
Systems Design and Implementation
I.3 – Kernel and Operating System Interfaces

h

Jan Stoess
University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

May 5, 2009

Overview

 Motivation
 User interfaces
 Kernel interfaces in monolithic OSes

 Case study 1: Linux kernel modules

2© 2009 University of Karlsruhe, System
Architecture Group

 Case study 2: Windows WDM architecture
 Kernel interfaces in multi-server systems

 Case study 3: The SawMill Multiserver Architecture
 Case study 4: Virtualization interfaces

Motivation

 Operating systems run user programs
 May request service
 May need event notification

 Operating systems have different subsystems
 e.g., paging call disk subsystem to swap

3© 2009 University of Karlsruhe, System
Architecture Group

g , p g g y p
 Need an interface

 Kernel Interfaces
 Sharing/Transferring Data
 Sharing/Transferring Code
 Implications on

programming model
 E.g., C-Routines, RPC, …

Network Paging

DiskGFX

User

User Interfaces

 Required functionality:
 System Services (system calls)

 read from disk, send over network, …
 Synchronous
 Enhances privileges

Interface data:

4© 2009 University of Karlsruhe, System
Architecture Group

 Interface data:
 Kernel service routine identifier
 Parameters

 Notifications (signals)
 Division by 0, Protection fault, completion of

asynchronous service, …
 May be asynchronous
 Must switch back to user privileges
 Interface data

 User-level callback handler identifier
 Arguments

User Interfaces

 Required functionality:
 Kernel-accessible user data

 Statistics, configuration data (/proc), …
 May be accessed asynchronously

C t i t

5© 2009 University of Karlsruhe, System
Architecture Group

 Constraints:
 Safety:

 User may not call arbitrary kernel routines
 User may not arbitrarily switch to kernel privileges
 User may not change arbitrary kernel data

User Interfaces

 Solution:
 System services:

 Leverage hardware primitives
 Safe privilege change
 Safe system service dispatching

 Example: IA-32 <int n> instruction

User

int 0x80

uip

ufl

usp

int 0x80
sysenter

…

6© 2009 University of Karlsruhe, System
Architecture Group

p
 Safe call to interrupt procedure
 Loads kernel stack, changes FLAGS
 Saves EIP, ESP, FLAGS on kernel stack
 Transfers control to kernel code

 Specified by interrupt number
 Implies hardware privilege change

 Return to user via <iret>
 Hardware subject to change

 Use trampoline page for kernel entry
 Versatile interface
 Can execute syscalls at user-level

uip
usp
ufl

CPU

sp
ip

fl

IDT

ksp

0x80

User Interfaces

 Solution:
 Notifications

 Leverage MMU hardware
 Kernel shares user address space

 Can modify user-state
 Can transfer control

Kernel

7© 2009 University of Karlsruhe, System
Architecture Group

 But not vice-versa
 User-accessible kernel data

 Dedicated shared pages
 E.g. kernel interface page

 Map to system calls
 e.g., proc file system

CPU

User

CR3

KIP

Kernel Interfaces in monolithic OSes

 Monolithic Kernel design
 Design principle: global, shared kernel
 Programming language defines interface

 Data interfacing through shared data

8© 2009 University of Karlsruhe, System
Architecture Group

 Control interfacing through direct control transfer
 Compiler and linker determine and resolve addresses

Kernel Interfaces in monolithic OSes

 Monolithic Kernel design
 Design principle: global, shared kernel
 Programming language defines interface
 Logical/Semantical separation of concerns

9© 2009 University of Karlsruhe, System
Architecture Group

 C-structs, extern functions, static functions
 header files, source files
 classes, members, namespaces, …

 No boundary protection
 Software can easily cross semantic boundaries
 arbitrary control transfers (e.g., using assembler)
 arbitrary data access and modifications (e.g., using

typecasts and pointers)

Kernel Interfaces in monolithic OSes
 Monolithic Kernel design

 No privilege separation
 All kernel subsystems can execute all processor instructions
 All kernel subsystems can access all I/O hardware

