Systems Design and Implementation
1.3 — Kernel and Operating System Interfaces

System Architecture Group, SS 2009

University of Karlsruhe

May 5, 2009 Jan Stoess
University of Karlsruhe

[") Overview

= Motivation
= User interfaces
= Kernel interfaces in monolithic OSes
= Case study 1: Linux kernel modules
= Case study 2: Windows WDM architecture
= Kernel interfaces in multi-server systems
= Case study 3: The SawMill Multiserver Architecture
= Case study 4: Virtualization interfaces

[") Motivation

= Operating systems run user programs
= May request service
= May need event notification

= Operating systems have different subsystems
= e.g., paging call disk subsystem to swap

= Need an interface
= Kernel Interfaces O =8 \

= Sharing/Transferring Data |NetW°rkK:>‘ Paging \

= Sharing/Transferring Code 4L 1L

= Implications on [GFX Disk]
programming model _)

« E.g., C-Routines, RPC, ...

[T} User Interfaces

= Required functionality:

= System Services (system calls)
« read from disk, send over network, ...
= Synchronous
= Enhances privileges
= Interface data:
Kernel service routine identifier
Parameters
= Notifications (signals)

= Division by 0, Protection fault, completion of
asynchronous service, ...

= May be asynchronous
= Must switch back to user privileges
= Interface data

User-level callback handler identifier
Arguments

© 2009 University of Karlsruhe, System
Architecture Group

[T} User Interfaces

= Required functionality:

= Kernel-accessible user data
= Statistics, configuration data (/proc), ...
= May be accessed asynchronously
= Constraints:

= Safety:
= User may not call arbitrary kernel routines
= User may not arbitrarily switch to kernel privileges
= User may not change arbitrary kernel data

© 2009 University of Karlsruhe, System
Architecture Group

[T} User Interfaces

i nt 0x80
= Solution: SN Cup]
= System services: User [uspdl
= Leverage hardware primitives uf
Safe privilege change | ‘ :
Safe system service dispatching Int 0x80
= Example: IA-32 <i nt n> instruction /~ 0\
Safe call to interrupt procedure
Loads kernel stack, changes FLAGS 0x80
Saves EIP, ESP, FLAGS on kernel stack =
Transfers control to kernel code C o]
Specified by interrupt number \ /
Implies hardware privilege change

Return to user via <i r et >
= Hardware subject to change
Use trampoline page for kernel entry
Versatile interface
Can execute syscalls at user-level

© 2009 University of Karlsruhe, System
Architecture Group

B
[T} User Interfaces

= Solution:
= Notifications
« Leverage MMU hardware

= Kernel shares user address space
Can modify user-state
Can transfer control

= But not vice-versa

= User-accessible kernel data
= Dedicated shared pages
E.g. kernel interface page

= Map to system calls
e.g., proc file system

© 2009 University of Karlsruhe, System
Architecture Group

Kernel

KIP

User

[_) Kernel Interfaces in monolithic OSes

= Monolithic Kernel design
= Design principle: global, shared kernel

= Programming language defines interface
= Data interfacing through shared data
= Control interfacing through direct control transfer
= Compiler and linker determine and resolve addresses

[_) Kernel Interfaces in monolithic OSes

= Monolithic Kernel design
= Design principle: global, shared kernel
= Programming language defines interface

= Logical/Semantical separation of concerns
C-structs, extern functions, static functions
header files, source files
classes, members, namespaces, ...

