
Systems Design and Implementation
I.4 – Naming in a Multiserver OS

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

06.5.2009

The Issue

2© 2009 University of Karlsruhe, System
Architecture Group

The Issue

 In “system” construction we combine
components to process data.

3© 2009 University of Karlsruhe, System
Architecture Group

 We identify components and data with
names.

Names Example

template <class T> class ringlist_t
{
public:

T * next;
T *

names for
abstractions

namespace translation

4© 2009 University of Karlsruhe, System
Architecture Group

T * prev;
};

main()
{

ringlist_t<tcb_t> list;
tcb_t::get_tcb_list(list);

names for code

names for data

names for external
components

Name Resolution

source namespace

5© 2009 University of Karlsruhe, System
Architecture Group

target namespace

resolver

Often lower-level
name, or closer
to the object.

Naming Definitions

objects

sum

count

10.5
names addresses

catalog

6© 2009 University of Karlsruhe, System
Architecture Group

int main() {
float sum = 10.5;
int count = 99;

count
99

binding

resolution
(w/ compiler)

Closure

int main(int argc, char *argv[])
{

int sum = 0;

Compiler implicitly

7© 2009 University of Karlsruhe, System
Architecture Group

compiler
main

argc
argv

sum

0x100
0x104
0x500
0x90

symbol catalog

output

Compiler implicitly
identifies catalog.

The name of the
catalog is outside
the symbol
namespace.

Source-Code Name Translation

symbols compiler+linker relative
addresses

8© 2009 University of Karlsruhe, System
Architecture Group

relocations

dynamic linker absolute
addresses

Four distinct
namespaces.

User Run-Time Naming

9© 2009 University of Karlsruhe, System
Architecture Group

User Run-Time Naming
 User identifies:

 operations
 data

 Using namespaces:

10© 2009 University of Karlsruhe, System
Architecture Group

 GUI: menus, buttons, mouse motion +
clicks

 databases (SQL queries)
 hierarchical file systems
 (Network services)

User Run-Time Naming

resolvers data
addresses

device
addresses

11© 2009 University of Karlsruhe, System
Architecture Group

add esses

code
addresses

compilersource
code

Multiserver Naming

12© 2009 University of Karlsruhe, System
Architecture Group

Most names known at
compile time, but
some resolved at run
time.

Layered Naming

${HOME}/g001.jpg

/home/stoess/g001.jpg

13© 2009 University of Karlsruhe, System
Architecture Group

/dev/hdb2/stoess/g001.jpg

disk2 :: partition 3 :: inode 40

IDE address :: block offset

Naming as Indirection

 Why not name files by inode?
 files could live at different inodes on different

systems
 two files may denote the same inode
 inodes unpleasant to humans

14© 2009 University of Karlsruhe, System
Architecture Group

 inodes unpleasant to humans

 The concept: indirection
 map a fixed namespace to a dynamic namespace
 N:1 mapping possible
 consistency problem

Indirection

SQL Server

15© 2009 University of Karlsruhe, System
Architecture Group

application

SQL query

user
criteria

object server

object ID

session ID

object ID

Problems with Indirection

 Unable to ensure that two people see the
same object.

 Bindings are:

16© 2009 University of Karlsruhe, System
Architecture Group

 Bindings are:
 spatial
 temporal

Context Sensitive Naming

a:5
a

Server

Cli t

Client

17© 2009 University of Karlsruhe, System
Architecture Group

a:13

tunnel
handle

missing
high-level
name

a

13

5
13

Client

Abstraction Level

 What should an API use for naming?
 Which abstraction level?

18© 2009 University of Karlsruhe, System
Architecture Group

Binding / Catalog Creation

 When do we bind names?
 compile time
 run-time:

temporary

19© 2009 University of Karlsruhe, System
Architecture Group

 temporary
 persistent

Resolution

 When do we resolve names?
 compile time
 dynamic binding (linking)

execution

20© 2009 University of Karlsruhe, System
Architecture Group

 execution

Intra-Address Space Naming

main

hash
library

Naming: source code
symbols, translate into
addresses.

21© 2009 University of Karlsruhe, System
Architecture Group

main b a y

UI
library

file
library

Protocol: function calls
with pass-by-value and
pass-by-reference data.