 Motivation: Performance
 Crucial factor in OS

10© 2009 University of Karlsruhe, System
Architecture Group

 Protection domain switches are costly
 Full address space switch (Pentium IV):

 changes all AS translations
 Implies TLB flush

(~ 500 cycles)
 Implies (Virtual) Trace Cache flush

(up to 4000 cycles)
 + TLB replacement + Trace cache reloading

(~ 5000 cycles)
CPU

µK

K1

µK

K2

CR3

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002

Kernel Interfaces in monolithic OSes
 Monolithic Kernel design

 No privilege separation
 All kernel subsystems can execute all processor instructions
 All kernel subsystems can access all I/O hardware

 Motivation: Performance
 Crucial factor in OS

K

11© 2009 University of Karlsruhe, System
Architecture Group

 Segmentation (partial AS switch)
 Changes base offset, accessible limits within AS
 Changes protection parameters
 Implies segment register reloading (~300 cycles)
 No TLB and TC flushing
 But Restrictions on AS layout and size

 Monolith lacks protection but retains performance
 Direct calls, direct data accesses
 Cross-component accesses and optimizations
 Ad-hoc extensibility

CPU

µK

K2

K1
base
limit

K
K1

K2

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002

Kernel Modules: Extensibility in Linux

 Linux is becoming more and more complex
 vast amount of device drivers, network protocols,

file systems
 Linux should support crufty hardware
 Support not always needed

12© 2009 University of Karlsruhe, System
Architecture Group

pp y
 Need dynamic kernel extensibility

 Loading (and unloading) kernel components on
demand
 E.g., device detection routine loads appropriate drivers

 Two subproblems:
 Make component functionality available to kernel
 Make kernel functionality available to component

Kernel Modules: Extensibility in Linux

 Linux kernel interface are defined by programming
language (“C”)
 Data layout implicitly defined by compiler

 structs, enums, arrays, (classes)
 Global symbol namespace

 Represents code and data

13© 2009 University of Karlsruhe, System
Architecture Group

 Represents code and data
 Compiler generates code and local symbols from source file

(object files)
 Relative addresses for internal references, placeholders for external

references
 References are stored within the object file itself (ELF format)

 Linker resolves local symbols and computes global addresses to
combine multiple object files

 Resolves address collisions
 Resolves external references
 Must contain an ELF format parser

Kernel Modules: Extensibility in Linux

 Linux kernel interface are defined by programming
language (“C”)
 Idea: Perform run-time linking of additional object files

 Kernel modules are run-time linked kernel libraries
 Images are relocatable

 Store linking information within module

14© 2009 University of Karlsruhe, System
Architecture Group

 Store linking information within module
 Special “__ksymtab” and “.modinfo” section in ELF file
 Contains text names for symbols

 Store linking information within kernel symbol table

Kernel Modules: Extensibility in Linux

 Loading kernel modules
 Modules are plain object files (.o)
 User-space helper programs

 insmod, modprobe and friends
 ELF-load and parse modules
 Pass special structure to kernel

Kernel
insmod EL

F

Co
de

D
at

a

Code Data

15© 2009 University of Karlsruhe, System
Architecture Group

 Kernel
 Relocates module image according

to its dedicated virtual address
space

 Resolves external references based
on kernel symbol table

 Finds dependencies and loads more
modules if required

 Executes module init routine
 Can register new driver, or

functionality

Linux
Code Data

relocate
resolve

Kernel Modules: Extensibility in Linux
 Analysis:

 Modules serve the need:
 Provide dynamic extensibility
 Preserve the normal programming language based

kernel interface

 But: Extensibility tied to the source code

16© 2009 University of Karlsruhe, System
Architecture Group

 But: Extensibility tied to the source code
 Floating and volatile interface
 Loading requires exact module/kernel match

Kernel Modules: Extensibility in Linux
 Analysis:

 Kernel modules are not a protection mechanism
 Modules link into the same address space
 Can be abused (LKM root kits)
 Raises dependability and reliability issues

Implementation

17© 2009 University of Karlsruhe, System
Architecture Group

 Implementation
 Kernel depends on user-space programs (so what?)
 Module dependencies bear substantial complexity

 Arbitrary <uses> and <depends> relations
 circular dependencies
 Inevitable with modularization?