= No boundary protection
Software can easily cross semantic boundaries
arbitrary control transfers (e.g., using assembler)

arbitrary data access and modifications (e.g., using
typecasts and pointers)

© 2009 University of Karlsruhe, System
Architecture Group

[_) Kernel Interfaces in monolithic OSes

= Monolithic Kernel design
= Mo privilege separation
= All kernel subsystems can execute all processor instructions
= All kernel subsystems can access all 1/0 hardware

= Motivation: Performance
= Crucial factor in OS

= Protection domain switches are costly
Full address space switch (Pentium 1V):
changes a/l AS translations

Implies TLB flush
(— 500 cycles)

Implies (Virtual) Trace Cache flush
(up to 4000 cycles)

+ TLB replacement + Trace cache reloading
(— 5000 cycles)

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002

© 2009 University of Karlsruhe, System 10
Architecture Group

[_) Kernel Interfaces in monolithic OSes

= Monolithic Kernel design
= Mo privilege separation
= All kernel subsystems can execute all processor instructions
= All kernel subsystems can access all 1/0 hardware
= Motivation: Performance
= Crucial factor in OS

=
. . . pK
= Segmentation (partial AS switch) 1K ;
Changes base offset, accessible limits within AS

Changes protection parameters -
Implies segment register reloading (=300 cycles)

No TLB and TC flushing
But Restrictions on AS layout and size

= Monolith lacks protection but retains performance KI
Direct calls, direct data accesses K2))

Cross-component accesses and optimizations
Ad-hoc extensibility

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002
© 2009 University of Karlsruhe, System 1 1
Architecture Group

D Kernel Modules: Extensibility in Linux

= Linux is becoming more and more complex

= vast amount of device drivers, network protocols,
file systems

= Linux should support crufty hardware
= Support not always needed
= Need dynamic kernel extensibility

= Loading (and unloading) kernel components on
demand

= E.g., device detection routine loads appropriate drivers
= Two subproblems:

= Make component functionality available to kernel
= Make kernel functionality available to component

12

D Kernel Modules: Extensibility in Linux

= Linux kernel interface are defined by programming
language (“C”)
= Data layout implicitly defined by compiler
= Structs, enums, arrays, (classes)

= Global symbol namespace
= Represents code and data
= Compiler generates code and local symbols from source file
(object files)

Relative addresses for internal references, placeholders for external
references

References are stored within the object file itself (ELF format)
= Linkerresolves local symbols and computes global addresses to
combine multiple object files
Resolves address collisions
Resolves external references
Must contain an ELF format parser

© 2009 University of Karlsruhe, System 13
Architecture Group

D Kernel Modules: Extensibility in Linux

= Linux kernel interface are defined by programming
language (“C”)
= ldea: Perform run-time linking of additional object files
= Kernel modules are run-time linked kernel libraries

Images are relocatable

= Store linking information within module
Special “__ksymtab” and “.modinfo” section in ELF file
Contains text names for symbols

= Store linking information within kernel symbol table

© 2009 University of Karlsruhe, System 14
Architecture Group

D Kernel Modules: Extensibility in Linux

= Loading kernel modules
= Modules are plain object files (.0)
= User-space helper programs

= insmod, modprobe and friends ﬁ

= ELF-load and parse modules T \ T =
= Pass special structure to kernel insmod; 0% | | Pata [d S| =
= Kernel \ J
= Relocates module image according =
to its dedicated virtual address _ Code | | Data
space Linux 7 7
= Resolves external references based \&(
on kernel symbol_ table relocate
= Finds dependencies and loads more resolve
modules if required

= Executes module init routine

Can register new driver, or
functionality

15

© 2009 University of Karlsruhe, System
Architecture Group

D Kernel Modules: Extensibility in Linux
= Analysis:

= Modules serve the need:
= Provide dynamic extensibility

= Preserve the normal programming language based
kernel interface

= But: Extensiblility tied to the source code
= Floating and volatile interface
= Loading requires exact module/kernel match

16

D Kernel Modules: Extensibility in Linux
= Analysis:

= Kernel modules are not a protection mechanism
= Modules link into the same address space
= Can be abused (LKM root kits)
= Raises dependability and reliability issues

= Implementation
= Kernel depends on user-space programs (so what?)
= Module dependencies bear substantial complexity
Arbitrary <uses> and <depends> relations

circular dependencies
Inevitable with modularization?

