
Systems Design and Implementation
I.1 – Introduction

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

20 April 2009

Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)

Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

Goal

I hear and I forget.

I see and I remember.

I do and I understand.

2© 2009 University of Karlsruhe, System
Architecture Group

- Chinese Proverb

Goal

Provide students with a deeper understanding
of operating systems through practical

experience

3© 2009 University of Karlsruhe, System
Architecture Group

Approach: Participate in the design and
implementation of a simple operating system

Aims

 Provide experience in OS design and development,
including:
 Microkernels
 Multi-server systems
 Alternative OS designs

4© 2009 University of Karlsruhe, System
Architecture Group

 Alternative OS designs
 Resource management
 Device drivers, File systems, …

 Demonstrate the importance of design
 Provide experience of being a team member in a

software project

Aims

 Expose students to a mostly realistic OS development
environment
 Similar to professional OS or embedded systems

developer
 Give an understanding of what’s involved in

constructing an entire OS

5© 2009 University of Karlsruhe, System
Architecture Group

constructing an entire OS
 Understanding
 Design
 Implementation

 Encourage you to undertake a thesis, or do research
within the System Architecture Group

Prerequisites

 Students are expected to be competent
programmers, with C (or C++) experience

 Students are expected to be familiar with
 basic computer architecture concepts
 basic system architecture concepts

6© 2009 University of Karlsruhe, System
Architecture Group

 basic system architecture concepts
 Familiarity with Intel x86 assembly language would

be advantageous
 Familiarity with the “standard PC” architecture would

also be advantageous

Lecturers and Tutors

 Lecturer
 Jan Stoess

stoess@ira.uka.de

 Philipp Kupferschmied
(fall-back)
k f @i k d

7© 2009 University of Karlsruhe, System
Architecture Group

pkupfer@ira.uka.de

 Tutors
 Marcel Noe

 Consultation Time:
Monday 4pm-6pm

Administration – Diplom Students

 Lecture can count 2 hours towards an oral exam in
VF System Architecture

 Lab course can count for a Praktikumsschein
 The following combinations are permitted

 2 hour lecture

8© 2009 University of Karlsruhe, System
Architecture Group

 2 hour Praktikumschein
 2 hour lecture + 2 hour Praktikumschein

 Or just for fun

Administration – Master Students

 Modul “Systementwurf und Implementierung” - 3 LP
 VF 4 Betriebssysteme
 Lecture counts 3 LP
 „Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung

im Umfang von i.d.R. 15 Minuten“

9© 2009 University of Karlsruhe, System
Architecture Group

 Modul “Multi-Server Systeme” - 6 LP
 VF 4 Betriebssysteme
 Lecture counts 3 LP
 Lab counts 3 LP
 „Die Erfolgskontrolle erfolgt durch Beurteilung der Design-

Beschreibung und den Programmquellen eines kleinen
Entwicklungsprojektes sowie durch die Beurteilung der
Präsentation des Ergebnisses als Erfolgskontrolle anderer Art“

Course Structure

 Lecture Part I
 Aim: teach (some) foundations of systems

design
 “Building blocks” of a modern operating

system
 Communication

OS Interfaces

Lecture Lab
Lecture

10© 2009 University of Karlsruhe, System
Architecture Group

 OS Interfaces
 Naming
 Threads and Scheduling
 Memory Management
 File Systems
 Device Drivers

 Provides some theory
 Presents case studies

 Monolithic Systems
 Multiserver Systems
 Advanced Operating System Concepts
 Virtualization

time

Pt.I

Course Structure

 Lecture Part II
 Aim: teach foundations of systems design

on L4
 L4 API crash course
 Basic concepts

System calls and their usage

Lecture Lab
Lecture

11© 2009 University of Karlsruhe, System
Architecture Group

 System calls and their usage
 Debugging facilities
 IDL4 compiler for stub generation

