Systems Design and Implementation
/.1 — Introduction

System Architecture Group, SS 2009
University of Karlsruhe
20 April 2009 Jan Stoess

University of Karlsruhe
Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)
Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

[2) Goal

I hear and I forget.
! see and | remember
! do and | understand.

- Chinese Proverb

© 2009 University of Karlsruhe, System
Architecture Group

[2) Goal

Provide students with a deeper understanding
of operating systems through practical
experience

Approach: Participate in the design and
Implementation of a simple operating system

) Aims

= Provide experience in OS design and development,
Including:
= Microkernels
= Multi-server systems
= Alternative OS designs
= Resource management
= Device drivers, File systems, ...
= Demonstrate the importance of design

= Provide experience of being a team member in a
software project

© 2009 University of Karlsruhe, System
Architecture Group

) Aims

= Expose students to a mostly realistic OS development
environment

= Similar to professional OS or embedded systems
developer

= Give an understanding of what'’s involved In
constructing an entire OS

= Understanding
= Design
= Implementation

= Encourage you to undertake a thesis, or do research
within the System Architecture Group

[") Prerequisites

= Students are expected to be competent
programmers, with C (or C++) experience

= Students are expected to be familiar with
= basic computer architecture concepts
= basic system architecture concepts

= Familiarity with Intel x86 assembly language would
be advantageous

= Familiarity with the “standard PC” architecture would
also be advantageous

-
[_) Lecturers and Tutors

m Lecturer
= Jan Stoess

stoess@ira.uka.de

= Philipp Kupferschmied
(1all-back)

pkupfer@ira.uka.de

m [utors
= Marcel Noe

= Consultation Time:
Monday 4pm-6pm

[*) Administration — Diplom Students

= Lecture can count 2 hours towards an oral exam in
VF System Architecture

= Lab course can count for a Praktikumsschein
= The following combinations are permitted

= 2 hour lecture

= 2 hour Praktikumschein

= 2 hour lecture + 2 hour Praktikumschein
= Or just for fun

[-) Administration — Master Students

= Modul “Systementwurf und Implementierung” - 3 LP
= VF 4 Betriebssysteme
= Lecture counts 3 LP

»Die Erfolgskontrolle erfolgt in Form einer mindlichen Prifung
Im Umfang von i.d.R. 15 Minuten*

= Modul “Multi-Server Systeme” - 6 LP

VF 4 Betriebssysteme
Lecture counts 3 LP
Lab counts 3 LP

»Die Erfolgskontrolle erfolgt durch Beurteilung der Design-
Beschreibung und den Programmquellen eines kleinen
Entwicklungsprojektes sowie durch die Beurteilung der
Prasentation des Ergebnisses als Erfolgskontrolle anderer Art*
9

[*) Course Structure

= Lecture Part |
= Aim: teach (some) foundations of systems
design
= “Building blocks” of a modern operating
system
= Communication
= OS Interfaces
= Naming
= Threads and Scheduling
= Memory Management
= File Systems
= Device Drivers

= Provides some theory

= Presents case studies
= Monolithic Systems
= Multiserver Systems
= Advanced Operating System Concepts time
= Virtualization

© 2009 University of Karlsruhe, System 10
Architecture Group

Lecture Lab

{I '1d o/ n103'|]

Course Structure

= Lecture Part Il
= Aim: teach foundations of systems design

on L4
= L4 API crash course
= Basic concepts
= System calls and their usage
= Debugging facilities

Lecture Lab

= IDL4 compiler for stub generation
= Problem:
= Lab course depends on Lecture Pt. Il
= Solution:
= Lectures Part | & Il will be given in parallel

time

© 2009 University of Karlsruhe, System 1 1

o Architecture Group

[*) Course Structure

Lab Part |

Aim: design an operating
system

Get together as SDI group
Choose a design topic
Consider lecture material
Discuss particular design
Present proposed designs

Lecture

time

AT
—

(¢))

O

4
C.
=

D

O [
-
/ﬁc
'Ul—E
=~ Q|| -
—U_
_ VAN J

Lab

12

-
[*) Course Structure

= Lab Partll Lecture Lab

= Aim: implement an operating
system (at least partly)

1. Get together as SDI group
>. Consider presented designs
5. Implement the components

I

(1 1d
ge

\
ge
y

Il 1d

time
13

© 2006 U

™ Preliminary Lecture Schedule

Lecture Part |

21.4
28.4
5.5
12.5
19.5
26.5
2.6
9.6
16.6

23.6.
30.6.

