
How To Schedule Unlimited Memory Pinning of Untrusted
Processes

Or
Provisional Ideas About Service-Neutrality

Jochen Liedtke Volkmar Uhlig Kevin Elphinstone Trent Jaeger Yoonho Park

IBM T. J. Watson Research Center

About This Paper

You can read it as a paper that treats a concrete problem
motivated in Section 1: How can we permit untrusted user
processes to pin their virtual pages in memory most flexibly
and as unlimited as possible? From this point of view, the
paper presents a general solution that is theoretically and
experimentally reasonably substantiated.

However, you can also read the paper as an approach
to solve the more general problem of how an existing sys-
tem can be extended by new operations while preserving the
original system’s QoS properties. From this point of view,
the paper is highly speculative. The presented principle of
service-neutral operations can successfully solve the con-
crete problem of dynamic pinning. However, we still have
no sound evidence that it is useful for a much broader class
of problems. Nevertheless, we strongly suspect it.

1 Reasoning About Pinning

Traditionally, pinning memory is a privileged capability
that is not available to normal user tasks but only to the OS
kernel and some device drivers. Pinning is controlled by the
facts that these components are statically known, that they
are trusted, and that they have mostly restrictive policies
minimizing pinning.

Could applications benefit from more liberal pinning
policies? There seem to be three basic classes of applica-
tions that can profit from pinning: (a) device drivers that
use DMA, (b) real-time systems that rely on no-page-fault
guarantees, and (c) database-like applications that perform
drastically better when some application-specific pages are
pinned for a shorter or longer time interval. In all cases, we
see need for static and dynamic pinning.

Static pinning is used for pinning driver or real-time code
and data, certain buffers, etc. Basically, pages are pinned
forever or at least for a very long time. The method is nec-
essary to guarantee the basic functionality of some compo-

nents. Static pinning can be controlled by traditional quota-
based methods. Static pinning is not a topic of this paper.

Dynamic pinning has two characteristic properties: pages
are pinned for short periods only, and it is dynamically de-
cided which and how many pages are pinned. We show four
motivating examples:

1. For transmitting a file, the network system pins the
file partially (or entirely) in memory for the transmis-
sion period. This enables zero-copy transmission, i.e.
avoids copying data into network buffers, and thus in-
creases the performance substantially.

2. For communicating data to a non-real-time com-
ponent, a real-time application temporarily requests
pinned memory.

3. A real-time application temporarily asks for pinned
memory. Of course, the application would meet
its deadlines and fulfill its minimal quality-of-service
contracts without this memory. However, additional
buffers can substantially improve its quality of service
or reduce the overall system load, i.e. make more pro-
cessor time available for non-real-time tasks.

4. Based on its application-specific knowledge, a
database system decreases overall swapping by pin-
ning dynamically some of its pages.

In these examples, we find that for dynamic pinning, appli-
cations negotiate with the system whether, how many and
how long pages can be pinned for them.

1.1 Problems

Dynamic pinning has to be controlled by a policy that (a)
coordinates the requests of multiple independent applica-
tions, (b) restricts the negative effects that pinning has on
other (paged) applications, and (c) can be enforced against
untrusted applications. In summary, dynamic pinning needs
scheduling.



Assume that any user task can dynamically ask to pin
some of its currently mapped pages for a certain period
of time. An according scheduling algorithm in the pager
then decides whether the request will be granted, denied,
or granted with less pages or for a shorter period. Such a
dynamic-pinning scheduler should have some properties:

1. It should work in combination with any reasonable
page-replacement algorithm.

2. It should not rely on pinning-related trust in the ap-
plications. For instance, restricting pinning to device
drivers is not acceptable.

3. It should be robust against denial-of-service at-
tacks. Pinning must not offer new possibilities for
monopolyzing a system.

4. It should adapt quickly to changing system load. An
application should be granted a high amount of pinned
pages if enough unused memory is available. Accord-
ingly, less pinning should be granted if memory is get-
ting short.

5. The basic scheduler should enable to add specific poli-
cies that, e.g., handle applications that are prioritized
or weighted differently.

Due to (3), pinning must always be bound by a time limit.
Furthermore, because of (2), we cannot rely on applications
unpinning their pages on time. Therefore, unpinning must
be enforced if necessary.

