
An Unconventional Proposal: Using the x86 Architecture As
— The Ubiquitous Virtual Standard Architecture —

Jochen Liedtke Nayeem Islam Trent Jaeger Vsevolod Panteleenko
Yoonho Park

Thomas J. Watson Research Center
IBM

Hawthorne, NY 10532
fjochen,nayeem,jaegert,vvp,yoonhog@us.ibm.com

1 The Problem

There are 100+ million computers in the world.
Even smaller organizations have easily 100+ ma-
chines; 10,000+ are typical for medium-sized or-
ganizations like a university or a bank. Current net-
work technology is so ubiqitious and so powerful
that we increasingly use these crowds of computers
as one “technical being” instead of thinking of them
as single machines. Consequently, we try to sup-
port distributed applications, not only by moving
data around but also by remote execution of down-
loaded/uploaded code (applets, servlets) and even
dynamically migrating active objects, i.e., curently
executing programs (agents, load distribution).

Unfortunately, not all of these 100+ million ma-
chines are compatible with each other. Currently,
in the workstation/PC/NC segment, we see about
7 different hardware architectures: x86, PowerPC,
Alpha, Mips, Sparc, PA-Risc, 68K. Some architec-
tures are likely to disappear over time, e.g. 68K;
however, new ones will show up (perhaps Intel’s
IA-64). Heterogeneity will probably remain a prob-
lem over the next decade.

More or less compatible OS APIs and tools, in
particular compilers, help to move a source pro-
gram from an x-machine to a y-machine. Moving
a compiled program is harder; moving a currently
executing program (migrating) between x and y is
the hardest.

One approach to move compiled programs
between architectures is based on architecture-
independent intermediate representations for com-
piled programs, e.g. Java bytecodes [10] or slim bi-
naries [6]. However, it does not seem likely that in

the near future all compilers will use a single inter-
mediate language. (The language community has
dreamed about the UNCOL (unitary compiler lan-
guage) approach for nearly 40 years [15]. The UN-
COL idea is to have a single language-independent
code generation interface and thus architecture-
independent compilers.) So the mentioned ap-
proach is restricted to certain programming lan-
guages and does not (yet?) give us general mobility
for compiled programs.

To solve the inter-architecture mobility problem
for portable agents and for load distribution, we
must be able to migrate a currently executing pro-
gram with all its data, including temporary stack
and heap data. A first approach to this problem is
the ubiquitous interpreter. For example, the Aglets
system [9] uses a JVM; Ara [11] uses Tcl. A
second approach [14] is based on generating spe-
cial (native) code that permits migration at certain
synchronization points (“bus stops”) (Per architec-
ture, a native-code version was generated when the
source was compiled.). Similar to the techniques
mentioned in the previous paragraph, both solutions
suffer from the fact that they are specific to a single
language.

2 The Vision

We envision a ubiquitous virtual hardware architec-
ture that is available on any real hardware architec-
ture.

� Freedom of Movement.
When a module or program P is compiled for
the x-architecture, the binary should execute



also on every other architecture. There should
be no need for the source or an intermediate
representation of P.

� Instant Migration.
When a program P executes on one machine,
it should be possible to migrate it to another
machine at any point during its execution and
to any other hardware architecture.

� Free Lunch.
And, of course, performance should not be
compromised: Any architecture-dependent
and -independent optimization should be ap-
plicable to the program P on the original hard-
ware architecture x without that P loses its mo-
bility. Although one cannot expect compara-
ble effects of x-dependent optimizations when
running on the architecture y, P’s performance
should nevertheless be reasonably good on y.

We propose to use the x86 architecture [8] for
this ubiquitous virtual standard architecture. Since
only application programs will migrate, there is no
need to include privileged instructions, page tables,
etc. in the ubiquitous architecture. V86 and perhaps
even MMX might also be dropped.

Remark: Although the ubiquitous architecture
masks out the basic hardware heterogeneity, auto-
matic load distribution, cluster computing, mobile
agents, etc. need in addition higher-level support,
e.g. a distributed or clustered OS and a homoge-
neous API for mobile agents.