 Problem:
 Lab course depends on Lecture Pt. II

 Solution:
 Lectures Part I & II will be given in parallel

time

Pt.I
Lecture

Pt.II

Course Structure

 Lab Part I
 Aim: design an operating

system
1 Get together as SDI group

Lecture Lab
Lecture

Lecture
Pt.II

12© 2009 University of Karlsruhe, System
Architecture Group

1. Get together as SDI group
2. Choose a design topic
3. Consider lecture material
4. Discuss particular design
5. Present proposed designs

time

Pt.I Lab Pt. I

Lab
Pt. I

Course Structure

 Lab Part II
 Aim: implement an operating

system (at least partly)
1 Get together as SDI group

Lecture Lab
Lecture

Lecture
Pt.II

13© 2009 University of Karlsruhe, System
Architecture Group

1. Get together as SDI group
2. Consider presented designs
3. Implement the components

time

Pt.I Lab Pt. I
Lab

Pt. II
Lab
Pt. I

Preliminary Lecture Schedule
Lecture Part I

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

14© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lecture Part II

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

15© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lab Part I

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

16© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lab Part II

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

17© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Introduction to the envisaged
operating system…

18© 2009 University of Karlsruhe, System
Architecture Group

p g y

Linux Kernel Evolution

19© 2009 University of Karlsruhe, System
Architecture Group

Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006

Linux Kernel Evolution

20© 2009 University of Karlsruhe, System
Architecture Group

Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006

Multiserver Operating Systems

TCP/IP

Exec Srv

EXT2 FS MM Srv

Proc SrvGFX Srv Swap Srv

shgcclessemacs twm

 A set of components
running as servers on
the microkernel
+ Modularity

Fl ibilit

21© 2009 University of Karlsruhe, System
Architecture Group

Hardware

L4 µ-kernel

Net Drv IDE Drv

TCP/IP

SCSI Drv KBD Drv

EXT2 FS MM Srv+ Flexibility
+ Robustness
+ Security

Envisaged System

 Multi-server OS built on the L4
microkernel L4Ka::Pistachio
 A “simple” base to build upon
 Hides some of hardware

complexity
Console
Server

KBD
Driver

Client Client

22© 2009 University of Karlsruhe, System
Architecture Group

 Already implements some OS
functionality

 The mechanisms provided are
flexible enough to still tackle OS
issues at a low level

L4 Microkernel

Name
Server

Task
Server

Memory
Server

RO-File
Server

VGA
Driver

Client Client

shell

Is this too much work?

 A real OS is beyond 14 weeks work
 We must limit the scope of the project to be

achievable
 Single-user system

 Limited protection e g :

23© 2009 University of Karlsruhe, System
Architecture Group

 Limited protection, e.g.:
 enforce address space boundaries
 enforce read-only access to read-only files
 no “user” identifiers, all tasks potentially have all access

rights
 No sophisticated security

 No authentication, authorization etc.

Is this too much work?

 Aim for designs that are
 Thoroughly thought through
 Not conceptually limiting
 “Good”

Aim for implementations with known limits to ease

24© 2009 University of Karlsruhe, System
Architecture Group

 Aim for implementations with known limits to ease
implementation
 Implement only needed functionality (but trap

unimplemented functionality)
 General functionality can be limited
 e.g.: Use limited static arrays, rather than general

tree based structures

SDI Lecture

 Aims:
 Teach foundations of systems design
 Provide a broader view on how to construct

different OS personalities
Teach a frame of reference for reasoning on OS

25© 2009 University of Karlsruhe, System
Architecture Group

 Teach a frame of reference for reasoning on OS
design issues

 Method:
 Different OS concepts presented in detail
 Examples and case studies from existing OSes

Lesson to be learned

 Well designed components with poor
implementations can be easily replaced or
improved in isolation.

 Badly designed components with the best

26© 2009 University of Karlsruhe, System
Architecture Group

ad y d s g d o po s b s
implementations
 Still perform poorly
 Require system redesign to improve them
 May have to rewrite the complete system from

scratch

Issues to tackle: Communication

 Communication
 Why communicate?

 Data exchange
 Synchronization
 Control transfer

Who needs to communicate? Client ClientPa
rt

 I

27© 2009 University of Karlsruhe, System
Architecture Group

 Who needs to communicate?
 Applications
 OS components
 Servers

 How do entities communicate
 … in monolithic systems?
 … in multi-server systems?
 … in virtualized systems?

