
Systems Design and Implementation
I.1 – Introduction

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

20 April 2009

Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)

Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

Goal

I hear and I forget.

I see and I remember.

I do and I understand.

2© 2009 University of Karlsruhe, System
Architecture Group

- Chinese Proverb

Goal

Provide students with a deeper understanding
of operating systems through practical

experience

3© 2009 University of Karlsruhe, System
Architecture Group

Approach: Participate in the design and
implementation of a simple operating system

Aims

 Provide experience in OS design and development,
including:
 Microkernels
 Multi-server systems
 Alternative OS designs

4© 2009 University of Karlsruhe, System
Architecture Group

 Alternative OS designs
 Resource management
 Device drivers, File systems, …

 Demonstrate the importance of design
 Provide experience of being a team member in a

software project

Aims

 Expose students to a mostly realistic OS development
environment
 Similar to professional OS or embedded systems

developer
 Give an understanding of what’s involved in

constructing an entire OS

5© 2009 University of Karlsruhe, System
Architecture Group

constructing an entire OS
 Understanding
 Design
 Implementation

 Encourage you to undertake a thesis, or do research
within the System Architecture Group

Prerequisites

 Students are expected to be competent
programmers, with C (or C++) experience

 Students are expected to be familiar with
 basic computer architecture concepts
 basic system architecture concepts

6© 2009 University of Karlsruhe, System
Architecture Group

 basic system architecture concepts
 Familiarity with Intel x86 assembly language would

be advantageous
 Familiarity with the “standard PC” architecture would

also be advantageous

Lecturers and Tutors

 Lecturer
 Jan Stoess

stoess@ira.uka.de

 Philipp Kupferschmied
(fall-back)
k f @i k d

7© 2009 University of Karlsruhe, System
Architecture Group

pkupfer@ira.uka.de

 Tutors
 Marcel Noe

 Consultation Time:
Monday 4pm-6pm

Administration – Diplom Students

 Lecture can count 2 hours towards an oral exam in
VF System Architecture

 Lab course can count for a Praktikumsschein
 The following combinations are permitted

 2 hour lecture

8© 2009 University of Karlsruhe, System
Architecture Group

 2 hour Praktikumschein
 2 hour lecture + 2 hour Praktikumschein

 Or just for fun

Administration – Master Students

 Modul “Systementwurf und Implementierung” - 3 LP
 VF 4 Betriebssysteme
 Lecture counts 3 LP
 „Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung

im Umfang von i.d.R. 15 Minuten“

9© 2009 University of Karlsruhe, System
Architecture Group

 Modul “Multi-Server Systeme” - 6 LP
 VF 4 Betriebssysteme
 Lecture counts 3 LP
 Lab counts 3 LP
 „Die Erfolgskontrolle erfolgt durch Beurteilung der Design-

Beschreibung und den Programmquellen eines kleinen
Entwicklungsprojektes sowie durch die Beurteilung der
Präsentation des Ergebnisses als Erfolgskontrolle anderer Art“

Course Structure

 Lecture Part I
 Aim: teach (some) foundations of systems

design
 “Building blocks” of a modern operating

system
 Communication

OS Interfaces

Lecture Lab
Lecture

10© 2009 University of Karlsruhe, System
Architecture Group

 OS Interfaces
 Naming
 Threads and Scheduling
 Memory Management
 File Systems
 Device Drivers

 Provides some theory
 Presents case studies

 Monolithic Systems
 Multiserver Systems
 Advanced Operating System Concepts
 Virtualization

time

Pt.I

Course Structure

 Lecture Part II
 Aim: teach foundations of systems design

on L4
 L4 API crash course
 Basic concepts

System calls and their usage

Lecture Lab
Lecture

11© 2009 University of Karlsruhe, System
Architecture Group

 System calls and their usage
 Debugging facilities
 IDL4 compiler for stub generation