Windows WDM driver architecture

 Windows is a proprietary, closed-source OS
 Still it…

 Needs to support various (crufty) hardware
devices

f

18© 2009 University of Karlsruhe, System
Architecture Group

 Needs to enable device manufacturers to develop
their own driver software

 Needs a standardized interface to let drivers
interact with
 I/O hardware
 Other windows kernel subsystems
 Applications

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Windows WDM driver architecture

 Basic Idea:
 Provide a special driver interface
 Use an abstract driver model as foundation

 I/O request packets
WDM d i e stack

19© 2009 University of Karlsruhe, System
Architecture Group

 WDM driver stack
 Hardware abstraction layer

 Specify interaction as programming interface
 WDM API defines standard methods, data structures, …
 Windows uses .inf files to install drivers

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Windows WDM driver architecture
 Some details

 Driver objects
 Filter, functional, bus drivers
 Stackable
 Specified functionality

 init, addDevice, dispatch, unload
 Device objects

APP

Win32 API

20© 2009 University of Karlsruhe, System
Architecture Group

 Device objects
 Represent a real HW device
 Managed by a (set of) drivers
 Can have a name

 128-bit device name space
 Specify how I/O is transferred

from user to kernel
 Direct, buffered, pinned DMA

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Filter driver

Functional driver

Bus driver

HAL

device
object

Windows WDM driver architecture
 Some details

 I/O request packet (IRP)
 represents an abstract I/O process

data unit
 Passed to driver stack by windows

kernel subsystem
 Percolates through the specified

di t h ti

APP

Win32 API

I/O Manager

21© 2009 University of Karlsruhe, System
Architecture Group

dispatch routines
 Driver programmer

 implements driver components
 links them together to form a stack
 provides device names

 Application programmers
 Can perform I/O based on device

name.

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Filter driver

Functional driver

Bus driver

HAL

IRP

device
object

Windows WDM driver architecture
 Driver interface details

 API approach
 Programmer relies on specified C-functions and

data structures
#include <ntddk.h>

NTSTATUS DriverEntry(PDRIVER OBJECT DriverObject PUNICODE STRING RegistryPath)

22© 2009 University of Karlsruhe, System
Architecture Group

 Windows provides a build utility (DDK)

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{

…
return STATUS_SUCCESS;

}

TARGETNAME = mydriver
TARGETPATH = obj
TARGETTYPE = DRIVER
INCLUDES = %BUILD%\inc
LIBS = %BUILD%\lib
SOURCES = mydriver.c

Windows WDM driver architecture
 Analysis:

 WDM
 provides dynamic extensibility for device drivers
 API based kernel interface

 Extensibility not tied to the source code
Fi d i t f

23© 2009 University of Karlsruhe, System
Architecture Group

 Fixed interface
 Build process can produce drivers for different Windows

versions

 Interface specialized to device drivers
 Does not provide generic module/subsystem

extensibility

Windows WDM driver architecture
 Analysis:

 WDM does not provide protection
 Drivers link into the same address space
 Raises dependability and reliability issues
 Drivers are known to be highly error-prone*

Implementation

24© 2009 University of Karlsruhe, System
Architecture Group

*Source: A. Chou et al. An Empirical Study of Operating System Errors. Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP) p.73-88

 Implementation
 Data-centric model

 I/O Request packets and dispatchers

 Simple component dependencies
 Stack of dispatchers

Kernel Interfaces in Multi-server Systems
 Multi-server kernel (system) design

 Privilege separation through address-space
protection
 µ-Kernel is privileged but limited in functionality
 Other kernel subsystems are “user programs”

 Can not execute privileged instructions
 Can not access arbitrary memory locations

25© 2009 University of Karlsruhe, System
Architecture Group

 Can not access arbitrary memory locations
 Can not access arbitrary I/O hardware

 Motivation: Protection
 Premise for security, reliability, dependability, …
 Crucial factor in OS
 But protection domain switches are costly
 Multi-server system trades off protection against

performance
 Key problem: Keep good performance

Kernel Interfaces in Multi-server Systems
 Multi-server interfaces

 Kernel subsystems are “user programs”
 Normal user interface for µ-Kernel services
 Direct addressing and data sharing between other

subsystems unfeasible
 µ-kernel must cater for subsystem interaction

Should be generic and versatile

26© 2009 University of Karlsruhe, System
Architecture Group

 Should be generic and versatile
 Support different subsystems

 resource managers, schedulers, pagers, drivers, UI, …
 Support different programming models

 Different manufacturers, compilers, languages, black-box
binaries,…

 Support different interaction scenarios
 Service requests and returns
 Data sharing
 Notifications, callbacks, exceptions, …

Kernel Interfaces in Multi-server Systems
 Multi-server interfaces

 (L4) Idea: provide simple and generic IPC
 Used by kernel subsystems
 Used by user programs

 Develop specializations on top
S b t ifi i t ti

27© 2009 University of Karlsruhe, System
Architecture Group

 Subsystem-specific interaction
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

Kernel Interfaces in Multi-server Systems
 But how to define interfaces?