© 2009 University of Karlsruhe, System 17
Architecture Group

D Windows WDM driver architecture

= Windows is a proprietary, closed-source OS
= Still it...

= Needs to support various (crufty) hardware
devices

= Needs to enable device manufacturers to develop
their own driver software

= Needs a standardized interface to let drivers
Interact with
= |1/O hardware
= Other windows kernel subsystems
= Applications

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

© 2009 University of Karlsruhe, System
Architecture Group

18

D Windows WDM driver architecture

= Basic Idea:
= Provide a special driver interface

= Use an abstract driver model as foundation

= 1/0 request packets
= WDM driver stack
= Hardware abstraction layer

= Specify interaction as programming interface

= WDM API defines standard methods, data structures, ...

= Windows uses .inf files to install drivers

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

© 2009 University of Karlsruhe, System
Architecture Group

19

D Windows WDM driver architecture
= Some details

= Driver objects { APP]

= Filter, functional, bus drivers

= Stackable (Win32 API |

= Specified functionality
init, addDevice, dispatch, unload

= Device objects
= Represent a real HW device

= Managed by a (set of) drivers [__Filter driver]
= Can have a name [Functional driver] -
128-bit device name space L B0s dr;)
- Specify how 1/0 is transferred | “—= | e
from user to kernel 4
Direct, buffered, pinned DMA ————«——
[HAL J 8
Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33 20

© 2009 University of Karlsruhe, System
Architecture Group

D Windows WDM driver architecture

= Some details
= 1/O request packet (IRP) {]
APP

= represents an abstract 1/0 process
data unit

= Passed to driver stack by windows
kernel subsystem

= Percolates through the specified I/0 Manager]

dispatch routines ‘@j
= Driver programmer

>{__ Filter driver]
= iImplements driver components ‘
= links them together to form a stack . >{ Functional driver]

\ b

= provides device names ‘;:{ Bus driver [device

a ApplicatiOn programmers i Obj?ect
= Can perform 1/0 based on device -

Nname. { HAL J 8

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

© 2009 University of Karlsruhe, System 2 1
Architecture Group

| Win32 API |

D Windows WDM driver architecture

s Driver interface details
= APl approach

= Programmer relies on specified C-functions and
data structures

#include <ntddk.h>

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{

return STATUS SUCCESS;
}

= Windows provides a build utility (DDK)

TARGETNAME = mydriver
TARGETPATH = obj
TARGETTYPE = DRIVER
INCLUDES = %BUILD%\inc
LIBS = %BUILD%o\lib
SOURCES = mydriver.c

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

© 2009 University of Karlsruhe, System
Architecture Group

22

D Windows WDM driver architecture
= Analysis:

= WDM

= provides dynamic extensibility for device drivers
= APl based kernel interface

= Extensibility not tied to the source code
= Fixed interface

= Build process can produce drivers for different Windows
versions

= Interface specialized to device drivers

= Does not provide generic module/subsystem
extensibility

23

D Windows WDM driver architecture
= Analysis:

= WDM does not provide protection
= Drivers link into the same address space
= Raises dependability and reliability issues
= Drivers are known to be highly error-prone*

= Implementation
= Data-centric model
/0 Request packets and dispatchers

= Simple component dependencies
Stack of dispatchers

*Source: A. Chou et al. An Empirical Study of Operating System Errors. Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP) p.73-88

© 2009 University of Karlsruhe, System
Architecture Group

24

D Kernel Interfaces in Multi-server Systems

= Multi-server kernel (system) design

= Privilege separation through address-space
protection
= U-Kernel is privileged but limited in functionality
= Other kernel subsystems are “user programs”
Can not execute privileged instructions
Can not access arbitrary memory locations
Can not access arbitrary 1/0 hardware
= Motivation: Protection
= Premise for security, reliability, dependability, ...
= Crucial factor in OS
= But protection domain switches are costly

= Multi-server system trades off protection against
performance

= Key problem: Keep good performance

© 2009 University of Karlsruhe, System
Architecture Group

25

D Kernel Interfaces in Multi-server Systems

s Multi-server interfaces

= Kernel subsystems are “user programs”
= Normal user interface for pu-Kernel services
= Direct addressing and data sharing between other
subsystems unfeasible
= U-kernel must cater for subsystem interaction

= Should be generic and versatile
= Support different subsystems
resource managers, schedulers, pagers, drivers, Ul, ...
= Support different programming models

Different manufacturers, compilers, languages, black-box
binaries,...