3 Why x86?

Why do we propose to use an existing real archi-
tecture and not an artifical architecture (like Elate’s
VP [16]) that can be easily and efficiently emulated
on every real architecture? Why do we propose x86
and not another Risc architecture?

1. Using an existing real hardware architecture
has the benefit that all (or most) required tools
(compilers for all languages, linkers, libraries
and standard software packages) already exist.
The cost of porting them to a new architecture
(and preserving effficiency) would be horren-
duous.

2. Currently, 90+% of all workstations, PCs and
NCs are x86-based. So any program compiled

for the ubiquitous virtual standard architecture
will automatically perform (and even perform
optimally) on 90% of all machines without re-
quiring an emulation system to be built.

3. Emulating the x86 architecture by binary
translation on any �32-register processor is
simpler and more efficient than the other way
round. Probably, it is even better than emulat-
ing one 32-register architecture on another 32-
register architecture. Furthermore, there is al-
ready some experience in translating x86 bina-
ries on the fly to other architectures, e.g. Digi-
tal’s FX!32 [3].

At first glance, it looks surprising that the x86
architecture is technically the best choice. How-
ever, x86 has substantially fewer registers than any
other architecture. Translating instructions from an
8-register instruction set into a 32-register host ar-
chitecture is relatively simple. 8 host registers are
mapped to the 8 x86 registers. The remaining host
registers can be used to emulate other x86 resources
or to improve the performance of the emulation
(by using temporary registers, etc.) For the oppo-
site case, most of the 32 virtual registers had to be
implemented as main memory locations.1 For the
problems of emulating “32” registers of a proces-
sor on the 32 registers of a different processor , e.g.
“32” 32, see Sites et al. [13].

Another nice feature of x86 is the absence of
branch delay slots. Emulating an architecture
with branch delay slots on an architecture where
branches are not delayed is hard.

4 Technical Details

4.1 On-the-Fly Binary Translation

Binary translation, e.g. as described in [2, 3, 4, 13]
is the basis for architecture emulation. For the ubiq-
uitous architecture, x86 instructions must be trans-
parently translated on the fly, i.e., when accessed
in memory. This gives us independence of load

1Besides severe performance implications, this also raises the
problem how to ensure that the pseudo-register memory loca-
tions are not also used as x86 memory. If, however, the x86 ar-
chitecture is emulated on 32 real registers, all emulator-internal
variables can be held either in registers (and are thus inaccess-
able for x86 code) or in read-only pages that are allocated dy-
namically.



file formats, permits direct code generation (with-
out generating a load file), and even enables page-
based (partial, on-demand) migration of code and
data within a clustered system.

Single-Instruction Translation translates each in-
dividual instruction of the source in isolation to
the host architecture, independent of its instruction
context. This technique is fast since no context
analysis is required. After decoding the x86 instruc-
tion, an equivalent sequence of host instructions can
be generated from a template. On a 200 MHz pro-
cessor, typically less than 0.2 sec/MB are required.
However, the technique does not allow the host
code to be optimized. On the other hand, branch
targets (labels) are simple. They never require re-
translation of the target code as long as they branch
to addresses that are mapped to the beginning of an
already translated x86 instruction.

Multiple-Instruction Translation analyzes entire
basic blocks or even sets of basic blocks to generate
better optimized host code. As [3] shows, the costs
of such context-sensitive translations are not negli-
gible. Fortunately, multiple-instruction translation
can be used like a hot-spot compiler, transparently
optimizing only the dynamically detected hot spots
of the code.

4.2 Segments

Emulating x86 segments on other architectures is
costly: for any memory access, the effective ad-
dress has to be checked against the segment limit
and the segment base has to be added. Depending
on the host architecture, 1 to 3 additional cycles per
memory access are required. In addition, the code
becomes larger and needs more instruction-cache
space. This effect is probably even worse than the
additional execution cycles.