 Problem:
 Lab course depends on Lecture Pt. II

 Solution:
 Lectures Part I & II will be given in parallel

time

Pt.I
Lecture

Pt.II

Course Structure

 Lab Part I
 Aim: design an operating

system
1 Get together as SDI group

Lecture Lab
Lecture

Lecture
Pt.II

12© 2009 University of Karlsruhe, System
Architecture Group

1. Get together as SDI group
2. Choose a design topic
3. Consider lecture material
4. Discuss particular design
5. Present proposed designs

time

Pt.I Lab Pt. I

Lab
Pt. I

Course Structure

 Lab Part II
 Aim: implement an operating

system (at least partly)
1 Get together as SDI group

Lecture Lab
Lecture

Lecture
Pt.II

13© 2009 University of Karlsruhe, System
Architecture Group

1. Get together as SDI group
2. Consider presented designs
3. Implement the components

time

Pt.I Lab Pt. I
Lab

Pt. II
Lab
Pt. I

Preliminary Lecture Schedule
Lecture Part I

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

14© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lecture Part II

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

15© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lab Part I

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

16© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Preliminary Lecture Schedule
Lab Part II

Introduction
Communication
OS Interfaces
Naming
J. Stoess – Project Kittyhawk

21.4.
28.4.
5.5.

12.5.
19.5.

L4 API Crash Course (I)
L4 API Crash Course (II)
IDL4, Debugging on L4
Debugging on L4 (Lab)
- Christi Himmelfahrt -

23.4.
30.4.
7.5.

14.5.
21.5.

17© 2006 University of Karlsruhe, System
Architecture Group

File Systems
Threads, Scheduling
Memory Management
Drivers
Device Service Design (2)
Lab
Lab
Lab
Lab

26.5.
2.6.
9.6.

16.6.
23.6.
30.6.

7.7.
14.7.
21.7.

Name Service Design (3)
File Service Design (2)
- Fronleichnam -
Task Service Design (2)
MM Service Design (2)
Lab
Lab
Lab
Lab Demos + Conclusion

28.5.
4.6.

11.6.
18.6.
25.6.

2.7.
9.7.

16.7.
23.7.

Introduction to the envisaged
operating system…

18© 2009 University of Karlsruhe, System
Architecture Group

p g y

Linux Kernel Evolution

19© 2009 University of Karlsruhe, System
Architecture Group

Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006

Linux Kernel Evolution

20© 2009 University of Karlsruhe, System
Architecture Group

Source: Oded Koren: A study of the Linux Kernel. ACM SIGOPS Operating System Review 40-6, 2006

Multiserver Operating Systems

TCP/IP

Exec Srv

EXT2 FS MM Srv

Proc SrvGFX Srv Swap Srv

shgcclessemacs twm

 A set of components
running as servers on
the microkernel
+ Modularity

Fl ibilit

21© 2009 University of Karlsruhe, System
Architecture Group

Hardware

L4 µ-kernel

Net Drv IDE Drv

TCP/IP

SCSI Drv KBD Drv

EXT2 FS MM Srv+ Flexibility
+ Robustness
+ Security

Envisaged System

 Multi-server OS built on the L4
microkernel L4Ka::Pistachio
 A “simple” base to build upon
 Hides some of hardware

complexity
Console
Server

KBD
Driver

Client Client

22© 2009 University of Karlsruhe, System
Architecture Group

 Already implements some OS
functionality

 The mechanisms provided are
flexible enough to still tackle OS
issues at a low level

L4 Microkernel

Name
Server

Task
Server

Memory
Server

RO-File
Server

VGA
Driver

Client Client

shell

Is this too much work?

 A real OS is beyond 14 weeks work
 We must limit the scope of the project to be

achievable
 Single-user system

 Limited protection e g :

23© 2009 University of Karlsruhe, System
Architecture Group

 Limited protection, e.g.:
 enforce address space boundaries
 enforce read-only access to read-only files
 no “user” identifiers, all tasks potentially have all access

rights
 No sophisticated security

 No authentication, authorization etc.

Is this too much work?

 Aim for designs that are
 Thoroughly thought through
 Not conceptually limiting
 “Good”

Aim for implementations with known limits to ease

24© 2009 University of Karlsruhe, System
Architecture Group

 Aim for implementations with known limits to ease
implementation
 Implement only needed functionality (but trap

unimplemented functionality)
 General functionality can be limited
 e.g.: Use limited static arrays, rather than general

tree based structures

SDI Lecture

 Aims:
 Teach foundations of systems design
 Provide a broader view on how to construct

different OS personalities
Teach a frame of reference for reasoning on OS

25© 2009 University of Karlsruhe, System
Architecture Group

 Teach a frame of reference for reasoning on OS
design issues

 Method:
 Different OS concepts presented in detail
 Examples and case studies from existing OSes

Lesson to be learned

 Well designed components with poor
implementations can be easily replaced or
improved in isolation.

