
Systems Design and Implementation
I.5 – File Systems

h

Jan Stoess

Philipp Kupferschmied

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

May 26, 2009

Reminder

 All SDI Groups:
Please contact the tutor before
your presentations take place!

2
© 2009 University of Karlsruhe, System Architecture Group

 Tutor
 Marcel Noe
 Consultation Time:

Monday, 16.00 - 18.00
 R154, 50.34

Overview

 Introduction
 Motivation
 File types, attributes, access, operations
 Directory types, operations

3
© 2009 University of Karlsruhe, System Architecture Group

o y yp s, op a o s
 Implementing files and directories
 [Parts taken from A.Tanenbaums slides on modern

OSes]
 Case Studies:

 FAT
 NFS

 Tanenbaum’s motivation for files:
 Enable storing large amount of data
 Make data survive termination of processes

or the system

Why files?

4
© 2009 University of Karlsruhe, System Architecture Group

or the system
 Let processes access persistent data

concurrently
 My 2cents

 Structure your data

Source: Andy Tanenbaum: Modern Operating Systems, 2nd edition. Supplementary powerpoint slides, http://www.cs.vu.nl/~ast/books/book_software.html

File naming and structuring

5
© 2009 University of Karlsruhe, System Architecture Group

Typical file extensions.

File Structure

6
© 2009 University of Karlsruhe, System Architecture Group

 Three kinds of files
 byte sequence
 record sequence
 tree

File Types

7
© 2009 University of Karlsruhe, System Architecture Group

(a) An executable file (b) An archive

File Attributes

8
© 2009 University of Karlsruhe, System Architecture Group

Possible file attributes

File Access

 Sequential access
 read all bytes/records from the beginning
 cannot jump around, but rewind
 convenient when medium was mag tape

9
© 2009 University of Karlsruhe, System Architecture Group

g p
 Random access

 bytes/records read in any order
 essential for data base systems
 read can be …

 move file marker (seek), then read or …
 read and then move file marker

File Operations

1. Create
2. Delete
3. Open

7. Append
8. Seek
9. Get

10
© 2009 University of Karlsruhe, System Architecture Group

4. Close
5. Read
6. Write

attributes
10. Set

Attributes
11. Rename

Example Program Using File System Calls

11
© 2009 University of Karlsruhe, System Architecture Group

Example Program Using File System Calls

12
© 2009 University of Karlsruhe, System Architecture Group

Memory-Mapped Files

Buffer cacheBuffer cache

sys_read()

13
© 2009 University of Karlsruhe, System Architecture Group

(a) Reading files using file system calls
(b) Reading files using memory mappings

Buffer cacheBuffer cache

Directories
Single-Level Directory Systems

14
© 2009 University of Karlsruhe, System Architecture Group

 A single level directory system
 contains 4 files
 owned by 3 different people, A, B, and C

 (Letters indicate owners of the directories and files)

Directories
Two level Directory Systems

15
© 2009 University of Karlsruhe, System Architecture Group

Directories
Hierarchical Directory Systems

16
© 2009 University of Karlsruhe, System Architecture Group

A hierarchical directory system

Directory and Path Names

17
© 2009 University of Karlsruhe, System Architecture Group

A UNIX directory tree

Directory Operations

1. Mkdir
2. Rmdir
3 Opendir

5. Readdir
6. Rename
7. Link

18
© 2009 University of Karlsruhe, System Architecture Group

3. Opendir
4. Closedir 8. Unlink

File System Implementation

19
© 2009 University of Karlsruhe, System Architecture Group

A possible file system layout

Implementing Files

20
© 2009 University of Karlsruhe, System Architecture Group

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

Implementing Files

21
© 2009 University of Karlsruhe, System Architecture Group

Storing a file as a linked list of disk blocks

Implementing Files

22
© 2009 University of Karlsruhe, System Architecture Group

Linked list allocation using a file allocation table in RAM

Implementing Files

23
© 2009 University of Karlsruhe, System Architecture Group

An example i-node

Implementing Directories

24
© 2009 University of Karlsruhe, System Architecture Group

 A simple directory
 fixed size entries
 disk addresses and attributes in directory entry

