
Systems Design and Implementation
I.3 – Kernel and Operating System Interfaces

h

Jan Stoess
University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

May 5, 2009

Overview

 Motivation
 User interfaces
 Kernel interfaces in monolithic OSes

 Case study 1: Linux kernel modules

2© 2009 University of Karlsruhe, System
Architecture Group

 Case study 2: Windows WDM architecture
 Kernel interfaces in multi-server systems

 Case study 3: The SawMill Multiserver Architecture
 Case study 4: Virtualization interfaces

Motivation

 Operating systems run user programs
 May request service
 May need event notification

 Operating systems have different subsystems
 e.g., paging call disk subsystem to swap

3© 2009 University of Karlsruhe, System
Architecture Group

g , p g g y p
 Need an interface

 Kernel Interfaces
 Sharing/Transferring Data
 Sharing/Transferring Code
 Implications on

programming model
 E.g., C-Routines, RPC, …

Network Paging

DiskGFX

User

User Interfaces

 Required functionality:
 System Services (system calls)

 read from disk, send over network, …
 Synchronous
 Enhances privileges

Interface data:

4© 2009 University of Karlsruhe, System
Architecture Group

 Interface data:
 Kernel service routine identifier
 Parameters

 Notifications (signals)
 Division by 0, Protection fault, completion of

asynchronous service, …
 May be asynchronous
 Must switch back to user privileges
 Interface data

 User-level callback handler identifier
 Arguments

User Interfaces

 Required functionality:
 Kernel-accessible user data

 Statistics, configuration data (/proc), …
 May be accessed asynchronously

C t i t

5© 2009 University of Karlsruhe, System
Architecture Group

 Constraints:
 Safety:

 User may not call arbitrary kernel routines
 User may not arbitrarily switch to kernel privileges
 User may not change arbitrary kernel data

User Interfaces

 Solution:
 System services:

 Leverage hardware primitives
 Safe privilege change
 Safe system service dispatching

 Example: IA-32 <int n> instruction

User

int 0x80

uip

ufl

usp

int 0x80
sysenter

…

6© 2009 University of Karlsruhe, System
Architecture Group

p
 Safe call to interrupt procedure
 Loads kernel stack, changes FLAGS
 Saves EIP, ESP, FLAGS on kernel stack
 Transfers control to kernel code

 Specified by interrupt number
 Implies hardware privilege change

 Return to user via <iret>
 Hardware subject to change

 Use trampoline page for kernel entry
 Versatile interface
 Can execute syscalls at user-level

uip
usp
ufl

CPU

sp
ip

fl

IDT

ksp

0x80

User Interfaces

 Solution:
 Notifications

 Leverage MMU hardware
 Kernel shares user address space

 Can modify user-state
 Can transfer control

Kernel

7© 2009 University of Karlsruhe, System
Architecture Group

 But not vice-versa
 User-accessible kernel data

 Dedicated shared pages
 E.g. kernel interface page

 Map to system calls
 e.g., proc file system

CPU

User

CR3

KIP

Kernel Interfaces in monolithic OSes

 Monolithic Kernel design
 Design principle: global, shared kernel
 Programming language defines interface

 Data interfacing through shared data

8© 2009 University of Karlsruhe, System
Architecture Group

 Control interfacing through direct control transfer
 Compiler and linker determine and resolve addresses

Kernel Interfaces in monolithic OSes

 Monolithic Kernel design
 Design principle: global, shared kernel
 Programming language defines interface
 Logical/Semantical separation of concerns

9© 2009 University of Karlsruhe, System
Architecture Group

 C-structs, extern functions, static functions
 header files, source files
 classes, members, namespaces, …

 No boundary protection
 Software can easily cross semantic boundaries
 arbitrary control transfers (e.g., using assembler)
 arbitrary data access and modifications (e.g., using

typecasts and pointers)

Kernel Interfaces in monolithic OSes
 Monolithic Kernel design

 No privilege separation
 All kernel subsystems can execute all processor instructions
 All kernel subsystems can access all I/O hardware

 Motivation: Performance
 Crucial factor in OS

10© 2009 University of Karlsruhe, System
Architecture Group

 Protection domain switches are costly
 Full address space switch (Pentium IV):

 changes all AS translations
 Implies TLB flush

(~ 500 cycles)
 Implies (Virtual) Trace Cache flush

(up to 4000 cycles)
 + TLB replacement + Trace cache reloading

(~ 5000 cycles)
CPU

µK

K1

µK

K2

CR3

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002

Kernel Interfaces in monolithic OSes
 Monolithic Kernel design

 No privilege separation
 All kernel subsystems can execute all processor instructions
 All kernel subsystems can access all I/O hardware