1.7.
14.7.

ty of

217

Karlsruhe, System
Architecture Grou

Introduction

Communication

OS Interfaces

Naming

J. Stoess — Project Kittyhawk
File Systems

Threads, Scheduling
Memory Management
Drivers

P

23.4.
30.4.

1.5.
14.5.

21.5

. - Christi Hmmelfahrt -

28.5.
4.6.

11.6

. - Fronleichnam -

18.6.
25.6.
2.7.
9.7.
16.7.
23.1.

14

© 2006 U

™ Preliminary Lecture Schedule

Lecture Part |l

21.4.
28.4.
5.5.
12.5.
19.5.
26.5.
2.6.
9.6.
16.6.
23.6.
30.6.
1.7.
14.7.

ty of

217

Karlsruhe, System
Architecture Grou

P

23.4.
30.4.

1.5.
14.5.
21.5.
28.5.

4.6.
11.6.
18.6.
25.6.

2.7.

9.7.
16.7.
23.1.

L4 API Crash Course (1)
L4 API Crash Course (11)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

- Fronleichnam -

15

© 2006 U

™ Preliminary Lecture Schedule

Lab Part |

21.4.
28.4.
5.5.
12.5.
19.5.
26.5.
2.6.
9.6.
16.6.

23.6.

30.6.
1.7.
14.7.

ty of

217

Karlsruhe, System
Architecture Grou

Device Service Design (2)

P

23.4.
30.4.

1.5.
14.5.

21.5
28.5

4.6
11.6
18.6
25.6

. - Christi Hmmelfahrt -

. Name Service Design (3)

. File Service Design (2)
. - Fronleichnam -

. Task Service Design (2)

. MM Service Design (2)

2.7.
9.7.
16.7.
23.1.

16

™ Preliminary Lecture Schedule

Lab Part |1
21.4. 23.4.
28.4. 30.4.
5.5. 7.5.
12.5. 14.5.
19.5. 21.5. - Christi HImmelfahrt -
26.5. 28.5.
2.6. 4.6.
9.6. 11.6. - Fronleichnam -
16.6. 18.6.
23.6. 25.6.
30.6. Lab 2.7. Lab
7.7. Lab 9.7. Lab
14.7. Lab 16.7. Lab
©217Lab 23.7. Lab Demos + Conclusion,

Kal
(n) Architecture Group

o

Introduction to the envisaged
operating system...

18

Linux Kernel Evolution

Kernel Size changes

Vesion

Size (MB)
o
o

453’ @ 63’ L& S P& @5‘ & & & >
o}\v‘\“@ S0 ‘@L ﬁ» P &g @‘ ’i’@& S F y ¢\‘“ ‘f’p {f}‘#} (f; P)@*? ﬁm@

Version Dates ®m Development Version
@ Stable Version

© 2009 University of Karlsruhe, System Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006 19

o Architecture Group

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

g
E

\'\ \-‘\\ \\
RN F&P

)

© 2009 University of Karlsruhe, System
Architecture Group

cs@@
\é& N 1&*\

Linux Kernel Evolution

Kernel Files Changes

. &
B> P «wﬁ*’ ¢‘3’(§ (59@(69

‘Q \'@ \rﬁg @%‘é \\éb\\\ %\'@{&\\i \’\ \\'\ ,Q{:lf {§ (? @
N

o h & &'s

Version Dates m Development Version
@ Stable Version

Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006

20

a Multiserver Operating Systems

= A set of components
running as servers on
the microkernel

+ Modularity
+ Flexibility
+ Robustness
+ Security

© 2009 University of Karlsrul

he, Systel
ure

Envisaged System

Multi-server OS built on the L4
microkernel L4Ka::Pistachio

= A “simple” base to build upon

Hides some of hardware
complexity

Already implements some OS
functionality

The mechanisms provided are
flexible enough to still tackle OS
Issues at a low level

Client

Client

Client

Client

shell

[0} Is this too much work?