 Directory in which each entry just refers to an i-node

Implementing Directories

25
© 2009 University of Karlsruhe, System Architecture Group

 Two ways of handling long file names in directory
 In-line
 In a heap

Shared Files

26
© 2009 University of Karlsruhe, System Architecture Group

File system containing a shared file

Shared Files

27
© 2009 University of Karlsruhe, System Architecture Group

 Situation prior to linking
 After the link is created
 After the original owner removes the file

The FAT file system

 Origins in the late 1970s
 Simple file system

 Floppy disks
 less than 500K size.

 Enhanced to support larger data.

28
© 2009 University of Karlsruhe, System Architecture Group

pp g
 FAT = file allocation table

 Specifies used/free areas of disk
 3 FAT file system types

 FAT12
 FAT16
 FAT32
 Specifies #bits/entry in FAT structure

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT structures

 Boot record
 Cluster

 Group of data sectors on disk
 Used to store file and directory data

29
© 2009 University of Karlsruhe, System Architecture Group

Us d o s o a d d o y da a
 Number of sectors stored in boot record

 File allocation table (FAT)
 Simple array of 12/16/32 bit entries
 Singly linked list of cluster chains (files)
 2 synchronized copies / disk

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT structures

 Root directory
 Normal directory without “..”
 Location hardcoded after FAT

Data area

30
© 2009 University of Karlsruhe, System Architecture Group

 Data area
 Arranged in clusters

 Wasted sectors
 #sectors % sizeof(cluster)

Boot Sector Root Folder DataFAT2FAT1 W

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT entries

 Simple bit field

0x00000000 Free

0x00000001 Reserved

31
© 2009 University of Karlsruhe, System Architecture Group

0x00000001 Reserved

0x00000002-0xFFFFEFFF Used; value points to
next cluster

0xFFFFFFF7 Bad

0xFFFFFFF8-0xFFFFFFFF Last cluster in file

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

Directories

 Directories are special files
 Table of file entries

 Structure of file entries
 Name + Extension (fixed size)
 Attributes
 Create time

32
© 2009 University of Karlsruhe, System Architecture Group

 Last access date
 Last modified time
 Last modified date
 Starting cluster number
 File size

 Long file names
 Phony entries (invalid volume attribute)
 Ignored by most old DOS programs
 New programs can retrieve LFN from entry

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

Opening a file

 Go to parent directory
 Search for file entry

 Retrieve first cluster number
Retrieve data from cluster

33
© 2009 University of Karlsruhe, System Architecture Group

 Retrieve data from cluster
 For more clusters

 Go to FAT
 Retrieve entry of first cluster
 Follow chain of clusters
 Retrieve data from clusters

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

NFS – The Network File System

 Invented by Sun Microsystems, mid 1980s
 Idea:

 Transparent, remote access to filesystems
 Portability to different OSes and architectures

34
© 2009 University of Karlsruhe, System Architecture Group

 Approach:
 specified using external data representation (XDR)

 describes protocols machine-independently

 based on RPC package
 Simplify protocol definition, implementation, maintenance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS – The Network File System

 First implementation
 UNIX 4.2 kernel
 Completely new kernel interface

Separates generic from specific filesystem

35
© 2009 University of Karlsruhe, System Architecture Group

 Separates generic from specific filesystem
implementations

 Two basic parts
 VFS: operations on a filesystem
 VNode: operations on a file

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS Design considerations

 Goals:
 Machine and OS independence
 Crash recovery

Transparent access

36
© 2009 University of Karlsruhe, System Architecture Group

 Transparent access
 Maintain UNIX semantics on client
 Reasonable performance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS Design considerations

 Basic design
 Uses RPC mechanism

 Protocol defined as a set of procedures, arguments and
results

 Synchronous behavior

37
© 2009 University of Karlsruhe, System Architecture Group

 Synchronous behavior

 Stateless protocol
 Each call contains all information to complete the call
 Stateful alternative discarded since

 Client would need to detect server crashes
 Server would need to detect client crashes (why?)