 Subsystem-specific interfaces
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

 Idea: Leverage work from distributed systems

28© 2009 University of Karlsruhe, System
Architecture Group

 Same scenario: distributed components + interaction
 E.g., Remote procedure call model

 Client/Server model
 Need transparent, procedure-call like semantics

 Client calls server for service
 Server returns after processing

 Provide remote procedure call (RPC)
 Synchronous communication
 Can pass and return arguments

µKClient

do_stuff(arg,…) Server

µK

do_stuff(arg,…)
{

…
}

Kernel Interfaces in Multi-server Systems
 But how to define interfaces?

 Subsystem-specific interfaces
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

 Idea: Leverage work from distributed systems

29© 2009 University of Karlsruhe, System
Architecture Group

µKClient

do_stuff(arg,…) Server

µK

do_stuff(arg,…)
{

…
}

 Same scenario: distributed components + interaction
 E.g., Remote procedure call model

 Problems:
 Calling convention

 No shared data
 Pointers? References?

 Transparency
 Should “feel” like normal

call/ret
 Latency? IPC Errors?

Kernel Interfaces in Multi-server Systems
 Remote procedure call approaches

 Client and server stubs
 Transform call/ret semantics into communication

 Parameter marshaling/unmarshaling
 Procedure multiplexing/demultiplexing
 Message and data layout definition
 Leverages system communication primitives

30© 2009 University of Karlsruhe, System
Architecture Group

 Steps:
 Client procedure-calls client stub
 Client stub

 marshals parameters
 builds message
 calls kernel to send message to server

 Server stub decodes message
 dispatches the correct procedure (if needed)
 unmarshals parameters
 calls corresponding server-side procedure

 Server processes the request and returns to the server stub

Kernel Interfaces in Multi-server Systems
 Special considerations for node-local (multi-server) RPC

 Communication is more efficient,
thus stub code efficiency has more impact

 Same hardware: same endianess, bit width, float precision, …
 Same µ-kernel, can rely on its data types, interfaces etc.
 Simplifies/speeds up stub code

31© 2009 University of Karlsruhe, System
Architecture Group

p / p p

Kernel Interfaces in Multi-server Systems
 Remote procedure call

 Writing stubs is tedious
 Idea: Automate stub code generation
 Interface definition languages

 Language that specifies interfaces

interface foo {
void bar(...);
};

foo.idl

32© 2009 University of Karlsruhe, System
Architecture Group

 Remote method definition
 Special data types for argument passing

 Compiler generates interface stubs
 Client stub
 Server stub
 Server skeleton (basic dispatcher)

 Examples: Flick, Corba IDL, DCOM
 See lab lecture: using IDL4

void foo_bar(...)
{

asm volatile (
"push %%ebp"
"push %%ecx"
"xor %%eax, %%eax"
: "d" ((int)a)
: "cc", "memory"

);
}

foo_client.h

#define IDL4_PUBLISH_FOO_BAR(func) {
idl4_server_environment _env; \
\
func(_par._in._caller, &_env)\
\
__asm__ __volatile__(\
"xor %%eax, %%eax" \
"ret" \
: "S" (_par._in._caller)

}

foo_server.h

#include
"foo_server.h"

server.c

The SawMill Multiserver Architecture
 The SawMill Approach

 Complexity of OS increases
 Need specialized OS personalities for different

scenarios
 Need a development path to build such

specialized operating systems

33© 2009 University of Karlsruhe, System
Architecture Group

p p g y

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

The SawMill Multiserver Architecture
 The SawMill Approach

 Idea: Decompose existing operating systems for
flexibly reusable components
 Extend existing OS with functionality
 Customize existing OS: strip them down for application

requirements
Th S Mill h i t f

34© 2009 University of Karlsruhe, System
Architecture Group

 The SawMill approach consists of
 An architecture to build systems
 A set of protocol design guidelines to solve multi-server

problems

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

The SawMill Multiserver Architecture
 Example "SawMill" Multi-Server Linux:

 (1) isolate Linux services from each other;
 (2) improve them one by one:

 VM, scheduling, security (denial of service), reliability,
SMP, large memory, mmap, async io, select, large files

 Extend Linux, add value:
 New security policies, …

35© 2009 University of Karlsruhe, System
Architecture Group

 New security policies, …
 Customize Linux for special devices.