 Badly designed components with the best

26© 2009 University of Karlsruhe, System
Architecture Group

ad y d s g d o po s b s
implementations
 Still perform poorly
 Require system redesign to improve them
 May have to rewrite the complete system from

scratch

Issues to tackle: Communication

 Communication
 Why communicate?

 Data exchange
 Synchronization
 Control transfer

Who needs to communicate? Client ClientPa
rt

 I

27© 2009 University of Karlsruhe, System
Architecture Group

 Who needs to communicate?
 Applications
 OS components
 Servers

 How do entities communicate
 … in monolithic systems?
 … in multi-server systems?
 … in virtualized systems?

 How communicate in SDI OS?
 L4 IPC

OS

Name
Server

Task
Server

Memory
Server

L4IPC IPC

Le
ct

ur
e

P
Le

ct
ur

e
Pt

.I
I

Issues to tackle: Interfaces

 Kernel Interfaces
 Why interfaces?

 Want logical separation of
 Applications
 OS subsystems

 How to interface?
N d t t d t i t tPa

rt
 I

Client Client

IDL4

28© 2009 University of Karlsruhe, System
Architecture Group

 Need a structured way to interact
 May want isolation
 May want privilege separation
 …

 Example OS interfaces
 … Linux modules
 … Windows WDM drivers
 … Multi-Server Systems
 …

 How to construct interfaces in SDI OS?
 IDL4

Le
ct

ur
e

P
Le

ct
ur

e
Pt

.I
I

OS

Name
Server

Task
Server

Memory
Server

L4

Issues to tackle: Naming

 What objects need names?
 Names of components
 Names of objects within

components
 How can we navigate the

system name spaces?

Console
Server

KBD
Driver

Client Client

Client Client

ur
e

Pa
rt

 I

29© 2009 University of Karlsruhe, System
Architecture Group

system name spaces?
 Protocols
 Interfaces

 SDI name service
considerations

 SDI name server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shellLe
ct

u
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Threads and Tasks

 Threads and Processes
 Thread and Process Management
 Program execution

 Thread Scheduling
 Thread scheduling and accounting
 Classic scheduling approaches

Scheduler activations et al VGA
Client Client

Client Client

Console
Server

KBD
Driver

ct
ur

e
Pa

rt
 I

30© 2009 University of Karlsruhe, System
Architecture Group

 Scheduler activations et al.
 Multi-server systems

 Scheduling issues
 Case study: scheduling in K42

 Tasks in SDI
 How do we create and destroy

tasks?
 What do we need to create a task?
 How to find out when a task dies?

 Task server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

Le
c

Le
ct

ur
e

Pt
.I

I
La

b
Pt

. I

Issues to tackle: Memory

 Virtual memory management
 Address space construction
 Memory objects

 Case studies
 VMM in 4.3 BSD
 Dataspaces in SawMill

Console
Server

KBD
Driver

Client Client

Client Client

ec
tu

re
 P

ar
t

I

31© 2009 University of Karlsruhe, System
Architecture Group

p
 Double paging for virtual

machines
 Memory in SDI

 How are page faults handled?
 How do we construct address

spaces
 What kind of memory objects

might we support?
 Memory server design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

Le
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: File System
 File systems

 File access techniques
 …

 Case studies
 FAT
 NFS

Fil t i SDI
Client Client

Client Client

Console
Server

KBD
Driver

ec
tu

re
 P

ar
t

I

32© 2009 University of Karlsruhe, System
Architecture Group

 File systems in SDI
 We need something to provide initial

files for testing.
 Files might be part of initial boot

image.
 What operations are needed to access

files?
 Can we memory map files?

 File server design
 Simple read/write in-memory file

system.
 Maybe extended to use disk blocks

(IDE driver).

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

L
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Device Support

 Device drivers
 Device I/O related concepts
 Software issues and structure

 Case studies
 The NS16550A UART
 PC Screen and Keyboard Client Client

Client Client

Console
Server

KBD
Driver

ec
tu

re
 P

ar
t

I

33© 2009 University of Karlsruhe, System
Architecture Group

y
 Device drivers in SDI

 KBD driver
 Console server

 Virtual consoles?
 How to multiplex the

hardware?
 VGA driver

 Device driver design L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

L
Le

ct
ur

e
Pt

.I
I

La
b

Pt
. I

Issues to tackle: Resource
Management

 How do we bootstrap the
system?