 No recovery needed after crash
 No difference between crashed and slow server

NFS Design considerations

 Basic design
 RPC package is transport independent

 First implementation uses UDP/IP

 Most common parameter: file handle

38
© 2009 University of Karlsruhe, System Architecture Group

 Most common parameter: file handle
 Provided by server
 Used by client as reference
 Opaque for client

NFS protocol procedures

 null() returns ()
 lookup(dirfh, name) returns (fh, attr)
 create(dirfh, name, attr) returns (newfh, attr)
 remove(dirfh, name) returns (status)

39
© 2009 University of Karlsruhe, System Architecture Group

 getattr(fh) returns (attr)
 setattr(fh, attr) returns (attr)

 read(fh, offset, count) returns (attr, data)
 write(fh , offset, count, data) returns (attr)
 rename(dirfh, name, tofh, toname) returns (status)

NFS protocol procedures

 link(dirfh, name, tofh, toname) returns (status)
 symlink(dirfh, name, string) returns (status)
 readlink(fh) returns (string)

40
© 2009 University of Karlsruhe, System Architecture Group

 mkdir(dirfh, name, attr) returns (fh, newattr)
 rmdir(dirfh, name) returns (status)
 readdir(dirfh, cookie, count) returns(entries)

 statfs(fh) returns (fsstats)
next

NFS protocol procedures

 Filesystem root obtained via external mount protocol
 Takes UNIX directory pathname
 Checks permissions
 Returns filehandle
 Idea:

41
© 2009 University of Karlsruhe, System Architecture Group

 Easy extension of filesystem access checks
 Only place where UNIX names are used

 External data representation XDR
 Similar to IDL
 Specification of data types
 Specification of procedures
 Defines size, byte order, alignment of data types
 C-like definition

NFS Server Side

 Stateless server
 No server-internal caching
 Server flushes modified data immediately

 Filehandle generation

42
© 2009 University of Karlsruhe, System Architecture Group

 Filehandle =
<filesystem id, inode number, inode generation number>

 NFS introduces filesystem IDs
 NFS introduces inode generation number

(what for?)

NFS Client Side

 Need transparent access to remote files
 Do not change path name structure
 Explicit <host:/path> not backwards compatible
 Approach:

43
© 2009 University of Karlsruhe, System Architecture Group

 Do hostname lookup and file address binding once
 Attach remote filesystem to local path
 Use mount protocol

 Implementation:
 Add new filesystem interface to the kernel

 VFS: operations on a remote file system
 VNode: operations on files within a file system

NFS Filesystem Interface

System Calls System Calls

Client Server

44
© 2009 University of Karlsruhe, System Architecture Group

RPC/XDR

VFS/VNode

Sun 4.2 FS NFS Filesystem

RPC/XDR

Server routines

VFS/VNode

NFS Filesystem Interface

 Filesystem operations
 per filesystem
 mount, mount_root

 VFS operations
 per mounted filesystem

t t t tf

45
© 2009 University of Karlsruhe, System Architecture Group

 unmount, root, statfs, sync
 VNode operations

 lookup, create, remove, rename
 open, close, rdwr, ioctl, select
 getattr, setattr, access
 mkdir, rmdir, readdir
 link, symlink, readlink
 …

NFS Filesystem Interface

 VNode operations
 some operations map to NFS procedures, some

not
 Pathname lookup

 Problem:

46
© 2009 University of Karlsruhe, System Architecture Group

 Pathname could contain mountpoint
 Mount information is contained in the client, above the

VNode layer
 Server cannot keep track of client mount points

 Approach:
 Break path into components
 Do lookup per component
 Cache lookups in the client

NFS implementation

 Completed around 1984
 Implemented VNodes in the kernel
 RPC, XDR ported to kernel
 User-level mount service