 Motivation: Performance
 Crucial factor in OS

K

11© 2009 University of Karlsruhe, System
Architecture Group

 Segmentation (partial AS switch)
 Changes base offset, accessible limits within AS
 Changes protection parameters
 Implies segment register reloading (~300 cycles)
 No TLB and TC flushing
 But Restrictions on AS layout and size

 Monolith lacks protection but retains performance
 Direct calls, direct data accesses
 Cross-component accesses and optimizations
 Ad-hoc extensibility

CPU

µK

K2

K1
base
limit

K
K1

K2

Source: Uhlig et. al. Performane of Address-Space Multiplexing on the Pentium. Fak. f. Informatik, Univ. Karlsruhe, 2002

Kernel Modules: Extensibility in Linux

 Linux is becoming more and more complex
 vast amount of device drivers, network protocols,

file systems
 Linux should support crufty hardware
 Support not always needed

12© 2009 University of Karlsruhe, System
Architecture Group

pp y
 Need dynamic kernel extensibility

 Loading (and unloading) kernel components on
demand
 E.g., device detection routine loads appropriate drivers

 Two subproblems:
 Make component functionality available to kernel
 Make kernel functionality available to component

Kernel Modules: Extensibility in Linux

 Linux kernel interface are defined by programming
language (“C”)
 Data layout implicitly defined by compiler

 structs, enums, arrays, (classes)
 Global symbol namespace

 Represents code and data

13© 2009 University of Karlsruhe, System
Architecture Group

 Represents code and data
 Compiler generates code and local symbols from source file

(object files)
 Relative addresses for internal references, placeholders for external

references
 References are stored within the object file itself (ELF format)

 Linker resolves local symbols and computes global addresses to
combine multiple object files

 Resolves address collisions
 Resolves external references
 Must contain an ELF format parser

Kernel Modules: Extensibility in Linux

 Linux kernel interface are defined by programming
language (“C”)
 Idea: Perform run-time linking of additional object files

 Kernel modules are run-time linked kernel libraries
 Images are relocatable

 Store linking information within module

14© 2009 University of Karlsruhe, System
Architecture Group

 Store linking information within module
 Special “__ksymtab” and “.modinfo” section in ELF file
 Contains text names for symbols

 Store linking information within kernel symbol table

Kernel Modules: Extensibility in Linux

 Loading kernel modules
 Modules are plain object files (.o)
 User-space helper programs

 insmod, modprobe and friends
 ELF-load and parse modules
 Pass special structure to kernel

Kernel
insmod EL

F

Co
de

D
at

a

Code Data

15© 2009 University of Karlsruhe, System
Architecture Group

 Kernel
 Relocates module image according

to its dedicated virtual address
space

 Resolves external references based
on kernel symbol table

 Finds dependencies and loads more
modules if required

 Executes module init routine
 Can register new driver, or

functionality

Linux
Code Data

relocate
resolve

Kernel Modules: Extensibility in Linux
 Analysis:

 Modules serve the need:
 Provide dynamic extensibility
 Preserve the normal programming language based

kernel interface

 But: Extensibility tied to the source code

16© 2009 University of Karlsruhe, System
Architecture Group

 But: Extensibility tied to the source code
 Floating and volatile interface
 Loading requires exact module/kernel match

Kernel Modules: Extensibility in Linux
 Analysis:

 Kernel modules are not a protection mechanism
 Modules link into the same address space
 Can be abused (LKM root kits)
 Raises dependability and reliability issues

Implementation

17© 2009 University of Karlsruhe, System
Architecture Group

 Implementation
 Kernel depends on user-space programs (so what?)
 Module dependencies bear substantial complexity

 Arbitrary <uses> and <depends> relations
 circular dependencies
 Inevitable with modularization?