Network
Server Pager

ext2 FS IDE Device
Driver

VFS Server

Task Server Memory Server

L4Linux

L4

Secure
Console

The SawMill Multiserver Architecture
 SawMill design considerations

 The multiserver OS must provide
 Protection

 Protect execution integrity of servers
 Protect data integrity/confidentiality of user data

 Coherent semantics
 Obtain and enforce system policies

36© 2009 University of Karlsruhe, System
Architecture Group

 Obtain and enforce system policies
 Obey atomicity requirements

 Performance (efficient services)
 Protection implies more frequent IPC

 IPC replaces procedure calls
 Additional IPCs required for consistency,

synchronization, resource management, security
policies, …

 Protection implies more complex IPC
 Parameter transfer
 Parameter marshaling
 See previous slides

The SawMill Multiserver Architecture
 SawMill architecture

 Three types of components
 System servers

 Main OS functionality
 File server, network server, …

 Resource servers
 Manage core resources

Di t ib t d t

37© 2009 University of Karlsruhe, System
Architecture Group

Memory
Server

Memory
Server

VM Server

 Distributed among system servers
 Memory, IRQs, security abstractions, …

 Ubiquitous services
 “Libraries” that augment servers
 Multiserver-aware management
 Synchronization, ACL, Naming, IPC primitives, …

 Example: Virtual memory
 VM system server exports a dataspace
 Memory server provides core memory
 Ubiquitous VM service handles indirection

between dataspace and core memory

VM service

DS1 DS2

MEM MEM

The SawMill Multiserver Architecture
 SawMill protocols

 Goal: minimize IPC frequency and overhead
 Design principles:

 Make direct calls to processing servers
 Let clients communicate directly with subsequent servers

 Partition control data

38© 2009 University of Karlsruhe, System
Architecture Group

 Distribute control data among involved servers
 Use caching in servers if possible
 Minimize synchronization

 Minimize writes
 Weaken consistency models
 Use “Master copy” schemes

 Heavily use data sharing

The SawMill Multiserver Architecture
 Envisage direct calls

User

open read/write

User

open

User

mount fault

Pass PFS
handle

39© 2009 University of Karlsruhe, System
Architecture Group

VFS

PFS

Driver

lookup

read inode

read/write

VFS

PFS

Driver

p

lookup

read/write

read inode

VFS

PFS

Driver

access fault read/write

read inode

open

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

VFS responsible for
mount points / ACL only

VFS

The SawMill Multiserver Architecture
 Partition control data

System
Code

service libSuperblock

Superblock
Inode Cpy

40© 2009 University of Karlsruhe, System
Architecture Group

PFS
Code

service lib

Superblock
Inode Mstr

Code
Control Data

User Data

VFS PFS Driver
PFS

Driver

Code

service lib

Code

service lib

Inodes

Buffer Cache

Superblock
Inode Mstr

update

sync

rarely modified

orthogonally used by PFS/VFS
???

Buffer Cache

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

VFS

User

The SawMill Multiserver Architecture
 Share user data

System
Code

Data

copy

User

Data

User data

copy

41© 2009 University of Karlsruhe, System
Architecture Group

Sources: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000
P.Druschel et al. Fbufs: A High-Bandwidth Cross-Domain Transfer Facility Proceedings of the
14th Symposium on Operating Systems Principles 1993 p189-202

Code
Control Data

User Data

VFS PFS Driver

PFS

Driver

service lib

Code

service lib

Code

service lib

Could use paging to share user data but
• alignment problems
• decomposition problems

User data

User data

shareX

shareX

copy

copy

The SawMill Multiserver Architecture
 Analysis

 SawMill
 Envisages customized, modular OS personalities
 Uses a decomposition approach for reuse