47
© 2009 University of Karlsruhe, System Architecture Group

 User-level NFS server daemon allows for sleeping

NFS Problems

 Root filesystems
 Sharing root file systems not possible

 /tmp: names of temporary files are created with local
names (process id)

 /dev: no remote device access system
 Approach:

48
© 2009 University of Karlsruhe, System Architecture Group

 Approach:
 Share root FS partly, e.g., /usr only

 Filesystem naming
 Client can mount a filesystem several times
 Different names for the same file system
 Increases confusion
 Approach:

 Structure mountpoint names, e.g., /usr/server1

NFS Problems

 Credentials and security
 Wanted UNIX style permissions
 Possible via RPC permission model

 Pass authentication parameters with RPC
 UID, GID

49
© 2009 University of Karlsruhe, System Architecture Group

 UID, GID
 Problem: global UIDs, GIDs required

 Administrative hassle
 Solution: Yellow pages (YP)

Database-like networked user/group administration
 Problem: remote root access

 Remote root should not be equal to local root
 Solution: map root access to a special UID (nobody)
 Problem: root may have fewer rights to files than users!

root still can impersonate every local user

NFS Problems

 Concurrent access:
 No agreed-on concurrency model for files
 Thus, NFS does not provide file locking

 UNIX open file semantics:
 Problem:

50
© 2009 University of Karlsruhe, System Architecture Group

 can open a file and unlink afterwards
 strange but necessary semantics (tmp files)

 Solution:
 Rename a file temporarily on server
 Client removes file after close

 Similar problem: file access changes on open file
 Time skew:

 E.g., making dependencies on remote files
 Solution: NTP (planned)

Initial NFS Performance

51
© 2009 University of Karlsruhe, System Architecture Group

 First version had pretty bad performance

NFS Performance Optimizations

 Decrease number of read and write calls
 Add client cache
 Flush cache on close
 Helped a lot

 Avoid extensive copying

52
© 2009 University of Karlsruhe, System Architecture Group

py g
 Do XDR translation in place
 Saves 1 buffer copy

 gettattr accounted for 90% of server calls
 stat on client produces 11 (!) getattr RPCs
 Add attribute cache
 Flushed periodically (every 3 seconds)
 Dropped to 10%

NFS Performance Optimizations

 Make sequential reads faster
 Add read ahead in the server
 For on-demand executables:

 Cluster on-demand loading requests

53
© 2009 University of Karlsruhe, System Architecture Group

 For small programs, load all pages at once

 Increase lookup performance
 Add client name lookup cache
 Contains vnodes for remote directory names
 Flushed when retrieved attributes (modify time)

don’t match cached vnode attributes

NFS Performance Optimizations

 Performance after optimizations

54
© 2009 University of Karlsruhe, System Architecture Group

 Problems remaining:
 Frequently executed stat calls are costly
 write is synchronous by design

NFS Future Work (anno 1984)

 Future work
 Diskless mode for clients
 Remote file locking

Other filesystem types

55
© 2009 University of Karlsruhe, System Architecture Group

 Other filesystem types
 Performance
 Security improvements
 Automatic mounting

SDI File Service Design
 File names maintained by name server
 Names translate into a session handle as seen by the

client
 The session handle maps to disk blocks in the file

server

56
© 2009 University of Karlsruhe, System Architecture Group

SDI File Service Design
 Fileserver design

 Stateful
 Stateless

 Fileserver interfaces
 File handle layout

57
© 2009 University of Karlsruhe, System Architecture Group

 File handle layout
 Operations on files
 Operations on directories
 File attributes (basic)

 Fileserver implementation
 Fileserver / Nameserver relationship
 Data transfer: copying, mapping
 Stateful fileserver: which state to hold

SDI File Service Design Groups (2)

 Groups
 SDI 3
 SDI 6

Presentation Presentation
 June 04, 2009

 Please don’t forget to discuss your slides with
Marcel beforehand

58
© 2009 University of Karlsruhe, System Architecture Group