Windows WDM driver architecture

 Windows is a proprietary, closed-source OS
 Still it…

 Needs to support various (crufty) hardware
devices

f

18© 2009 University of Karlsruhe, System
Architecture Group

 Needs to enable device manufacturers to develop
their own driver software

 Needs a standardized interface to let drivers
interact with
 I/O hardware
 Other windows kernel subsystems
 Applications

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Windows WDM driver architecture

 Basic Idea:
 Provide a special driver interface
 Use an abstract driver model as foundation

 I/O request packets
WDM d i e stack

19© 2009 University of Karlsruhe, System
Architecture Group

 WDM driver stack
 Hardware abstraction layer

 Specify interaction as programming interface
 WDM API defines standard methods, data structures, …
 Windows uses .inf files to install drivers

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Windows WDM driver architecture
 Some details

 Driver objects
 Filter, functional, bus drivers
 Stackable
 Specified functionality

 init, addDevice, dispatch, unload
 Device objects

APP

Win32 API

20© 2009 University of Karlsruhe, System
Architecture Group

 Device objects
 Represent a real HW device
 Managed by a (set of) drivers
 Can have a name

 128-bit device name space
 Specify how I/O is transferred

from user to kernel
 Direct, buffered, pinned DMA

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Filter driver

Functional driver

Bus driver

HAL

device
object

Windows WDM driver architecture
 Some details

 I/O request packet (IRP)
 represents an abstract I/O process

data unit
 Passed to driver stack by windows

kernel subsystem
 Percolates through the specified

di t h ti

APP

Win32 API

I/O Manager

21© 2009 University of Karlsruhe, System
Architecture Group

dispatch routines
 Driver programmer

 implements driver components
 links them together to form a stack
 provides device names

 Application programmers
 Can perform I/O based on device

name.

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

Filter driver

Functional driver

Bus driver

HAL

IRP

device
object

Windows WDM driver architecture
 Driver interface details

 API approach
 Programmer relies on specified C-functions and

data structures
#include <ntddk.h>

NTSTATUS DriverEntry(PDRIVER OBJECT DriverObject PUNICODE STRING RegistryPath)

22© 2009 University of Karlsruhe, System
Architecture Group

 Windows provides a build utility (DDK)

Source: M. Tsegaye and R. Foss A comparison of the Linux and Windows device driver architectures
Operating Systems Review 2004 2:38 p.8-33

NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{

…
return STATUS_SUCCESS;

}

TARGETNAME = mydriver
TARGETPATH = obj
TARGETTYPE = DRIVER
INCLUDES = %BUILD%\inc
LIBS = %BUILD%\lib
SOURCES = mydriver.c

Windows WDM driver architecture
 Analysis:

 WDM
 provides dynamic extensibility for device drivers
 API based kernel interface

 Extensibility not tied to the source code
Fi d i t f

23© 2009 University of Karlsruhe, System
Architecture Group

 Fixed interface
 Build process can produce drivers for different Windows

versions

 Interface specialized to device drivers
 Does not provide generic module/subsystem

extensibility

Windows WDM driver architecture
 Analysis:

 WDM does not provide protection
 Drivers link into the same address space
 Raises dependability and reliability issues
 Drivers are known to be highly error-prone*

Implementation

24© 2009 University of Karlsruhe, System
Architecture Group

*Source: A. Chou et al. An Empirical Study of Operating System Errors. Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP) p.73-88

 Implementation
 Data-centric model

 I/O Request packets and dispatchers

 Simple component dependencies
 Stack of dispatchers

Kernel Interfaces in Multi-server Systems
 Multi-server kernel (system) design

 Privilege separation through address-space
protection
 µ-Kernel is privileged but limited in functionality
 Other kernel subsystems are “user programs”

 Can not execute privileged instructions
 Can not access arbitrary memory locations

25© 2009 University of Karlsruhe, System
Architecture Group

 Can not access arbitrary memory locations
 Can not access arbitrary I/O hardware

 Motivation: Protection
 Premise for security, reliability, dependability, …
 Crucial factor in OS
 But protection domain switches are costly
 Multi-server system trades off protection against

performance
 Key problem: Keep good performance

Kernel Interfaces in Multi-server Systems
 Multi-server interfaces

 Kernel subsystems are “user programs”
 Normal user interface for µ-Kernel services
 Direct addressing and data sharing between other

subsystems unfeasible
 µ-kernel must cater for subsystem interaction

Should be generic and versatile

26© 2009 University of Karlsruhe, System
Architecture Group

 Should be generic and versatile
 Support different subsystems

 resource managers, schedulers, pagers, drivers, UI, …
 Support different programming models

 Different manufacturers, compilers, languages, black-box
binaries,…

 Support different interaction scenarios
 Service requests and returns
 Data sharing
 Notifications, callbacks, exceptions, …

Kernel Interfaces in Multi-server Systems
 Multi-server interfaces

 (L4) Idea: provide simple and generic IPC
 Used by kernel subsystems
 Used by user programs

 Develop specializations on top
S b t ifi i t ti

27© 2009 University of Karlsruhe, System
Architecture Group

 Subsystem-specific interaction
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

Kernel Interfaces in Multi-server Systems
 But how to define interfaces?