(3) and (4) together exclude such simple solutions as to
give each application a fixed quota of n=m pinned pages in
a context of n physical pages and m applications.

1.2 Related Work and Systems

Some systems permit in-kernel modules to pin pages dy-
namically, e.g. NT’s VIA [6] and FreeBSD [5]. Safety and
scheduling of pinning are not addressed. The compensated
pinning methodology of this paper permits untrusted pro-
cesses to pin pages and schedules competing pinning re-
quests of concurrent applications. The latter feature would
be helpful even in purely trusted pinning systems. Posix
1003.1b [2] specifies an mlock operation that lets the supe-
ruser pin pages up to a predefined system limit. Normal
users cannot pin memory.

Solaris complements superuser pinning with a quota sys-
tem. In theory, this could be extended to normal user pro-
cesses. However, quotas are very static and have to be al-
located very carefully, typically by a human system admin-
istrator. In contrast to compensated pinning, they do not
permit overbooking and make fast adaption to the current
system behavior impossible.

1.3 Time-Constrained Pinning

As a first approach, we introduce a time-constrained pin op-
eration SimplePin (RequestedPages) ! (�; PinnedPages).
By this operation, any application can request that some or
all of its currently mapped virtual pages are pinned in phys-
ical memory. The system returns a time � for which it guar-
antees pinning and the set of pages that could be pinned
successfully. (Unmapped pages are not pinned.)

SimplePin could, for example, be used in a user-level
protocol-stack implementation to avoid copying data into
send buffers. The protocol stack requests pinning for the
according user data. Depending on the returned time con-
straint � , it lets the network driver (also user-level, of
course) work on such an amount of data that it certainly
finishes within time � .

If the driver permits running operation (including DMA)
to be aborted and � is the maximum latency for such an
abortion, we can use a more sophisticated AdaptivePin al-
gorithm:

AdaptivePin (pageset, �̂ ) :
T := now + �̂ ;
do

SimplePin (pageset) ! � ;
if � < � then return failure fi ;
work for (min(� � �; T�now))

until now � T od .

By repeated SimplePin operations, it tries to pin the
(mapped) pages over a user-specified period �̂ . If the sys-
tem no longer guarantees sufficiently large � ’s, the algo-
rithm terminates with a failure. In this case, however, that
pages are still pinned for a time � such that the protocol
stack can securely stop transmission (including DMA oper-
ations).

After � expires, the pages are no longer pinned. If the
application ignores � , something will not function properly.
Is this a new safety/security leak? We do not think so. If,
for instance, the protocol stack or network driver continu-
ous working and runs DMA although � expired, it can obvi-
ously transmit the wrong data and penetrate privacy. How-
ever, someone who is able to access physical memory can
do such things even without pinning. So no additional trust
is needed.

The really hard problem remains: How can the system
guarantee sufficiently large � ’s and simultaneously guaran-
tee that the entire system still works nicely?

2 About Service-Neutrality

Untrusted pinning can easily make a system’s behavior un-
acceptable. Not only explicit denial-of-service attacks are
crucial in this context. Without proper scheduling, even
normal and correct applications could easily degrade the



system’s performance unacceptably or even let the sys-
tem starve. Besides pinning, other operations, in par-
ticular resource-reserving ones might have similar prob-
lems. Therefore, in this Section, we discuss the according
scheduling problems.

The most general question is: If we make a new opera-
tion X available for untrusted applications, how does this
change the system’s QoS properties. Unfortunately, this
question seems to be too hard to answer, particularly be-
cause we see no reasonable and general possibility to decide
which is the “better” one of two system behaviors. There-
fore, we limit ourselves to a slightly less general problem:

How can we extend a given system by a new operation X
such that the original system’s QoS-properties are always
preserved?

2.1 Basic Terms

A system consists of a scheduler and a set of applications
A0; A1; A2 : : : that are executed concurrently. While the
system executes, the scheduler produces a schedule, i.e. it
maps each point in time per application to the set of current
resources that the application can use at this time.

The service that an application Ai gets is the projection
of the entire schedule on to Ai, i.e. mapping time to the
sequence of resources for Ai.

Quality of service can then be described as a function that
maps service(s) of one or more applications into a multi-
dimensional space of qualities, typically R

n. Examples of
QoS measures are number of mapped pages per time, cpu
time per real time, maximum latency, etc. While preserving
only specific QoS properties can be compliant with changed
services, preserving all QoS properties requires to preserve
the services.