= Support different interaction scenarios
Service requests and returns
Data sharing
Notifications, callbacks, exceptions, ...

© 2009 University of Karlsruhe, System 26
Architecture Group

D Kernel Interfaces in Multi-server Systems
= Multi-server interfaces

= (L4) ldea: provide simple and generic IPC
= Used by kernel subsystems
= Used by user programs

= Develop specializations on top
= Subsystem-specific interaction
= Programming models (APIs, C-like function calls, ...)
= Data sharing (shared memory, request buffers, ...)
= Naming and addressing schemes

27

D Kernel Interfaces in Multi-server Systems

= But how to define interfaces?
= Subsystem-specific interfaces
= Programming models (APls, C-like function calls, ...)
= Data sharing (shared memory, request buffers, ...)
= Naming and addressing schemes

= ldea: Leverage work from distributed systems
= Same scenario: distributed components + interaction

= E.g., Remote procedure call model
= Client/Server model
= Need transparent, procedure-call like semantics

Client calls server for service pK
Server returns after processing Client pK

= Provide remote procedure call (RPC) |0 stuf(arg,..) Server
Synchronous communication do_stuff(arg,...)

{

Can pass and return arguments
¥

© 2009 University of Karlsruhe, System 28
Architecture Group

D Kernel Interfaces in Multi-server Systems

= But how to define interfaces?
= Subsystem-specific interfaces
= Programming models (APls, C-like function calls, ...)
= Data sharing (shared memory, request buffers, ...)
= Naming and addressing schemes

= ldea: Leverage work from distributed systems

= Same scenario: distributed components + interaction
= E.g., Remote procedure call model

= Problems:
Calling convention
No shared data LK

Pointers? References? Client uK

Transparency do_Sf(ar...) Server

Should “feel” like normal do_stuff(arg,...)
call/ret {

Latency? IPC Errors? ,

© 2009 University of Karlsruhe, System 29
Architecture Group

D Kernel Interfaces in Multi-server Systems

= Remote procedure call approaches

= Client and server stubs

« Transform call/ret semantics into communication
Parameter marshaling/unmarshaling
Procedure multiplexing/demultiplexing
Message and data layout definition
Leverages system communication primitives

= Steps:

= Client procedure-calls client stub

= Client stub
marshals parameters
builds message
calls kernel to send message to server

= Server stub decodes message
dispatches the correct procedure (if needed)
unmarshals parameters
calls corresponding server-side procedure

= Server processes the request and returns to the server stub

© 2009 University of Karlsruhe, System
Architecture Group

D Kernel Interfaces in Multi-server Systems

= Special considerations for node-local (multi-server) RPC

Communication is more efficient,
thus stub code efficiency has more impact

Same hardware: same endianess, bit width, float precision, ...
Same p-kernel, can rely on its data types, interfaces etc.
Simplifies/speeds up stub code

31

Kernel Interfaces in Multi-server Systems

= Remote procedure call
= Writing stubs is tedious
= ldea: Automate stub code generation

= Interface definition languages

= Language that specifies interfaces
Remote method definition
Special data types for argument passing
= Compiler generates interface stubs
Client stub
Server stub
Server skeleton (basic dispatcher)
= Examples: Flick, Corba IDL, DCOM

= See lab lecture: using IDL*

© 2009 University of Karlsruhe, System 32
Architecture Group

[_) The SawMill Multiserver Architecture

= The SawMill Approach
= Complexity of OS increases

= Need specialized OS personalities for different
scenarios

= Need a development path to build such
specialized operating systems

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

[_) The SawMill Multiserver Architecture

= The SawMill Approach
= ldea: Decompose existing operating systems for
flexibly reusable components