 Subsystem-specific interfaces
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

 Idea: Leverage work from distributed systems

28© 2009 University of Karlsruhe, System
Architecture Group

 Same scenario: distributed components + interaction
 E.g., Remote procedure call model

 Client/Server model
 Need transparent, procedure-call like semantics

 Client calls server for service
 Server returns after processing

 Provide remote procedure call (RPC)
 Synchronous communication
 Can pass and return arguments

µKClient

do_stuff(arg,…) Server

µK

do_stuff(arg,…)
{

…
}

Kernel Interfaces in Multi-server Systems
 But how to define interfaces?

 Subsystem-specific interfaces
 Programming models (APIs, C-like function calls, …)
 Data sharing (shared memory, request buffers, …)
 Naming and addressing schemes

 Idea: Leverage work from distributed systems

29© 2009 University of Karlsruhe, System
Architecture Group

µKClient

do_stuff(arg,…) Server

µK

do_stuff(arg,…)
{

…
}

 Same scenario: distributed components + interaction
 E.g., Remote procedure call model

 Problems:
 Calling convention

 No shared data
 Pointers? References?

 Transparency
 Should “feel” like normal

call/ret
 Latency? IPC Errors?

Kernel Interfaces in Multi-server Systems
 Remote procedure call approaches

 Client and server stubs
 Transform call/ret semantics into communication

 Parameter marshaling/unmarshaling
 Procedure multiplexing/demultiplexing
 Message and data layout definition
 Leverages system communication primitives

30© 2009 University of Karlsruhe, System
Architecture Group

 Steps:
 Client procedure-calls client stub
 Client stub

 marshals parameters
 builds message
 calls kernel to send message to server

 Server stub decodes message
 dispatches the correct procedure (if needed)
 unmarshals parameters
 calls corresponding server-side procedure

 Server processes the request and returns to the server stub

Kernel Interfaces in Multi-server Systems
 Special considerations for node-local (multi-server) RPC

 Communication is more efficient,
thus stub code efficiency has more impact

 Same hardware: same endianess, bit width, float precision, …
 Same µ-kernel, can rely on its data types, interfaces etc.
 Simplifies/speeds up stub code

31© 2009 University of Karlsruhe, System
Architecture Group

p / p p

Kernel Interfaces in Multi-server Systems
 Remote procedure call

 Writing stubs is tedious
 Idea: Automate stub code generation
 Interface definition languages

 Language that specifies interfaces

interface foo {
void bar(...);
};

foo.idl

32© 2009 University of Karlsruhe, System
Architecture Group

 Remote method definition
 Special data types for argument passing

 Compiler generates interface stubs
 Client stub
 Server stub
 Server skeleton (basic dispatcher)

 Examples: Flick, Corba IDL, DCOM
 See lab lecture: using IDL4

void foo_bar(...)
{

asm volatile (
"push %%ebp"
"push %%ecx"
"xor %%eax, %%eax"
: "d" ((int)a)
: "cc", "memory"

);
}

foo_client.h

#define IDL4_PUBLISH_FOO_BAR(func) {
idl4_server_environment _env; \
\
func(_par._in._caller, &_env)\
\
__asm__ __volatile__(\
"xor %%eax, %%eax" \
"ret" \
: "S" (_par._in._caller)

}

foo_server.h

#include
"foo_server.h"

server.c

The SawMill Multiserver Architecture
 The SawMill Approach

 Complexity of OS increases
 Need specialized OS personalities for different

scenarios
 Need a development path to build such

specialized operating systems

33© 2009 University of Karlsruhe, System
Architecture Group

p p g y

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

The SawMill Multiserver Architecture
 The SawMill Approach

 Idea: Decompose existing operating systems for
flexibly reusable components
 Extend existing OS with functionality
 Customize existing OS: strip them down for application

requirements
Th S Mill h i t f

34© 2009 University of Karlsruhe, System
Architecture Group

 The SawMill approach consists of
 An architecture to build systems
 A set of protocol design guidelines to solve multi-server

problems

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

The SawMill Multiserver Architecture
 Example "SawMill" Multi-Server Linux:

 (1) isolate Linux services from each other;
 (2) improve them one by one:

 VM, scheduling, security (denial of service), reliability,
SMP, large memory, mmap, async io, select, large files

 Extend Linux, add value:
 New security policies, …

35© 2009 University of Karlsruhe, System
Architecture Group

 New security policies, …
 Customize Linux for special devices.

Network
Server Pager

ext2 FS IDE Device
Driver

VFS Server

Task Server Memory Server

L4Linux

L4

Secure
Console

The SawMill Multiserver Architecture
 SawMill design considerations

 The multiserver OS must provide
 Protection

 Protect execution integrity of servers
 Protect data integrity/confidentiality of user data

 Coherent semantics
 Obtain and enforce system policies

36© 2009 University of Karlsruhe, System
Architecture Group

 Obtain and enforce system policies
 Obey atomicity requirements

 Performance (efficient services)
 Protection implies more frequent IPC

 IPC replaces procedure calls
 Additional IPCs required for consistency,

synchronization, resource management, security
policies, …

 Protection implies more complex IPC
 Parameter transfer
 Parameter marshaling
 See previous slides

The SawMill Multiserver Architecture
 SawMill architecture

 Three types of components
 System servers

 Main OS functionality
 File server, network server, …

 Resource servers
 Manage core resources

Di t ib t d t

37© 2009 University of Karlsruhe, System
Architecture Group

Memory
Server

Memory
Server

VM Server

 Distributed among system servers
 Memory, IRQs, security abstractions, …

 Ubiquitous services
 “Libraries” that augment servers
 Multiserver-aware management
 Synchronization, ACL, Naming, IPC primitives, …

 Example: Virtual memory
 VM system server exports a dataspace
 Memory server provides core memory
 Ubiquitous VM service handles indirection

between dataspace and core memory

VM service

DS1 DS2

MEM MEM

The SawMill Multiserver Architecture
 SawMill protocols

 Goal: minimize IPC frequency and overhead
 Design principles:

 Make direct calls to processing servers
 Let clients communicate directly with subsequent servers

 Partition control data

38© 2009 University of Karlsruhe, System
Architecture Group

 Distribute control data among involved servers
 Use caching in servers if possible
 Minimize synchronization

 Minimize writes
 Weaken consistency models
 Use “Master copy” schemes

 Heavily use data sharing

The SawMill Multiserver Architecture
 Envisage direct calls

User

open read/write

User

open

User

mount fault

Pass PFS
handle

39© 2009 University of Karlsruhe, System
Architecture Group

VFS

PFS

Driver

lookup

read inode

read/write

VFS

PFS

Driver

p

lookup

read/write

read inode

VFS

PFS

Driver

access fault read/write

read inode

open

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

VFS responsible for
mount points / ACL only

VFS

The SawMill Multiserver Architecture
 Partition control data

System
Code

service libSuperblock

Superblock
Inode Cpy

40© 2009 University of Karlsruhe, System
Architecture Group

PFS
Code

service lib

Superblock
Inode Mstr

Code
Control Data

User Data

VFS PFS Driver
PFS

Driver

Code

service lib

Code

service lib

Inodes

Buffer Cache

Superblock
Inode Mstr

update

sync

rarely modified

orthogonally used by PFS/VFS
???

Buffer Cache

Source: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000

VFS

User

The SawMill Multiserver Architecture
 Share user data

System
Code

Data

copy

User

Data

User data

copy

41© 2009 University of Karlsruhe, System
Architecture Group

Sources: A. Gefflaut et al. The SawMill Multiserver Approach ACM SIGOPS European Workshop 2000
P.Druschel et al. Fbufs: A High-Bandwidth Cross-Domain Transfer Facility Proceedings of the
14th Symposium on Operating Systems Principles 1993 p189-202

Code
Control Data

User Data

VFS PFS Driver

PFS

Driver

service lib

Code

service lib

Code

service lib

Could use paging to share user data but
• alignment problems
• decomposition problems