2.2 Strict Service-Neutrality

Assume that we want to extend a given system by offering
a new operation X. Usually, some system services have
to be modified for this purpose, e.g. the page-replacement
policy to enable pinning. Since all system policies can be
regarded as a part of the scheduler, we basically talk about
how to extend the original scheduler for X.

We are obviously only interested in scheduler extensions
that, loosely speaking, preserve as far as possible the prop-
erties of the original scheduler. Such service-neutral sched-
uler extensions should be characterized by two properties:

� X-free applications are served under the control of the
extended scheduler in the same way as under the orig-
inal scheduler’s control.

� When some applications use X-operations, all concur-
rently active X-free applications should experience a

service that they also could have experienced in the
original system. (I.e., the same service could have hap-
pened even without the presence of X-operations.)

We now define more formally the term strict service-
neutrality: Assume that a system runs the application A

concurrently with a set of competing applications Ci. A in-
vokes the new operation X with parameters xj. (We make
no assumptions about the use of X in the other applica-
tions.)

� Operations X(xj) are strictly service-neutral iff there
exists anX-free applicationA0 such that for every pos-
sible set of competing applications fCig, the service
for every Ci remains the same if we replace A by A0.

� A scheduler extension is strictly service-neutral iff
it rejects any application that invokes a not strictly
service-neutral X(x).

Obviously, strictly service-neutral scheduler extensions
preserve all QoS properties of the original system. In partic-
ular such extended schedulers are compliant to the original
scheduler, i.e., they behave exactly as under control of the
original scheduler.1

Note that we do not require a strictly service-neutral
scheduler extension to accept all service-neutral invoca-
tions X(x). For practical relevance, it nevertheless should
accept “enough” invocations. Constructing such a sched-
uler extension depends heavily on the addressed operation
X. In Section 3, we describe a solution for pinning.

2.3 Probabilistic Service-Neutrality

Strict service-neutrality is a very restrictive requirement.
We suspect that it is too restrictive to be useful on its own.
It might turn out that strict service-neutrality is applicable
only to few and uninteresting operations X.

In similar situations, probabilistic methods have been
very useful. For example, complexity theory uses proba-
bilistic complexity; probabilistic properties are helpful in
load distribution [1] and for probabilistic broadcasts [3],
stochastic capacities [4] describe cache properties indepen-
dent of specific benchmarks.

Accordingly, we define probabilistic service-neutrality
as a weaker but more powerful concept:

� Operations X(xj) are service-P-neutral iff there ex-
ists an X-free application A0 such that for a randomly
picked set of competing applications fCig, the service

1Proof sketch: Since the scheduler extension accepts any X-free ap-
plication, any such application is accepted iff the original scheduler would
accept it. Furthermore, it is served exactly as if it would run under control
of the original scheduler. (Take the empty application for A andA 0 . Then
arbitrary X-free Ci are serviced in the same way as under the original
scheduler.)



for theCi remains the same with probabilityp (usually
chosen close to 1) if we replace A by A0.

� A scheduler extension is service-P-neutral iff it rejects
any application that invokes a not service-P-neutral
X(x).

(In the following, we use the term service-neutral to denote
strict and/or probabilistic service-neutrality.)

If the scheduler accepts only service-P-neutralX(x), the
QoS properties of the system are preserved with probability
p. This is acceptable for timesharing and soft-real-time QoS
properties but in general not for servicing hard-real-time ap-
plications. However, sometimes even hard-real-time appli-
cations can coexist with p-neutrality. Compensated pinning
in Section 3 gives a good example. Although pinning is
only p-neutral in general, it does not influence applications
that avoid paged memory. So pinning is strictly neutral for
hard-real-time applications.

2.4 Application-Locality

From the definition of service-neutrality, we can conclude
that any reasonable service-neutral scheduling extension
will decide whether it will accept an application A inde-
pendently from the other applications Ci. In other words, a
scheduler extension will work on the application in question
without looking at the other competing applications.2 This
application locality has two remarkable consequences:

� Since the additional scheduling mechanism does not
need system-global knowledge, we can expect that to-
tal scheduling complexity does not increase signifi-
cantly. In particular, it should only increase when op-
erations X are invoked.