Resolution: compiler and
linker.

Inter-Address Space Naming

main

hash
library

Naming: source code
symbols, translated into
handles at run-time.

22© 2009 University of Karlsruhe, System
Architecture Group

main b a y

UI
library

file
library

Protocol: RPC with
pass-by-value and
pass-by-reference data.

Resolution: compiler,
IPC, servers.

Name Use Example

L4_ThreadId_t tid;
SDI_File_t file_handle;

Names resolved
at run-time

23© 2009 University of Karlsruhe, System
Architecture Group

tid = SDI_server_lookup(FILE_SERVER_GUID);

file_handle = SDI_file_lookup(tid, “/data”);

Static names, known
at compile time.

Catalog Maintenance

 Adding to the catalog
 Deleting from the catalog
 Enumerating the catalog

Renaming entries (does renaming make

24© 2009 University of Karlsruhe, System
Architecture Group

 Renaming entries (does renaming make
sense?) - Provides atomic operation

 operations are inherently related to the target
objects, and the closure

Namespaces

 Names are unique (within namespace)
 Names may have human meaning:

 a file name
 a sql query

25© 2009 University of Karlsruhe, System
Architecture Group

a sq qu y
 Names may have no human semantics:

 exist solely to name an object
 a memory address
 an inode

How to Guarantee Name Uniqueness

 Central authority:
 Active agent:

 A process enforces uniqueness
 Standards body:

 ip addresses

26© 2009 University of Karlsruhe, System
Architecture Group

 ip addresses
 Distributed:

 GUIDs
 globally unique identifiers
 statistically unique

 Combination:
 Hostnames

Name Resolution as a Black Box

/a/Z/y 5

27© 2009 University of Karlsruhe, System
Architecture Group

a

Z

y:5

Hierarchical Naming Implementations

/ / /
a
b

Z
Q : 17 u : 15

28© 2009 University of Karlsruhe, System
Architecture Group

/a/Z/u : 15
/b/R/n : 10
/a/Q : 17
/t/V : 11

b
t

R

V : 11
n : 10

Hierarchical Naming

 Name contains names of catalogs leading to
the target binding
 Treats catalogs as distinct objects

29© 2009 University of Karlsruhe, System
Architecture Group

 Impossible to name root catalog within
name:
 Root catalog implied by closure

Traditional Hierarchical Catalogs

 Catalogs are distinct objects
 Have their own properties

Semantics of name are overloaded:

30© 2009 University of Karlsruhe, System
Architecture Group

 Semantics of name are overloaded:
 Security
 Ownership
 Location

Linked Hierarchical Naming

inter-server

31© 2009 University of Karlsruhe, System
Architecture Group

intra-server

Catalog Links

source
names

target
names

a

b

c

source
names

target
names

32© 2009 University of Karlsruhe, System
Architecture Group

dir1

file1

dir2

X

Y

Z

source
names

target
names

inode

Three target
namespaces.

Recursive Inter-Server Links

client
1

2
4

3

33© 2009 University of Karlsruhe, System
Architecture Group

Security vulnerabilities:
1. First server dependency on second server
2. Second server doesn’t know client identity

Iterative Inter-Server Links

client
1

2

34© 2009 University of Karlsruhe, System
Architecture Group

3
4

Distributed Naming

client

 Source name resolved to intermediate name.
 Intermediate name must be resolved.
 Process continues until target name resolved.

35© 2009 University of Karlsruhe, System
Architecture Group

 Protocol must support multiple namespaces.

Distributed Naming Performance

 Multiple IPC requests
 Answer: intermediate name

caching
 Name prefixes
 Cache fairly static names

client
1

2

3

36© 2009 University of Karlsruhe, System
Architecture Group

/usr

Prefix

TID 2, /export/usr

Intermediate
Name

/usr/local TID 5, /export/yoda/local

4

Distributed Naming Problems

 Consistency
 Name cache out-of-date
 Partial name change during resolution

For strict consistency: verify name

37© 2009 University of Karlsruhe, System
Architecture Group

 For strict-consistency: verify name
 Possible to resolve a name binding that:

 did not exist at start
 does not exist at end

SDI Homework

What are your namespaces?

