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The Issue

 In “system” construction we combine 
components to process data.
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 We identify components and data with 
names.



Names Example

template <class T> class ringlist_t
{
public:

T * next;
T *

names for
abstractions

namespace translation
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T * prev;
};

main()
{

ringlist_t<tcb_t> list;
tcb_t::get_tcb_list( list );

names for code

names for data

names for external 
components



Name Resolution

source namespace
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target namespace

resolver

Often lower-level
name, or closer
to the object.



Naming Definitions

objects

sum

count

10.5
names addresses

catalog
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int main() {
float sum = 10.5;
int count = 99;

count
99

binding

resolution
(w/ compiler)



Closure

int main( int argc, char *argv[] )
{

int sum = 0;

Compiler implicitly
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compiler
main

argc
argv

sum

0x100
0x104
0x500
0x90

symbol catalog

output

Compiler implicitly 
identifies catalog.

The name of the
catalog is outside
the symbol
namespace.



Source-Code Name Translation

symbols compiler+linker relative
addresses
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relocations

dynamic linker absolute
addresses

Four distinct
namespaces.



User Run-Time Naming
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User Run-Time Naming
 User identifies:

 operations
 data

 Using namespaces:
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 GUI: menus, buttons, mouse motion + 
clicks

 databases (SQL queries)
 hierarchical file systems
 (Network services)



User Run-Time Naming

resolvers data
addresses

device
addresses
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add esses

code
addresses

compilersource
code



Multiserver Naming
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Most names known at
compile time, but
some resolved at run
time.



Layered Naming

${HOME}/g001.jpg

/home/stoess/g001.jpg
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/dev/hdb2/stoess/g001.jpg

disk2 :: partition 3 :: inode 40

IDE address :: block offset



Naming as Indirection

 Why not name files by inode?
 files could live at different inodes on different 

systems
 two files may denote the same inode
 inodes unpleasant to humans
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 inodes unpleasant to humans

 The concept: indirection
 map a fixed namespace to a dynamic namespace
 N:1 mapping possible
 consistency problem



Indirection

SQL Server
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application

SQL query

user
criteria

object server

object ID

session ID

object ID



Problems with Indirection

 Unable to ensure that two people see the 
same object.

 Bindings are:

16© 2009 University of Karlsruhe, System 
Architecture Group

 Bindings are:
 spatial
 temporal



Context Sensitive Naming

a:5
a

Server

Cli t

Client
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a:13

tunnel 
handle

missing
high-level
name

a

13

5
13

Client



Abstraction Level

 What should an API use for naming?
 Which abstraction level? 
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Binding / Catalog Creation

 When do we bind names? 
 compile time
 run-time:

temporary
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 temporary
 persistent



Resolution

 When do we resolve names?
 compile time
 dynamic binding (linking)

execution
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 execution



Intra-Address Space Naming

main

hash
library

Naming: source code
symbols, translate into
addresses.
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main b a y

UI
library

file
library

Protocol: function calls
with pass-by-value and
pass-by-reference data.

Resolution: compiler and
linker.



Inter-Address Space Naming

main

hash
library

Naming: source code
symbols, translated into
handles at run-time.
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main b a y

UI
library

file
library

Protocol: RPC with 
pass-by-value and
pass-by-reference data.

Resolution: compiler,
IPC, servers.



Name Use Example

L4_ThreadId_t tid;
SDI_File_t file_handle;

Names resolved 
at run-time
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tid = SDI_server_lookup( FILE_SERVER_GUID );

file_handle = SDI_file_lookup( tid, “/data” );

Static names, known
at compile time.



Catalog Maintenance

 Adding to the catalog
 Deleting from the catalog
 Enumerating the catalog

Renaming entries (does renaming make
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 Renaming entries (does renaming make 
sense?) - Provides atomic operation

 operations are inherently related to the target 
objects, and the closure



Namespaces

 Names are unique (within namespace)
 Names may have human meaning:

 a file name
 a sql query
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a sq qu y
 Names may have no human semantics:

 exist solely to name an object
 a memory address
 an inode



How to Guarantee Name Uniqueness

 Central authority:
 Active agent:

 A process enforces uniqueness
 Standards body:

 ip addresses
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 ip addresses
 Distributed:

 GUIDs
 globally unique identifiers
 statistically unique

 Combination:
 Hostnames



Name Resolution as a Black Box

/a/Z/y 5
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a

Z

y:5



Hierarchical Naming Implementations

/ / /
a
b

Z
Q : 17 u : 15
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/a/Z/u : 15
/b/R/n : 10
/a/Q : 17
/t/V : 11

b
t

R

V : 11
n : 10



Hierarchical Naming

 Name contains names of catalogs leading to 
the target binding
 Treats catalogs as distinct objects
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 Impossible to name root catalog within 
name:
 Root catalog implied by closure



Traditional Hierarchical Catalogs

 Catalogs are distinct objects
 Have their own properties

Semantics of name are overloaded:
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 Semantics of name are overloaded:
 Security
 Ownership
 Location



Linked Hierarchical Naming

inter-server
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intra-server



Catalog Links

source
names

target
names

a

b

c

source
names

target
names

32© 2009 University of Karlsruhe, System 
Architecture Group

dir1

file1

dir2

X

Y

Z

source
names

target
names

inode

Three target
namespaces.