� When trying to construct a service-neutral scheduler
extension, we should focus on application-local al-
gorithms. Section 3 illustrates how we can use this
knowledge as a guideline for construction.

3 Compensated Pinning

Now we switch back from the abstract operation X to the
original pin operation. From the prior analysis, we can draw
some conclusions, step by step:

1. We have obviously to modify the original page-
replacement algorithm such that whenever it picks a
page frame holding a pinned page the replacement

2Proof sketch: If the acceptance decision would depend on the current
fCig, then there would exist at least one other fC 0

i
g that would letA to be

rejected. However, by definition neutrality holds for all fC 0

i
g. Therefore,

the Ci-dependent algorithm would be either wrong or could be improved
by simply ignoring the current fC 0

i
g.

is redirected to another page frame. (We call such
redirections compensated replacements or compensa-
tions.)

2. So the basic problem is: how can we select the com-
pensations service-neutrally, i.e. without affecting the
system’s paging behavior?

3. Due to the application-locality of service-neutral pol-
icy modifications, compensations must always redirect
replacement to (mapped) pages of the same applica-
tion that pinned the page that originally should be re-
placed.

4. Therefore, an application has to have more pages
mapped than it requests to pin. The addititional pages
are required for compensation.

5. After no more pages are left for compensation, pin-
ning would be no longer service-neutral. The new
neutrality-ensuring scheduling mechanism has there-
fore to determine � such that the application will either
never run out of compensation pages in the following
time interval � (strictly service-neutral) or that this will
happen with a probability of at most 1� p (service-P-
neutral).

6. A strictly service-neutral strategy is totally infeasible.
We have to focus on probabilistic neutrality.

7. Due to the application-locality, � must for any given
p be derivable from the application’s current set of
pinned and compensation pages.

The conclusions clearly lead us to the idea of compen-
sated pinning: Assume that an application wants to pin k

of its pages that are currently mapped. To get those pages
pinned for a certain time, the application has to offer x other
pages for compensation. These compensation pages must
be pages owned by the same application and they must be
currently mapped to physical memory. For page replace-
ment, the pager can then use the compensation pages in-
stead of the pinned pages. The following paragraphs show
in detail how we can compensate the pinning costs to nearly
100% for any reasonable page-replacement algorithm.

3.1 The Compensation Algorithm

Assume an applicationA wants to pin k pages and offers x
compensation pages. (All k+ x pages are owned by A and
are currently mapped.) A touches all k+x pages to classify
them as recently used for the page-replacement algorithm.
Then it asks for pinning while offering the compensation
pages.

We modifiy the original page-replacement algorithm by
adding the following compensation algorithm. Initially, all
k+x pages are marked as unlinked. The x pages are put into
the set XA of A’s unused compensation pages. (Note that



this does not change the replacement status of the x com-
pensation pages from the original replacement algorithm’s
point of view.)

Whenever the original page replacement picks one of the
k + x pages, i.e., a pinned page or a compensation page,
the compensation algorithm is applied. Assume that page
frame f is picked originally. If f is not yet linked to a com-
pensation page, an arbitrary page f

0 is taken out of XA,
removed from this set, f is linked to f

0, and f
0 is used in-

stead of f for replacement. Otherwise, the page f0 that was
already linked to f is used instead of f .

compensate (f ) :
if flinked = nil

then f
0 := one of XA ;

XA := XA n ff
0g ;

flinked := f
0

endif ;
use flinked instead of f for replacement .

Once XA has fallen empty, replacing not-yet-replaced
pages can no longer be compensated. The application A is
called compensated until this happens and uncompensated
thereafter. The number of replacements that leave A com-
pensated is called its compensation length C.

The concrete compensation length can be as low as x.
However, this event has a very low probability. Therefore,
instead of this absolute lower bound, we use a probabilis-
tic lower bound CP for the compensation length. It means
that with probability P, the concrete compensation length
is at least CP . For instance, we can expect that in 99% of
all pinning operations, we do not run out of compensation
pages for up to C99% replacements. In Section 3.2, we de-
rive the probabilistic lower bound CP from given k and x.
Accordingly, the number x of compensation pages that are
necessary to pin k pages for CP replacements can be calcu-
lated.