 Some of the namespaces to be implemented:
 service names
 interface names

file names

39© 2009 University of Karlsruhe, System
Architecture Group

 file names
 running task list
 …

Scope

 Compare the namespaces
 what are their similarities?
 what operations to support on their

catalogs?

40© 2009 University of Karlsruhe, System
Architecture Group

catalogs?
 how are the names used?
 should a namespace support distributed

resolution?

Implementation

 Code reuse?
 should you use the same namespace API

for all namespaces?
 example: hierarchical distributed

41© 2009 University of Karlsruhe, System
Architecture Group

namespace
 source namespace: ASCII strings
 target namespace: integers

(Does it make sense to use English for a
namespace?)

Integration

 Namespace integration?
 if same namespace API for all namespaces …
 collect all namespaces into a single distributed,

hierarchical namespace?

42© 2009 University of Karlsruhe, System
Architecture Group

 If single, hierarchical namespace:
 what is the target name?

 object handles and TIDs in same namespace
 how do you know which is which?

 what interfaces does an object support?

Distributed Namespace

 If a distributed, hierarchical namespace:
 must develop an iterative translation

protocol
 source name is translated into a target

43© 2009 University of Karlsruhe, System
Architecture Group

 source name is translated into a target
name which exists in a different catalog:

TID 99, /Users/jan/docs/README

TID 5, /export/stoess, docs/README

Your Assignment

 Design the appropriate IDL4 interfaces to support
your namespaces
 name resolution
 catalog maintenance
 Use a distributed hierarchical namespace

44© 2009 University of Karlsruhe, System
Architecture Group

 Use a distributed, hierarchical namespace
scheme

 Consider how the names will be used

More Remarks

Service Names

 Service: any L4 thread which publishes server-type
functionality.

 Namespace: L4 thread IDs
 We want to allocate and map thread IDs to

i d i ll

46© 2009 University of Karlsruhe, System
Architecture Group

services dynamically
 Use names for indirection

 Clients know service names at compile time
 We know we want to connect to a file server

Service Catalog

 How is service catalog named?
 The service catalog is itself a service
 Thus unable to name within service

namespace

47© 2009 University of Karlsruhe, System
Architecture Group

 How do clients name the service server?
 Implied by closure
 Convention can choose an implied name

 Contact a specific server (a reserved thread ID)
 Or map shared page in everyone’s address

space

Operations on Service Catalog

 Resolve name
 Add binding
 Delete binding

Rename binding?

48© 2009 University of Karlsruhe, System
Architecture Group

 Rename binding?
 Enumerate bindings?

Interface Names

 We generally want to negotiate an interface with the
server

 Interface names known at compile time
 For us, servers know which interfaces they support

 Service catalog/semantics built at compile time

49© 2009 University of Karlsruhe, System
Architecture Group

 Service catalog/semantics built at compile time
 An interface name maps to a set of handler functions

within the server
 Permit a server to support multiple interfaces per

server thread
 Use IDL4 inheritance

Interface Names

 We need an interface to negotiate interfaces
 the name would be outside the naming

system
 must use closure to choose a default

50© 2009 University of Karlsruhe, System
Architecture Group

 must use closure to choose a default
interface
 convention may choose interface 0

Interface Negotiation

 Send an IPC to interface 0 of a server
 Query:

support interface X on object A?

51© 2009 University of Karlsruhe, System
Architecture Group

File Names

 Names created dynamically
 Names translate into a session handle as seen by the

client
 More efficient than typical text file name
 Server may associate state with session handle

52© 2009 University of Karlsruhe, System
Architecture Group

 Server may associate state with session handle
 Session handle associated with an access interface

 The session handle maps to disk blocks in the server
 Tiered namespaces

Running Task Names

 What is the name of a task?
 How do you ensure uniqueness in the source

namespace?

53© 2009 University of Karlsruhe, System
Architecture Group

 Traditional procfs uses the PID as the source
namespace.

Thursday

 Debugging on L4
 Takes Place in R149 50.34

54© 2009 University of Karlsruhe, System
Architecture Group