Recursive Inter-Server Links

client
1

2
4

3
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Security vulnerabilities:
1. First server dependency on second server
2. Second server doesn’t know client identity



Iterative Inter-Server Links

client
1

2
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3
4



Distributed Naming

client

 Source name resolved to intermediate name.
 Intermediate name must be resolved.
 Process continues until target name resolved.
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 Protocol must support multiple namespaces. 



Distributed Naming Performance

 Multiple IPC requests
 Answer: intermediate name 

caching
 Name prefixes
 Cache fairly static names 

client
1

2

3
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/usr

Prefix

TID 2, /export/usr

Intermediate
Name

/usr/local TID 5, /export/yoda/local

4



Distributed Naming Problems

 Consistency
 Name cache out-of-date
 Partial name change during resolution

For strict consistency: verify name
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 For strict-consistency: verify name
 Possible to resolve a name binding that:

 did not exist at start
 does not exist at end 



SDI Homework



What are your namespaces?

 Some of the namespaces to be implemented:
 service names
 interface names

file names
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 file names
 running task list
 …



Scope

 Compare the namespaces
 what are their similarities?
 what operations to support on their 

catalogs?
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catalogs?
 how are the names used?
 should a namespace support distributed 

resolution?



Implementation

 Code reuse?
 should you use the same namespace API 

for all namespaces?
 example: hierarchical distributed 
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namespace
 source namespace: ASCII strings
 target namespace: integers

(Does it make sense to use English for a 
namespace?)



Integration

 Namespace integration?
 if same namespace API for all namespaces …
 collect all namespaces into a single distributed, 

hierarchical namespace?
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 If single, hierarchical namespace:
 what is the target name?

 object handles and TIDs in same namespace
 how do you know which is which?

 what interfaces does an object support?



Distributed Namespace

 If a distributed, hierarchical namespace:
 must develop an iterative translation 

protocol
 source name is translated into a target
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 source name is translated into a target 
name which exists in a different catalog:

TID 99, /Users/jan/docs/README

TID 5, /export/stoess, docs/README



Your Assignment

 Design the appropriate IDL4 interfaces to support 
your namespaces
 name resolution
 catalog maintenance
 Use a distributed hierarchical namespace
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 Use a distributed, hierarchical namespace 
scheme

 Consider how the names will be used



More Remarks



Service Names

 Service: any L4 thread which publishes server-type 
functionality.

 Namespace: L4 thread IDs
 We want to allocate and map thread IDs to 

i d i ll
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services dynamically
 Use names for indirection

 Clients know service names at compile time
 We know we want to connect to a file server



Service Catalog

 How is service catalog named?
 The service catalog is itself a service
 Thus unable to name within service 

namespace
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 How do clients name the service server?
 Implied by closure
 Convention can choose an implied name

 Contact a specific server (a reserved thread ID)
 Or map shared page in everyone’s address 

space



Operations on Service Catalog

 Resolve name
 Add binding
 Delete binding

Rename binding?
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 Rename binding?
 Enumerate bindings?



Interface Names

 We generally want to negotiate an interface with the 
server

 Interface names known at compile time
 For us, servers know which interfaces they support

 Service catalog/semantics built at compile time
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 Service catalog/semantics built at compile time
 An interface name maps to a set of handler functions 

within the server
 Permit a server to support multiple interfaces per 

server thread
 Use IDL4 inheritance



Interface Names

 We need an interface to negotiate interfaces
 the name would be outside the naming 

system
 must use closure to choose a default
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 must use closure to choose a default 
interface
 convention may choose interface 0



Interface Negotiation

 Send an IPC to interface 0 of a server
 Query: 

support interface X on object A?
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File Names

 Names created dynamically
 Names translate into a session handle as seen by the 

client
 More efficient than typical text file name
 Server may associate state with session handle
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 Server may associate state with session handle
 Session handle associated with an access interface

 The session handle maps to disk blocks in the server
 Tiered namespaces



Running Task Names

 What is the name of a task?
 How do you ensure uniqueness in the source 

namespace?
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 Traditional procfs uses the PID as the source 
namespace.



Thursday

 Debugging on L4
 Takes Place in R149 50.34
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