With a lower bound Tmin for the minimum time required
for one replacement operation, the probabilistic pinning
time is at least CPTmin. For k pages to be pinned and x

offered compensation pages, the pager could guarantee a
pinning time of � = CPTmin. We know some better prob-
abilistic bounds for � than the simple CPTmin , but cannot
discuss them here due to space restrictions.

As long as compensation works for a period of � , the pag-
ing behavior is unaffected by pinning the k pages. Pinning
does not shrink the memory that is effectively available for
swapping. However, once we experience an underflow of
the compensation set, the pager must replace an unpinned
page without compensation. As a result, the available swap-
ping memory effectively shrinks. Fortunately, such situa-
tions occur infrequently. On average, their probability is
even lower than 1�P because in most cases the effective
time for r replacements is much higher than Tminr.

3.2 Probabilistic Compensation Length

An application pins k mapped pages and offers x also
mapped pages for compensation. Let p be an upper bound
for the probability that the original replacement algorithm
picks a given page of the k + x pages per replacement
event. Typically, p = 1=n is a good choice for n total page
frames.3

We are interested in the probability P(r) that r replace-
ments can be compensated. At first, we calculate P(r) un-
der the assumption that the probability to be picked in one
replacement for any of the k+x pages is constant and equals
p. Then, we show that P(r) is a lower bound for the case
that p is an upper bound for these probabilities.

From the compensation algorithm, we can easily con-
clude that P(r) is the probability that the original replace-
ment algorithm for r replacements picks at most x different
pages from the set of the k + x pages.

Assume that we select i pages from this set. Then the
probability that in r replacements each of the given i pages
is picked at least once and all other of the k + x pages are
never picked is

Pi(r) =

8>>><
>>>:

�
1� (k+x) p

�r
if i = 0

r�i+1X
j=1

�
r

j

�
p
j
Pi�1(r�j) if i > 0

Multiplying Pi(r) by the number of combinations how i

pages can be selected from k + x pages and summing over
all possible values of i results in

P(r) =
xX
i=0

�
k + x

i

�
Pi(r)

Only P0(r) depends directly on p. Smaller values for p re-
sult in larger values for P0(r) and thus also for Pi(r) and
P(r). Therefore, P(r) is a lower bound for the probability
that r replacements can be compensated if the pick proba-
bility for each of the k+x pages for r replacements remains
less than or equal to p.

Table 1 shows probabilistic compensation lengths for
p = 1=n and various memory sizes n. The margin proba-
bility is always 99%, i.e. we calculate C99%. If, one a 64 M-
machine, e.g., 256 pages (1 Megabyte) are pinned with 16
compensation pages, in 99% at least 555 replacements can
be compensated.

3
p = 1=n assumes only that the replacement probability for a currently

used page is at least not higher than for an average page. (The k+x pages
are currently in heavy use!)



16 M 32 M 64 M 256 M
k + x n=4096 n=8192 n=16384 n=65536

+ 1 37 74 128 590
+ 2 105 211 421 1683

16 + 4 293 585 1170 >2000
+ 8 728 1455 >2000 >2000
+ 16 1571 >2000 >2000 >2000

+ 2 7 14 28 111
+ 4 21 42 82 326
+ 8 57 112 223 886

256 + 16 141 279 555 >2000
+ 32 323 642 1278 >2000
+ 64 689 1370 >2000 >2000
+ 128 1360 >2000 >2000 >2000

+ 2 2 4 7 28
+ 4 6 11 21 83
+ 8 16 30 58 225

1024 + 16 39 74 144 568
+ 32 89 172 338 1336
+ 64 194 378 748 >2000
+ 128 405 796 1580 >2000

+ 2 n/a 2 2 7
+ 4 n/a 4 6 21

4096 + 8 n/a 9 16 58
+ 16 n/a 22 39 145
+ 32 n/a 48 90 342
+ 64 n/a 104 198 765
+ 128 n/a 219 422 1651

Table 1: C99%

4 Compensated Pinning in Linux

We implemented compensated pinning in Linux. Each ap-
plication (i.e., a Linux process in our implementation) has
a dedicated compensation set. It is empty upon the process’
creation. The process can then add compensation pages by
pin requests. The API offers 6 elements:

int CompensatedTau (int k, x) is a function that — based
on the calculated probabilistic compensation length,
the estimated swapping costs, etc. — delivers what
� could be expected when pinning k pages while x

compensation pages are available. The according val-
ues are guaranteed not to change within a system run
and to be the same for each application. So appli-
cations can use this function/table to decide which
compensation-page resource they need.

type pageset is used to specify sets of pages.

int Pin (pageset PinReqs, CompPages, pageset *NotPinned)
requests to pin pages and simultaneously offers com-
pensation pages. (These are added to the process’
compensation set.) The function returns the time � in
milliseconds as a result and writes all pages that could
not be pinned (because they are currently not mapped)
into the pageset NotPinned.

