
Flexible Access Control Using IPC Redirection

Trent Jaeger Kevin Elphinstone Jochen Liedtke Vsevolod Panteleenko
Yoonho Park

IBM T. J. Watson Research Center
Hawthorne, NY 10532

Emails: fjaegertjkevinejjochenjvvpjyoonho@watson.ibm.comg

Abstract

We present a mechanism for inter-process communica-
tion (IPC) redirection that enables efficient and flexible ac-
cess control for micro-kernel systems. In such systems,
services are implemented at user-level, so IPC is the only
means of communication between them. Thus, the system
must be able to mediate IPCs to enforce its access control
policy. Such mediation must enable enforcement of secu-
rity policy with as little performance overhead as possible,
but current mechanisms either: (1) place significant access
control functionality in the kernel which increases IPC cost
or (2) are static and require more IPCs than necessary to
enforce access control. We define an IPC redirection mech-
anism that makes two improvements: (1) it removes the
management of redirection policy from the kernel, so access
control enforcement can be implemented outside the kernel
and (2) it separates the notion of who controls the redirec-
tion policy from the redirections themselves, so redirections
can be configured arbitrarily and dynamically. In this pa-
per, we define our redirection mechanism, demonstrate its
use, and examine possible, efficient implementations.

1. Introduction

In this paper, we present a flexible mechanism that sup-
plements inter-process communication (IPC) so that we can
enforce access control policies efficiently. In systems where
address-space separation is used to restrict processes, all
security-sensitive actions are implemented via IPCs. There-
fore, an IPC mechanism must enable proper enforcement of
access control. However, the overhead necessary for IPC to
support access control should be as low as possible. Toward
this end, we propose a mechanism that enables a trusted pro-
cess to configure IPC paths between processes dynamically
such that a system security policy can be enforced with low
overhead.

The conflict between IPC performance and security-

policy enforcement is fundamental to the development of
micro-kernel systems. In such systems, many system ser-
vices may be implemented at user-level, so many processes
may need to communicate to complete a task. In early
micro-kernel systems, such as Mach, the kernel only au-
thorizes whether a process can send or receive an IPC from
another process [9]. Actual authorization of the operations
on server objects is performed by the servers themselves.
While the server must be trusted to control access to its own
objects, it may not be designed to either interpret or enforce
the system’s global security policy. In these cases, an ad-
ditional trusted process, often called a reference monitor, is
assigned the task of enforcing the system’s access control
policy properly.

Security researchers have made extensions to such sys-
tems to enable the enforcement of security policy, such as
the Distributed Trusted Operating System (DTOS) [8], but
Mach’s IPC mechanism limits flexibility which, in turn,
limits the potential optimizations. Mach ports enable a prin-
cipal with receive rights to that port to receive IPCs from
those principals with send rights to the port. In order to in-
terpose a task to intercept IPCs, the current receiver must
delegate its port receive right to another principal. This
means that interposition requires the cooperation of the re-
ceiver which is a problem if either: (1) the receiver is in-
capable of the cooperation or (2) the receiver resists the in-
terposition. Thus, the DTOS implementation which uses
Mach’s IPC mechanism depends on the server processes (or
the kernel for kernel resources, such as ports) to call secu-
rity servers to authorize operations using the system secu-
rity policy (a round-trip IPC). Since the servers cannot tell
when security policy has changed, they must continue to re-
quest authorizations using this mechanism. Even though the
designers of DTOS smartly cache capabilities in the kernel
to improve performance (to a single system call, about one
IPC), in general, these IPCs would not be necessary if the
IPCs could be redirected to reference monitors on demand
(e.g., only when the security policy changes).