 Presents a basic architecture
 µ-kernel based client/server architecture

42© 2009 University of Karlsruhe, System
Architecture Group

 µ-kernel based client/server architecture
 Servers, ubiquitous services, core resource

managers
 And a set of protocol guidelines

 Make direct calls to processing servers
 Partition control data
 Share user data
 Used to design and implement components and

interfaces

The SawMill Multiserver Architecture
 Analysis

 Problems
 Decomposition is hard
 Stripping down is hard

 SawMill Linux has a huge code base
 SawMill must maintain/fight against legacy Linux

semantics

43© 2009 University of Karlsruhe, System
Architecture Group

 Linux was never designed to deal with multi-
server problems

 Partitioning control data is complicated
 Sharing user data is complicated

 Especially together with legacy semantics
 E.g., how to partition entangled control/user data

(skbuffs)?
 How to share unaligned data?

Virtualization interfaces
 Background

 Complexity of OS increases
 Want to improve or introduce new OS

functionality
 Effective time sharing (aka server consolidation)

44© 2009 University of Karlsruhe, System
Architecture Group

 Simultaneous support of multiple OS APIs
 Transparent migration
 Security services

 Monolithic OS design has serious limits
 Complex, entangled, unreliable, insecure, …
 Hard to customize, hard to extend, hard to

decompose

Virtualization interfaces
 Problem: Legacy support

 New OS must support old programs
 API support not sufficient

 Want to support old OS functionality as well
 Many applications are tailored to specific OS

45© 2009 University of Karlsruhe, System
Architecture Group

versions
 Need a development path to incorporate new

and keep old functionality at the same time

Virtualization interfaces
 Idea: Virtualization

 Provide hardware interface
 But transparently change semantics

 Interface constituted by hardware specification
 Fixed and well-designed interface

46© 2009 University of Karlsruhe, System
Architecture Group

 Already used by guest OS, no porting effort
needed

 Virtualization only changes semantics
 Restrict side effects to virtual machine and

dedicated hardware
 Keeps illusion of real hardware

Virtualization interfaces

Guest

VMM

VCPU

cli

disable
preemption

 Examples:
 Interrupts

 Guest executes <clear IF>
 Hypervisor intercepts instruction
 Monitor/Emulator disables

preemption of Guest OS

47© 2009 University of Karlsruhe, System
Architecture Group

Hypervisor
p p

 Page table modifications
 Guest inserts page table entry
 Hypervisor intercepts modification
 Monitor/emulator modifies physical

mapping if necessary

Guest

VMM

VCPU

Hypervisor

set_pte

phys2mach

OS
Interface

Virtualization interfaces
 Virtualization provides stacked OS model

 Guest OS contains applications and (unprivileged)
OS services

 Hypervisor/host OS contains privileged OS services
and emulation

 Additional OS services can be designed freely
 No interface requirements

48© 2009 University of Karlsruhe, System
Architecture Group

q
 Multi-server components
 Leverage host OS
 Use specialized virtual machines

Guest

VMM

VCPU

Hypervisor Hypervisor

Guest

VMM

VCPU

VM Mgmt.
Hypervisor

VM
Mgmnt.

VMM

Guest

VCPU VCPU

Host OS

Guest

VMM

VCPU
Net

Paging
Files
GUI

AP
P

AP
P

VM
Mgmnt.

Guest

VMM

VCPU

Hypervisor/µK

VM
 M

gm
nt

.
O

S
Se

rv
ic

es
AP

P

Virtualization interfaces
 Analysis

 Interface defined by hardware
 Fixed and well-designed interface
 Already used, no porting effort needed

 Virtualization changes semantics
 Semantics are not specified
 Transparency introduces overhead

 Hardware Interface may be inappropriate

49© 2009 University of Karlsruhe, System
Architecture Group

 Hardware Interface may be inappropriate
 Example: Disk I/O
 Guest performs write to device
 File access? Swapping?

 Example: Network I/O
 Guest calls virtual NIC to send buffer
 Virtual NIC must decode packets again

 Virtualization only provides legacy
 It does not address the design of new OS functionality
 It does not address the design of new or improved interfaces

Thursday

 Maifeiertag

50© 2009 University of Karlsruhe, System
Architecture Group