UnPin (pageset Pages) unpins all of the specified pages
that are currently pinned.

int FreeCompensationPages () delivers how many free
compensation pages are current available for this ap-
plication, i.e. have not yet been used for compensation.

ReclaimAllFreeCompensationPages (pageset *Pages)
reclaims all compensation pages of the current ap-
plication that have not been used so far. Afterwards,
the application’s compensation set is empty.

In most systems, e.g. in FreeBSD, the swap daemon picks
page frames directly. The system has some inverted map-
ping table that permits efficient determination which virtual
page(s) in which address space(s) is/are currently mapped
to a physical page frame. Original Linux instead, has no
such inverted mapping table. Thus the swap daemon walks
through the virtual address spaces, selects a virtual page,
and replaces the corresponding physical page frame if cer-
tain criteria are fulfilled.4 To compensate replacement at-
tempts on pinned pages, we need sometimes to redirect the
Linux swapper to a different physical page frame. To re-
place it, we had to invalidate all mappings to this page frame
and therefore added an inverted mapping table to Linux.

In a simple experiment, we pinned pagessets of 64 KB,
1 MB, and 4 MB on a 32 MB Linux system and mea-
sured the achievable compensation lengths. Simultane-
ously, 10 applications wrote randomly into 4 MB arrays
such that the system was always swapping heavily. (Our
testbed was a Pentium Pro 200 with 32 MB RAM run-
ning L4LinuxVersion 2.0.21 and a 540 MB harddisk (IBM
DALA-3540, 12ms, 96 KB Cache, Transfer: 40.5MB/s,
4500 rpm).

Table 2 show results of 5 experiments per k + x vari-
ant. The results are sorted per column such that the first

16 256 1024
+ 1 + 4 + 16 + 4 + 16 + 64 + 4 + 16 + 64

1974 1909 2520 1156 596 1455 751 704 738
2019 2148 2575 1277 1343 1840 775 736 778
2413 2157 2910 1550 1437 1942 796 836 809
2484 2309 2985 2024 1444 2278 841 923 834
3367 2648 3707 1550 1445 3432 845 1559 908

Table 2: Achieved Compensation Lengths.

row shows always the minimal achieved number of re-
placements that could successfully be compensated. As ex-
pected, the number are much larger than the probabilistic
length. Due to the small number of experiments, the effect
of increasing compensation pages on the minimum is also
not very strong.

5 Summary and Outlook

The current research laid the foundation for an untrusted
dynamic memory pinning that is safe, secure, adaptive and

4In Linux 2.0.21, the swapper did never swap out shared pages, proba-
bly because of the lack of an inverted mapping table. So one could easily
stop the system forever by blocking all physical memory indefinitely: sim-
ply create a large array, touch every page, then fork and wait forever.



preserves a system’s QoS properties. The general principle
of service-neutrality might be applicable for further prob-
lems.

Besides maturing the Linux implementation, we are cur-
rently working on deriving better probabilistic time bounds
(� ) from compensation lengths by theoretic and heuristic
methods. In a next step, the use of dynamic pinning in ap-
plications will be exploited.

References
[1] A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Oper-

ating System, Load Balancing for UNIX. Lecture Notes in Computer
Science, Vol. 672. Springer–Verlag, 1993.

[2] B. O. Gallmeister. Posix.4. O’Reilly & Associates, 1995.

[3] M. Hayden and K. P. Birman. Probabilistic broadcast. Technical Re-
port TR96–1606, Cornell University, Ithaca, NY, September 1996.

[4] J. Liedtke. On the Realization Of Huge Sparsely-Occupied and Fine-
Grained Address Spaces. Oldenbourg, 1996.

[5] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The
Design and Implementation of the 4.4 BSD OS. Addison Wesley,
1996.

[6] D. A. Solomon. Inside Windows NT. MS Press, second edition, 1998.