 How communicate in SDI OS?
 L4 IPC

OS

Name
Server

Task
Server

Memory
Server

L4IPC IPC

Le
ct

ur
e

P
Le

ct
ur

e
Pt

.I
I

Issues to tackle: Interfaces

 Kernel Interfaces
 Why interfaces?

 Want logical separation of
 Applications
 OS subsystems

 How to interface?
N d t t d t i t tPa

rt
 I

Client Client

IDL4

28© 2009 University of Karlsruhe, System
Architecture Group

 Need a structured way to interact
 May want isolation
 May want privilege separation
 …

 Example OS interfaces
 … Linux modules
 … Windows WDM drivers
 … Multi-Server Systems
 …

 How to construct interfaces in SDI OS?
 IDL4

Le
ct

ur
e

P
Le

ct
ur

e
Pt

.I
I

OS

Name
Server

Task
Server

Memory
Server

L4

Issues to tackle: Naming

 What objects need names?
 Names of components
 Names of objects within

components
 How can we navigate the

system name spaces?

Console
Server

KBD
Driver

Client Client

Client Client

ur
e

Pa
rt

 I

29© 2009 University of Karlsruhe, System
Architecture Group

system name spaces?
 Protocols
 Interfaces

 SDI name service
considerations

 SDI name server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shellLe
ct

u
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Threads and Tasks

 Threads and Processes
 Thread and Process Management
 Program execution

 Thread Scheduling
 Thread scheduling and accounting
 Classic scheduling approaches

Scheduler activations et al VGA
Client Client

Client Client

Console
Server

KBD
Driver

ct
ur

e
Pa

rt
 I

30© 2009 University of Karlsruhe, System
Architecture Group

 Scheduler activations et al.
 Multi-server systems

 Scheduling issues
 Case study: scheduling in K42

 Tasks in SDI
 How do we create and destroy

tasks?
 What do we need to create a task?
 How to find out when a task dies?

 Task server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

Le
c

Le
ct

ur
e

Pt
.I

I
La

b
Pt

. I

Issues to tackle: Memory

 Virtual memory management
 Address space construction
 Memory objects

 Case studies
 VMM in 4.3 BSD
 Dataspaces in SawMill

Console
Server

KBD
Driver

Client Client

Client Client

ec
tu

re
 P

ar
t

I

31© 2009 University of Karlsruhe, System
Architecture Group

p
 Double paging for virtual

machines
 Memory in SDI

 How are page faults handled?
 How do we construct address

spaces
 What kind of memory objects

might we support?
 Memory server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

Le
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: File System
 File systems

 File access techniques
 …

 Case studies
 FAT
 NFS

Fil t i SDI
Client Client

Client Client

Console
Server

KBD
Driver

ec
tu

re
 P

ar
t

I

32© 2009 University of Karlsruhe, System
Architecture Group

 File systems in SDI
 We need something to provide initial

files for testing.
 Files might be part of initial boot

image.
 What operations are needed to access

files?
 Can we memory map files?

 File server design
 Simple read/write in-memory file

system.
 Maybe extended to use disk blocks

(IDE driver).

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

L
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Device Support

 Device drivers
 Device I/O related concepts
 Software issues and structure

 Case studies
 The NS16550A UART
 PC Screen and Keyboard Client Client

Client Client

Console
Server

KBD
Driver

ec
tu

re
 P

ar
t

I

33© 2009 University of Karlsruhe, System
Architecture Group

y
 Device drivers in SDI

 KBD driver
 Console server

 Virtual consoles?
 How to multiplex the

hardware?
 VGA driver

 Device driver design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

L
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Resource
Management

 How do we bootstrap the
system?

 What resources need
arbitrating?
 Interrupts Client Client

Client Client

Console
Server

KBD
Driver

b

34© 2009 University of Karlsruhe, System
Architecture Group

 Memory
 Device memory
 Other ?

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

La
b

Issues to tackle: Application Support

 What libraries do we need?
 What do we need to build a

simple “shell” to manipulate
the system?