Fortunately, many systems use only a flat mem-
ory model on the x86. Nevertheless, segments
should be included in the ubiquitous architecture.
However, they must be for free as long as they are
not really used. Any translator should start with
generating fast flat-memory code (without code for
adding the segment base and checking the segment
limit). As soon as a non-flat segment is loaded
into a segment register, the already translated code
must be invalidated and the translator must generate
slower segment-sensitive code from then on.

4.3 Little Endians

Fortunately, one’s-complement machines are no
longer relevant. However, the world is still divided
in little-endian and big-endian machines. There is
no doubt that the ubiquitous architecture must be
little endian (the 90+% argument). Although most
non-x86 processors can specify the byte ordering
at boot time, the ubiquitous architecture needs little
endian semantics even when the processor is booted
with big endian ordering. The PowerPC architec-
ture offers load/store instructions operating in the
“reverse” ordering. So we can easily generate little
endian code, even if the machine runs in big endian
mode.

Otherwise, the entire x86 address space can be
mapped “inverted” to the host architecture. (The
memory is not typed and programs can freely mix
byte access and word access on the same address.
So there is no way to reverse only the “words” in
memory and leave the “bytes” untouched.)

i) When loading the x86 address space into the
host, the entire byte ordering is inverted. The
byte at x86 address 0 is loaded into host ad-
dress -1, 1 to -2, and so on; in general x86 ad-
dress a is mapped to�a�1. (This includes the
original x86 code. Fortunately, translating in-
structions backwards performs as well as for-
wards.)

ii) The translator then generates host code in such
a way that any word access to x86 address a
operates on host address�a�4; byte access is
mapped to �a� 1, etc. For dynamically cal-
culated addresses, this requires typically one
additional instruction per memory access.

x86: 0 1 2 3

0 1 2 3 4 5 -3 -2 -1

host: 0123

0 1 2 -6 -5 -4 -3 -2 -1

Loading the word from x86 address 0, host address
�4, in big-endian ordering now loads the correct
value 0x3210 into the register. When accessing a
byte at x86 address 0, host address �1, the least
significant byte is correctly accessed.

4.4 Floating Point

All relevant floating point units claim IEEE-754
compliance. The memory representation of 32-



bit and 64-bit floating-point values is basically the
same on all these machines. Nevertheless, adding
three or more values can result in dramatically dif-
ferent sums on different 754-compliant processors.
Internally, the x86 architecture uses 80-bit floating-
point registers. Adders and multipliers operate also
80 bits wide. The 80-bit values are rounded to 64-
bit or 32-bit values only when they are written to
memory. In general, processors that have only 64-
bit floating-point registers will produce less precise,
i.e. different, results.

Fortunately, very few programs will be affected
by the difference in precision. However, numer-
ically instable algorithms and some highly x86-
optimized numeric algorithms will suffer when they
run on a less-precise processor.

To avoid this incompatibility, Java first decided
that always the least-precise arithmetic has to be
implemented. However, as Coonen [5] showed, this
results in very significant performance degradation
since the floating-point values have to be written
to memory (and loaded back) after each floating-
point operation. The effect of artificially reduc-
ing the precision on an x86 processor can easily
be illustrated by the loop of a vector multiplication
(s := s+ai�bi):

loop: fld [r1] fld [r1]
fmul [r2] fmul [r2]
add r1,delta add r1,delta
add r2,delta add r2,delta
fadd fst [temp]
dec r3 fadd [temp]
jnz loop fst [temp]

fld [temp]
dec r3
jnz loop

The left column is normal x86 code and uses the
80-bit register stack of the processor. The right col-
umn reduces the effective precision after the multi-
plaction and after the addition. On a Pentium, the
execution time (without memory stalls) for the left
code is 7 cycles, for the right code 14 cycles per
iteration.

For pragmatic reasons, we propose therefore that
the precision has to be at least 64 bit but can be
arbitrarily increased on any implementation of the
ubiquitous architecture. This enables fast emula-
tion on all machines, but opens the door for some
incompatibilities. However, the incompatibility is
somehow restricted: If a numeric algorithm is re-
compiled for another processor and then still works
properly, then the original x86 binary will work as

well on the ubiquitous x86 architecture on the said
processor.