User data

User data

shareX

shareX

copy

copy

The SawMill Multiserver Architecture
 Analysis

 SawMill
 Envisages customized, modular OS personalities
 Uses a decomposition approach for reuse

 Presents a basic architecture
 µ-kernel based client/server architecture

42© 2009 University of Karlsruhe, System
Architecture Group

 µ-kernel based client/server architecture
 Servers, ubiquitous services, core resource

managers
 And a set of protocol guidelines

 Make direct calls to processing servers
 Partition control data
 Share user data
 Used to design and implement components and

interfaces

The SawMill Multiserver Architecture
 Analysis

 Problems
 Decomposition is hard
 Stripping down is hard

 SawMill Linux has a huge code base
 SawMill must maintain/fight against legacy Linux

semantics

43© 2009 University of Karlsruhe, System
Architecture Group

 Linux was never designed to deal with multi-
server problems

 Partitioning control data is complicated
 Sharing user data is complicated

 Especially together with legacy semantics
 E.g., how to partition entangled control/user data

(skbuffs)?
 How to share unaligned data?

Virtualization interfaces
 Background

 Complexity of OS increases
 Want to improve or introduce new OS

functionality
 Effective time sharing (aka server consolidation)

44© 2009 University of Karlsruhe, System
Architecture Group

 Simultaneous support of multiple OS APIs
 Transparent migration
 Security services

 Monolithic OS design has serious limits
 Complex, entangled, unreliable, insecure, …
 Hard to customize, hard to extend, hard to

decompose

Virtualization interfaces
 Problem: Legacy support

 New OS must support old programs
 API support not sufficient

 Want to support old OS functionality as well
 Many applications are tailored to specific OS

45© 2009 University of Karlsruhe, System
Architecture Group

versions
 Need a development path to incorporate new

and keep old functionality at the same time

Virtualization interfaces
 Idea: Virtualization

 Provide hardware interface
 But transparently change semantics

 Interface constituted by hardware specification
 Fixed and well-designed interface

46© 2009 University of Karlsruhe, System
Architecture Group

 Already used by guest OS, no porting effort
needed

 Virtualization only changes semantics
 Restrict side effects to virtual machine and

dedicated hardware
 Keeps illusion of real hardware

Virtualization interfaces

Guest

VMM

VCPU

cli

disable
preemption

 Examples:
 Interrupts

 Guest executes <clear IF>
 Hypervisor intercepts instruction
 Monitor/Emulator disables

preemption of Guest OS

47© 2009 University of Karlsruhe, System
Architecture Group

Hypervisor
p p

 Page table modifications
 Guest inserts page table entry
 Hypervisor intercepts modification
 Monitor/emulator modifies physical

mapping if necessary

Guest

VMM

VCPU

Hypervisor

set_pte

phys2mach

OS
Interface

Virtualization interfaces
 Virtualization provides stacked OS model

 Guest OS contains applications and (unprivileged)
OS services

 Hypervisor/host OS contains privileged OS services
and emulation

 Additional OS services can be designed freely
 No interface requirements

48© 2009 University of Karlsruhe, System
Architecture Group

q
 Multi-server components
 Leverage host OS
 Use specialized virtual machines

Guest

VMM

VCPU

Hypervisor Hypervisor

Guest

VMM

VCPU

VM Mgmt.
Hypervisor

VM
Mgmnt.

VMM

Guest

VCPU VCPU

Host OS

Guest

VMM

VCPU
Net

Paging
Files
GUI

AP
P

AP
P

VM
Mgmnt.

Guest

VMM

VCPU

Hypervisor/µK

VM
 M

gm
nt

.
O

S
Se

rv
ic

es
AP

P

Virtualization interfaces
 Analysis

 Interface defined by hardware
 Fixed and well-designed interface
 Already used, no porting effort needed

 Virtualization changes semantics
 Semantics are not specified
 Transparency introduces overhead

 Hardware Interface may be inappropriate

49© 2009 University of Karlsruhe, System
Architecture Group

 Hardware Interface may be inappropriate
 Example: Disk I/O
 Guest performs write to device
 File access? Swapping?

 Example: Network I/O
 Guest calls virtual NIC to send buffer
 Virtual NIC must decode packets again

 Virtualization only provides legacy
 It does not address the design of new OS functionality
 It does not address the design of new or improved interfaces

Thursday

 Maifeiertag

50© 2009 University of Karlsruhe, System
Architecture Group