 What resources need
arbitrating?
 Interrupts Client Client

Client Client

Console
Server

KBD
Driver

b

34© 2009 University of Karlsruhe, System
Architecture Group

 Memory
 Device memory
 Other ?

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

La
b

Issues to tackle: Application Support

 What libraries do we need?
 What do we need to build a

simple “shell” to manipulate
the system?

Client Client

Client Client

Console
Server

KBD
Driver

b

35© 2009 University of Karlsruhe, System
Architecture Group

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

VGA
Driver

shell

La
b

Issues to tackle: IDE

 IDE device driver
 How do we interact with

the hardware?
 How does the IDE

hardware work?

File
Server

Serial
Server

Client Client

Client Client

tio
na

l)

36© 2009 University of Karlsruhe, System
Architecture Group

 What kind of interface is
suitable for a block
device?

 How are drivers
structured internally?

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

IDE
Driver

shell

La
b

(O
pt

Issues to tackle

 Serial Port Server
 Provide a means for

interaction with the
system.

 Learn about the standard
PC UART hi

File
Server

Serial
Server

Client Client

Client Client

tio
na

l)

37© 2009 University of Karlsruhe, System
Architecture Group

PC UART chip.

L4 Microkernel

Name
Server

Task
Server

Memory
Server

Rd-Only
File

Server

IDE
Driver

shell

La
b

(O
pt

Development Environment

Development

Host

“Crash & Burn”

Machine

38© 2009 University of Karlsruhe, System
Architecture Group

Editing
Cross-

Compiling

Testing

Downloading

Development Environment

 Standard compiler – gcc
 Generates object files for target system (IA-32 ELF32)
 Same as native Linux compiler

 Include files and libraries
 Specific for the target environment (L4)

39© 2009 University of Karlsruhe, System
Architecture Group

p g ()
 Supplied libraries are severely limited (printf)

 Target specific linking
 Custom start-up code crt0.o
 Static linking to carefully chosen addresses

 Separate compilation – make
 Determines which parts of program need recompiling
 Issues commands to bring program up-to-date

Download: GRUB
(GRand Unified Booter)

 A boot sector which subsequently:
 Loads the rest of the booter
 Loads a menu specification file
 Loads the files from the chosen configuration from either

 The disk used to load GRUB

40© 2009 University of Karlsruhe, System
Architecture Group

 The disk used to load GRUB,
 Or via the network using BOOTP and TFTP

 Provides configuration info to the started program

 We will provide detailed info on how to set up GRUB

IDL4 Stub Code Generator

 Generates code for component communication
 Interface Definition Language – CORBA
 Pros:

 Allows clear specification of interfaces

41© 2009 University of Karlsruhe, System
Architecture Group

 Automates remote procedure call (IPC) generation
 Usually a tedious and error prone task

 Cons:
 Extra layer to understand
 Makes debugging more difficult

Testing & Debugging

 We use VMware as our Crash&Burn machines
See http://www vmware com/

42© 2009 University of Karlsruhe, System
Architecture Group

See http://www.vmware.com/
 Virtual “standard” PC that runs on Windows NT and Linux
+ Portable, cheap environment
- May have unexpected “features”

 If necessary, we can also use real hardware

Getting Started

 Available in two weeks
 Development hosts in R.149
 We will provide you with example code and detailed

instructions on getting started

43© 2009 University of Karlsruhe, System
Architecture Group

instructions on getting started
 Test your development environment
 Provide examples of various features of the system
 Base upon which to start the larger project

L4 User Manual

 Answers: How do I do ... on L4?

 Minor problem: It does not exist yet.
 Well, only an outdated version exists.

and last year’s SDI Wiki

44© 2009 University of Karlsruhe, System
Architecture Group

 … and last year’s SDI Wiki.

 You can help us write it
 If you come across a problem, write it down!
 If you solve a problem, document how!

Support

 Web sites
 http://i30www.ira.uka.de/teaching/courses/sdi

Official SDI site
 http://l4ka.org/

45© 2009 University of Karlsruhe, System
Architecture Group

 http://l4hq.org/
 Mailing list

 Proposal: Mass subscription next week
 Ask our tutor – R154

Thursday

 L4 API crash course – Part I

 TODO: form teams, first attempt
3 4 students per team

46© 2009 University of Karlsruhe, System
Architecture Group

 3-4 students per team
 No more than 12 teams

 Use the registration web page
 Employ a collision-free algorithm for allocating team

numbers!!!

 All team members should have similar goals