4.5 Page Tables, Privileged In-
structions, and V86 Mode

Fortunately, all these difficult-to-implement fea-
tures can be ignored. The are not required for a
ubiquitous 32-bit user architecture.

5 Ubiquitous APIs?

Having a ubiquitous standard API for OS services,
Window sytems, etc., is another problem that has to
be solved for enabling unlimited dynamic migration
of software. Fortunately, the ubiquitous-API prob-
lem is technically independent from the ubiquitous-
architecture problem. In fact, most available API’s
are implemented on nearly all hardware architec-
tures. This principle orthogonality permits us to
combine any ubiquitous architecture with arbitrary
ubiquitous APIs.

However, the hard problem is to find a generally
accepted API. Posix is standardized but not used;
Unix is used but not standardized; NT is de-facto
standard but ever changing; the Java APIs are (not
yet?) generally accepted.

Fortunately, the ubiquitous-APIproblem is not of
the all-or-nothing type but is open for stepwise solu-
tions. Once we have a ubiquitous architecture, we
can e.g. realise a ubiquitous API for applets, then
for games, etc. Finally, of course, we must end up
with general, OS-type, ubiquitous APIs. To circum-
vent the heterogeneity problem of APIs, one might
even optimistically aim at offering multiple APIs
that could be used alternatively per migrated object.

6 Prospects

The existence of a ubiquitous virtual architecture
would make life easier. If this architecture should
become reality in the near future, the x86 architec-
ture should be used. Whether it can become re-
ality, basically depends on two performance ques-
tions: How fast can we translate binaries? How
fast will they execute on the host architecture? The
engineering challenge is to find out what we can
achieve.



References
[1] PowerPC 603 Risc Microprocessor User’s Manual. IBM,

Motorola, 1994.

[2] R. Bedicheck. Some efficient architecture simulation tech-
niques. In Usenix Winter Conference, pages 53–63, Jan-
uary 1990.

[3] A. Chernoff and R. Hookway. Digital FX!32 — Running
32-bit applications on Alpha NT. In The Usenix Windows
NT Workshop, pages 9–15, Seattle, WA, August 1997.

[4] R. F. Cmelik and D. Keppel. Shade: A fast instruction-
set simulator for execution profiling. Technical Report
UWCSE 93–06–06, University of Washington, Seattle,
WA, 1993.

[5] J. T. Coonen. A note on Java numerics. e.g. http:
//www.math.chalmers.se / thomas /D++ /Laborationer
/Lab1 /Coonen.html, December 1997.

[6] M. Franz and T. Kistler. Slim binaries. Communications
of the ACM, 40(12):87–94, December 1997.

[7] J Heinrich. MIPS R4000 Risc MicroprocessorUser’s Man-
ual. Mips Technologies Inc., 1994.

[8] Intel Corp. Pentium Processor User’s Manual, Volume 3:
Architecture and Programming Manual, 1993.

[9] D. B. Lange and M. Oshima. Programming mobile agents
in java – with the java aglet api (the aglet cookbook). http://
www.trl.ibm.co.jp /aglets/ aglet-book/ index.html, 1997.

[10] T. Linholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison Wesley, 1997.

[11] H. Peine and T. Stolpmann. The architecture of the ara
platform for mobile agents. In First International Work-
shop on Mobile Agents, pages 9–15, Berlin, August 1997.
Springer Verlag. Lecture Notes in Computer Science No.
1219.

[12] R. L. Sites, editor. Alpha Architecture Reference Manual.
Digital Equipment Corp., 1992.

[13] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson. Binary translation. Digital Technical Journal,
4(4):137–152, 1992.

[14] B. Steensgaard and E. Jul. Object and native code thread
mobility among heterogeneous computers. In 15th ACM
Symposium on Operating System Principles (SOSP), pages
68–78, Copper Mountain Resort, CO, December 1995.

[15] J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and
T. Steel. The problem of programming communication
with changing machines: a proposed solution. Commu-
nications of the ACM, 1(8), August 1959.

[16] Tao Systems. Elate’s translation process. http://
www.tao.uk /2/ tao/ elate/ translation.html, 1998.