= Areal OS is beyond 14 weeks work

= We must limit the scope of the project to be
achievable

= Single-user system

= Limited protection, e.g.:
= enforce address space boundaries
= enforce read-only access to read-only files
= NO “user” identifiers, all tasks potentially have all access
rights
= No sophisticated security
= No authentication, authorization etc.

[0} Is this too much work?

= Aim for designs that are
= Thoroughly thought through
= Not conceptually limiting
= “Good”
= Aim for implementations with known limits to ease
Implementation

= Implement only needed functionality (but trap
unimplemented functionality)

= General functionality can be limited

= e.g.: Use limited static arrays, rather than general
tree based structures

24

[7) SDI Lecture

= AIms:
= Teach foundations of systems design

= Provide a broader view on how to construct
different OS personalities

= Teach a frame of reference for reasoning on OS
design issues

» Method:

= Different OS concepts presented in detail
= Examples and case studies from existing OSes

25

[2) Lesson to be learned

= Well desighed components with poor

Implementations can be easily replaced or
Improved In isolation.

= Badly designed components with the best
Implementations

= Still perform poorly
= Require system redesign to improve them

= May have to rewrite the complete system from
scratch

26

Issues to tackle: Communication

/= Communication
= Why communicate?

= Data exchange

= Synchronization

= Control transfer _ _
= Who needs to communicate? clent | cent

= Applications

= OS components

= Servers
= How do entities communicate

= ... in monolithic systems?

= ... iIn multi-server systems?
= ... in virtualized systems?

N
0 How communicate in SDI OS?
= L4 IPC

© 2009 University o fK | h Sy tem 27

Issues to tackle: Interfaces

/" w Kernel Interfaces
= Why interfaces? IDL4

= Want logical separation of
Applications
OS subsystems

= How to interface?
= Need a structured way to interact
= May want isolation
= May want privilege separation

Client

\

= Example OS interfaces
= ... Linux modules
= ... Windows WDM drivers
= ... Multi-Server Systems

= How to construct interfaces in SDI OS?
« IDL4

28

Issues to tackle: Naming

(= What objects need names?
= Names of components

= Names of objects within
components

How can we navigate the
system name spaces?

= Protocols
= Interfaces

SDI name service
considerations

SDI name server design

Client Client

Client Client

Name
Server

Issues to tackle: Threads and Tasks

(= Threads and Processes
= Thread and Process Management
= Program execution Client Client
= Thread Scheduling
= Thread scheduling and accounting
= Classic scheduling approaches Client Client
= Scheduler activations et al.
= Multi-server systems
= Scheduling issues
= Case study: scheduling in K42
Tasks in SDI
= How do we create and destroy

tasks? Server
= What do we need to create a task?
= How to find out when a task dies?
E Task server design -

© 2009 University of Karlsruhe, System 30
Architecture Group

shell

Lab Pt. |

[

’

© 2009 University of Karlsrul

o Architecture

Virtual memory management
= Address space construction
= Memory objects

Case studies
= VMM in 4.3 BSD
= Dataspaces in SawMill

= Double paging for virtual
machines

Memory in SDI
= How are page faults handled?

= How do we construct address
spaces

= What kind of memory objects
might we support?

Memory server design

he, System
Group

Issues to tackle: Memory

Client

Client

Client

Client

shell

Memory
Server

Issues to tackle: File System

File systems
= File access techniques

= Case studies client client
= FAT
= NFS
_ _ Client Client
= File systems in SDI
= We need something to provide initial
files for testing. shell
= Files might be part of initial boot
image. Fe-Orl7
= What operations are needed to access File

files? Server
= Can we memory map files?

N—
/_ - -
= File server design

= Simple read/write in-memory file
system.

= Maybe extended to use disk blocks
— (IDE driver).

© 2009 University of Karlsruhe, System 32
Architecture Group

Issues to tackle: Device Support

w Device drivers

= Device 1/0 related concepts Dfizr
= Software issues and structure Client Client
s Case studies Console

= The NS16550A UART server
= PC Screen and Keyboard Client Client

= Device drivers in SDI iy
= KBD driver shell
= Console server

= Virtual consoles?

