clients donate thei.r domain @ RDJ @

Server’s consumption accounted

v

to clients —
= Analysis
= Allows for efficient implementation
= Complex

Kernel must schedule server dispatchers in client domains
Servers must be able to switch resource domains

= Biggest problem: Priority inversion (!)
Resource-constrained client calls server
Server acquires a lock and suffers resource exhaustion
Only solution: enhance locking; too expensive

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
© 2009 University of Karlsruhe, System 56

Architecture Group

[_) Case study: scheduling in K42

= Kernel IPC and scheduling:

= Final approach: mix variants 1 and 2
= Switch dispatcher
= Keep caller’s resource domain until next in-kernel

scheduling
= Then switch resource domain
= Analysis:

« Efficient in the common case
= Avoids priority inversion
= Reduces the precision and determination of accounting

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
© 2009 University of Karlsruhe, System
Architecture Group

S7

[_) Case study: scheduling in K42

| Digpatcher pointer =

= Kernel/Dispatcher interface

= Dispatcher structure — s —
= Mostly based on shared memory - B
= Disable-interrupts bit TF F5_§
= Pending interrupts vector EE BBl
. Machlne-stgte save area FEEE Ay
= Control registers, message buffers ~_ | - Tutenup! Software Tnterrupts
- - ‘_ - -
= Current dispatcher location g o e
= Stored in read-only page at fixed <~ 4o Tar Save Ares
virtual address ~ [t PageFau
= Different mappings per processor ~ [fEeca
£ i - Pl mCReum|| % MMM
u ntry pOIntS Tl = IPC Faunx Page-rault Completion Flags
= Code addresses for different kernel Entry Points
events Local Asvac IPC Bufier
; Timecowt B .
- Changed Vla System Ca” Remote -"L‘-'_',.1l." TP Buffer

= Initialized by dispatcher Changed via Changeg directly (memory

system call shared with kernel)

Figure 2 Dispatcher Structure

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002 5 8

© 2009 University of Karlsruhe, System
Architecture Group

[_) Case study: scheduling in K42

= User-Level Scheduling

© 2009 University of Karlsruhe, System
Architecture Group

Library code providing thread
Implementations

Thread object

= Contains current Stack pointer
= Other state saved on stack

CurrentThread
= Points to currently running thread

= Can be special register or hard-coded virtual
address

ThreadlDs
= 64-bit handle

= ldentifies thread and dispatcher
ID changes on migration

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002

59

[_) Case study: scheduling in K42

= User-Level Scheduling

= Thread operations

= Creation
Allocate thread object from free list, initialize it
Put into dispatcher ready queue

= Block
Saves threadID in some data structure

(Thread must prevent migration for ID to remain
valid)

= Unblock
Resume threadlD from data structure
Call dispatcher to resume thread
= Migration
Load balancing: migrate to idle dispatcher

QoS change: migrate to dispatcher with other
resource domain

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002
© 2009 University of Karlsruhe, System
Architecture Group

60

[_) Case study: scheduling in K42

s Conclusion:

= Two-level scheduling approach
= Dispatchers
= Kernel-level scheduling classes and domains
= User-level threads

= Soft preemptions (acitvations) for user-visible
scheduling

= Hard preemptions for enforcement

= |IPC/PPC and scheduling:
= Restricted resource donation model

= Default in-kernel policy that assumes client/server
relations

= Trades off accuracy for performance

Source: M. Auslander et al. Scheduling in K42. IBM Research, http://www.research.ibm.com/K42, August 2002 6 1

© 2009 University of Karlsruhe, System
Architecture Group

[_) Thursday

= File / Task Service
Design Presentations

62