= Extend existing OS with functionality

= Customize existing OS: strip them down for application
requirements

= The SawMill approach consists of
= An architecture to build systems

= A set of protocol design guidelines to solve multi-server
problems

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

© 2009 University of Karlsruhe, System
Architecture Group

34

© 2009 Universi

s Example "SawMill” Multi-Server Linux:
= (1) isolate Linux services from each other;

= (2) improve them one by one:

VM, scheduling, security (denial of service), reliability,
SMP, large memory, mmap, async o, select, large files

= Extend Linux, add value:
New security policies, ...
= Customize Linux for special devices.

-*

LALinux

ity of Karlsrul

he, Systel
ure

The SawMill Multiserver Architecture

Secure
Console

35

[_) The SawMill Multiserver Architecture

= SawMill design considerations
= The multiserver OS must provide

= Protection
Protect execution integrity of servers
Protect data integrity/confidentiality of user data

= Coherent semantics
Obtain and enforce system policies
Obey atomicity requirements

=« Performance (efficient services)
Protection implies more frequent IPC
IPC replaces procedure calls

Additional IPCs required for consistency, _
synchronization, resource management, security
policies, ...

Protection implies more complex IPC
Parameter transfer
Parameter marshaling
See previous slides

© 2009 University of Karlsruhe, System 36
Architecture Group

The SawMill Multiserver Architecture

= SawMill architecture

= Three types of components

= System servers
Main OS functionality
File server, network server, ...
= Resource servers
Manage core resources
Distributed among system servers
Memory, IRQs, security abstractions, ...

= Ubiquitous services - ~
“Libraries” that augment servers ﬂ
Multiserver-aware management [D31] [DS |
Synchronization, ACL, Naming, IPC primitives, ...

= Example: Virtual memory (WM ServeD
= VM system server exports a gataspace

= Memory server provides core memory
= Ubiquitous VM service handles indirection
between dataspace and core memory

© 2009 University of Karlsruhe, System
o Architecture Group

[_) The SawMill Multiserver Architecture

= SawMill protocols
= Goal: minimize IPC frequency and overhead
= Design principles:
= Make direct calls to processing servers
Let clients communicate directly with subsequent servers
= Partition control data
Distribute control data among involved servers
Use caching in servers if possible
Minimize synchronization
Minimize writes
Weaken consistency models
Use “Master copy” schemes
= Heavily use data sharing

© 2009 University of Karlsruhe, System 38
Architecture Group

[_) The SawMill Multiserver Architecture

= Envisage direct calls

Pass PFS
[User] [] handle [User J
User

open || read/write open || /,‘/ mount fault
) |lopen
VFS { VES J read/write [/VFS]
= TF . i read/write
lookup read/write lookup 1 access fault
[PFS } { o J [PFS
read inode i . o read inode i
i read inode: i
[Driver J [Driver] [Driver J

4‘ VFES responsible for
@ 2009 Umerst o ey SOUrCE: A. Gefflaut et al. 7he SawMill Multiserver Approach ACM SIGOPS mount metS / ACL Only

The SawMill Multiserver Architecture

s Partition control data

e
\ \serwce i P
4)

Driver

rarely modified —

orthogonally used by PFS/VFS
72?7

service lib

o

40

o e e e SOUrce: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

s Share user data

\
User

N ————

LB ooy

(VRS

Could use paging to share user data but
e alignment problems
e decomposition problems

_ P

The SawMill Multiserver Architecture

Sources: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

P.Druschel et al. Fbufs: A High-Bandwidth Cross-Domain Transfer Facility Proceedings of the
o © 2009 University of Karlsruhe, System