= How to multiplex the
hardware?
= VGA driver

© 2009 University of Karlsruhe, System 33
itecture Grou

= Device driver design

Issues to tackle: Resource
Management

/= How do we bootstrap the
system?
= What resources need
arbitrating?
= Interrupts Client Client
= Memory
= Device memory shell

= Other ?

s BEE=|
B

Client Client

Lab

© 2009 University of Karlsruhe, System
Architecture Group

d Issues to tackle: Application Support

/= What libraries do we need?

= What do we need to build a - Client

simple “shell” to manipulate
the system?

Client Client

Lab

shell

s BEE=]
B

Issues to tackle: IDE

/= |IDE device driver

How do we interact with
4) g 0 dO € teract { Client Client
the hardware?
= = How does the IDE
S hardware work? Client Client
e
) = What kind of interface is o
= . Driver
= suitable for a block shell
— device? Rd-Only
= How are drivers Alle
structured internally? _—

© 2009 University of Karlsruhe, System
o Architecture Group

Issues to tackle

/= Serial Port Server

PR = Provide a means for
interaction with the
= system.
S = Learn about the standard | g | | crent
= PC UART chip.
=
©
—l
—
N

© 2009 University of Karlsruhe, System
o Architecture Group

Serial
Server

Client Client

shell

37

Development Environment

Development “Crash & Burn”

Host Machine

© 2009 University of Karlsruhe, System 38
itecture Grou

[_) Development Environment

= Standard compiler — gcc
= Generates object files for target system (1A-32 ELF32)
= Same as native Linux compiler
= Include files and libraries
= Specific for the target environment (L4)
= Supplied libraries are severely limited (printf)
= Target specific linking
= Custom start-up code crt 0. 0
= Static linking to carefully chosen addresses
= Separate compilation — nake

= Determines which parts of program need recompiling
= Issues commands to bring program up-to-date

Download: GRUB
D (GRand Unified Booter)

= A boot sector which subsequently:
= Loads the rest of the booter
= Loads a menu specification file
= Loads the files from the chosen configuration from either
= The disk used to load GRUB,
= Or via the network using BOOTP and TFTP
= Provides configuration info to the started program

= We will provide detailed info on how to set up GRUB

40

[_) 1DL4 Stub Code Generator

Generates code for component communication
Interface Definition Language — CORBA

Pros:
= Allows clear specification of interfaces
= Automates remote procedure call (IPC) generation
= Usually a tedious and error prone task
Cons:
= Extra layer to understand
= Makes debugging more difficult

41

—
[_) Testing & Debugging

vimware

s We use VMware as our Crash&Burn machines
See http://www.vmware.com/

= Virtual “standard” PC that runs on Windows NT and Linux
+ Portable, cheap environment
- May have unexpected “features”

= If necessary, we can also use real hardware

© 2009 University of Karlsruhe, System
Architecture Group

42

[*) Getting Started

= Available in two weeks
= Development hosts in R.149

= We will provide you with example code and detailed
Instructions on getting started

= Test your development environment

= Provide examples of various features of the system
= Base upon which to start the larger project

43

[") L4 User Manual

= Answers: How do | do ... on L47?

= Minor problem: It does not exist yet.
= Well, only an outdated version exists.
= ... and last year’s SDI Wiki.

= You can help us write it
= |If you come across a problem, write it down!
= |If you solve a problem, document how!

© 2009 University of Karlsruhe, System
Architecture Group

44

-
[_) Support

= Web sites
= http://i30www.ira.uka.de/teaching/courses/sdi

Official SDI site
= http://l4ka.org/
= http://l14hqg.org/
= Mailing list
= Proposal: Mass subscription next week
= Ask our tutor — R154

45

[*) Thursday

s L4 API crash course — Part |

= TODO: form teams, first attempt
= 3-4 students per team

= No more than 12 teams
= Use the registration web page

= Employ a collision-free algorithm for allocating team
numbers!!!

= All team members should have similar goals

46