Client Client

Client Client

Console
Server

KBD
Driver

b

35© 2009 University of Karlsruhe, System
Architecture Group

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

La
b

Issues to tackle: IDE

 IDE device driver
 How do we interact with

the hardware?
 How does the IDE

hardware work?

File
Server

Serial
Server

Client Client

Client Client

tio
na

l)

36© 2009 University of Karlsruhe, System
Architecture Group

 What kind of interface is
suitable for a block
device?

 How are drivers
structured internally?

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

IDE
Driver

shell

La
b

(O
pt

Issues to tackle

 Serial Port Server
 Provide a means for

interaction with the
system.

 Learn about the standard
PC UART hi

File
Server

Serial
Server

Client Client

Client Client

tio
na

l)

37© 2009 University of Karlsruhe, System
Architecture Group

PC UART chip.

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

IDE
Driver

shell

La
b

(O
pt

Development Environment

Development

Host

“Crash & Burn”

Machine

38© 2009 University of Karlsruhe, System
Architecture Group

Editing
Cross-

Compiling

Testing

Downloading

Development Environment

 Standard compiler – gcc
 Generates object files for target system (IA-32 ELF32)
 Same as native Linux compiler

 Include files and libraries
 Specific for the target environment (L4)

39© 2009 University of Karlsruhe, System
Architecture Group

p g ()
 Supplied libraries are severely limited (printf)

 Target specific linking
 Custom start-up code crt0.o
 Static linking to carefully chosen addresses

 Separate compilation – make
 Determines which parts of program need recompiling
 Issues commands to bring program up-to-date

Download: GRUB
(GRand Unified Booter)

 A boot sector which subsequently:
 Loads the rest of the booter
 Loads a menu specification file
 Loads the files from the chosen configuration from either

 The disk used to load GRUB

40© 2009 University of Karlsruhe, System
Architecture Group

 The disk used to load GRUB,
 Or via the network using BOOTP and TFTP

 Provides configuration info to the started program

 We will provide detailed info on how to set up GRUB

IDL4 Stub Code Generator

 Generates code for component communication
 Interface Definition Language – CORBA
 Pros:

 Allows clear specification of interfaces

41© 2009 University of Karlsruhe, System
Architecture Group

 Automates remote procedure call (IPC) generation
 Usually a tedious and error prone task

 Cons:
 Extra layer to understand
 Makes debugging more difficult

Testing & Debugging

 We use VMware as our Crash&Burn machines
See http://www vmware com/

42© 2009 University of Karlsruhe, System
Architecture Group

See http://www.vmware.com/
 Virtual “standard” PC that runs on Windows NT and Linux
+ Portable, cheap environment
- May have unexpected “features”

 If necessary, we can also use real hardware

Getting Started

 Available in two weeks
 Development hosts in R.149
 We will provide you with example code and detailed

instructions on getting started

43© 2009 University of Karlsruhe, System
Architecture Group

instructions on getting started
 Test your development environment
 Provide examples of various features of the system
 Base upon which to start the larger project

L4 User Manual

 Answers: How do I do ... on L4?

 Minor problem: It does not exist yet.
 Well, only an outdated version exists.

and last year’s SDI Wiki

44© 2009 University of Karlsruhe, System
Architecture Group

 … and last year’s SDI Wiki.

 You can help us write it
 If you come across a problem, write it down!
 If you solve a problem, document how!

Support

 Web sites
 http://i30www.ira.uka.de/teaching/courses/sdi

Official SDI site
 http://l4ka.org/

45© 2009 University of Karlsruhe, System
Architecture Group

 http://l4hq.org/
 Mailing list

 Proposal: Mass subscription next week
 Ask our tutor – R154

Thursday

 L4 API crash course – Part I

 TODO: form teams, first attempt
3 4 students per team

46© 2009 University of Karlsruhe, System
Architecture Group

 3-4 students per team
 No more than 12 teams

 Use the registration web page
 Employ a collision-free algorithm for allocating team

numbers!!!

 All team members should have similar goals