Architecture Group

14th Symposium on Operating Systems Principles 1993 p189-202

k
K
PFS
[User data |
I\
Driver
[User data |+
k P

41

[_) The SawMill Multiserver Architecture

= Analysis

= SawMill

= Envisages customized, modular OS personalities
= Uses a decomposition approach for reuse

= Presents a basic architecture
= U-kernel based client/server architecture
= Servers, ubiguitous services, core resource
managers
= And a set of protocol guidelines
= Make direct calls to processing servers
= Partition control data
= Share user data

= Used to design and implement components and
interfaces

© 2009 University of Karlsruhe, System
Architecture Group

42

[_) The SawMill Multiserver Architecture

= Analysis

= Problems
= Decomposition is hard

= Stripping down is hard
SawMill Linux has a huge code base

SawMill must maintain/fight against legacy Linux
semantics

Linux was never designed to deal with multi-
server problems

= Partitioning control data is complicated
= Sharing user data is complicated

Especially together with legacy semantics

E.g., how to partition entangled control/user data
(skbuffs)?

How to share unaligned data?

© 2009 University of Karlsruhe, System
Architecture Group

43

[1) Virtualization interfaces

= Background
= Complexity of OS increases

= Want to improve or introduce new OS
functionality
= Effective time sharing (aka server consolidation)
= Simultaneous support of multiple OS APIs
= Transparent migration
= Security services

= Monolithic OS design has serious limits
= Complex, entangled, unreliable, insecure, ...

= Hard to customize, hard to extend, hard to
decompose

44

[1) Virtualization interfaces

= Problem: Legacy support
= New OS must support old programs

= API support not sufficient
= Want to support old OS functionality as well

= Many applications are tailored to specific OS
versions

= Need a development path to incorporate new
and keep old functionality at the same time

45

[1) Virtualization interfaces

= ldea: Virtualization
= Provide hardware interface
= But transparently change semantics

= Interface constituted by hardware specification
= Fixed and well-designed interface

= Already used by guest OS, no porting effort
needed

= Virtualization only changes semantics

= Restrict side effects to virtual machine and
dedicated hardware

= Keeps illusion of real hardware

46

[1) Virtualization interfaces

= Examples:

= Interrupts
=« Guest executes <clear IF>
= Hypervisor intercepts instruction

= Monitor/Emulator disables
preemption of Guest OS

0S
Interface

= Page table modifications
= Guest inserts page table entry
= Hypervisor intercepts modification

= Monitor/emulator modifies physical
mapping if necessary

[Hyperv‘isor]

© 2009 University of Karlsruhe, System 47
Architecture Group

[_) Virtualization interfaces

= Virtualization provides stacked OS model

[Hype rvisor]me

, Sys
Lire Gr

= Guest OS contains applications and (unprivileged)

OS services

= Hypervisor/host OS contains privileged OS services
and emulation

= Additional OS services can be designed freely

= No interface requirements

= Multi-server components

= Leverage host OS

= Use specialized virtual machines

%Hypervisor)

Guest &] &J

<€ <C
U e
N aging
:::K-/-Rﬂ::\' :__l__:l__|§_§__:
‘Mgmnt.' 1 GUI

_ Host OS Y

Hypervisor

)

Guest

VCPU

VM Mgmnt. |
0OS Services|

| VMM |

APP

\

| Hyperviso

r/

" J
~
J

[1) Virtualization interfaces

= Analysis

= Interface defined by hardware
=« Fixed and well-designed interface
= Already used, no porting effort needed
= Virtualization changes semantics
= Semantics are not specified
= Transparency introduces overhead
= Hardware Interface may be inappropriate
=« Example: Disk 1/0
= Guest performs write to device
= File access? Swapping?
= Example: Network 1/0
= Guest calls virtual NIC to send buffer
= Virtual NIC must decode packets again
= Virtualization only provides legacy
= It does not address the design of new OS functionality
= It does not address the design of new or improved interfaces

© 2009 University of Karlsruhe, System
Architecture Group

a Thursday

= Maifeiertag

50