In more recent micro-kernel systems, Liedtke pushed au-



thorization completely out of the kernel to optimize IPC
performance [7]. In the L4 system, the kernel does not
authorize communication, but provides unforgeable IPC
source identification and permits any IPC to be redirected to
another process instead. L4 uses a model called the Clans
& Chiefs to define these redirections [6]. In this model, a
chief is a special process in a clan (i.e., set of processes).
Assignments of clan members to chiefs is static in L4. Any
IPC between two processes in the same clan is forwarded
directly to the destination by the kernel. However, any IPC
either to a process outside the clan or from a process out-
side the clan is automatically redirected by the kernel to the
clan’s chief. To monitor individual processes, we found it
necessary to assign each to their own clan, so three IPCs
(client-chief, chief-chief, chief-server) are required for an
inter-process request. While we showed that the base cost
could be as low as 4 �s and that we measured 9 �s [5], in
many cases, the chief-chief IPC is unnecessary [10].

In this paper, we define a mechanism for controlled IPC
redirection, in which trusted processes, called redirection
controllers, can determine the redirections for their tasks.
We show that we can use this mechanism to manage IPC
paths such that system security policies can be enforced
with few IPCs. For example, an IPC path may be monitored
initially, but once approved, the reference monitor may be
removed (if security policy allows). Only when the security
policy changes should the reference monitor interpose the
communication again.

A similar concept that is being developed concurrently to
our IPC redirection mechanism is called a portal [2]. A por-
tal is a reference to a customizable IPC mechanism. Similar
to our IPC redirection entries, portals are defined by a priv-
ileged task and invoked by the kernel on an IPC request.
The proposed implementation of portals uses a portal table
in the nucleus to vector references to the portal code which
the nucleus then executes (i.e., all portal code is trusted).
The main difference between our IPC mechanism and por-
tals is that portals enable trusted customizations to be run
inside the nucleus whereas the IPC redirection mechanism
aims to define a general nucleus mechanism for efficient
IPC direction (i.e., no custom code is necessary for redirec-
tion). Customizations would be implemented outside the
kernel (e.g., in the redirected destination). Further tests are
necessary to compare the effectiveness of our IPC redirec-
tion mechanism to implementations of redirection using the
portal mechanism.

The remainder of the paper is organized as follows. In
Section 2, we define the roles of the system’s trusted com-
puting base (TCB), the kernel, and the servers in enforcing
system security policies. In Section 3, we define our new
mechanism. In Section 4, we describe how this mechanism
can be used to enforce security policies, including Clans &
Chiefs itself. In Section 5, we discuss how the mechanism

can be implemented. In Section 6, we conclude and discuss
future work.

2. Security Policies

In this section, we define the roles of the system’s trusted
computing base (TCB), the kernel, and the servers in en-
forcing system security policy. These roles determine the
requirements of the mechanism.

The system TCB must be able to enforce the following
security requirements:

� Communication: the system must be able to restrict
the ability of a process to send an IPC to another pro-
cess

� Authentication: the system must identify the source
of an IPC

� Authorization: the system must be able to determine
whether a particular operation on a particular object
should be permitted

� Delegation: the system must be able to control the del-
egation of permissions from one process to another

� Revocation: the system must be able to revoke the
ability of a process to communicate with another pro-
cess or perform an operation on another process’s ob-
jects

� Denial: the system must be able to prevent denial-of-
service attacks on processes

� Mechanism: the system must be able to implement
arbitrary access control mechanisms (e.g., optimized
for the policy that they enforce) of its own choosing

The system TCB must be able to restrict communication
between any two processes to prevent unauthorized infor-
mation leaks. Once a communication is established, the sys-
tem must provide the necessary authentication information
to its monitors such that they can enforce system’s access
control policy effectively. Next, the system must be able to
authorize whether the operation requested can be performed
on the specified object. Since processes may be loaded dy-
namically and may not be aware of the system security pol-
icy, they may delegate permissions that the system security
policy forbids the destination from obtaining. Therefore,
the system TCB must be able to restrict delegation of any
permission to perform any operation on a server object and
revoke existing permissions. In addition, the system TCB
must be able to prevent denial-of-service attacks on pro-
cesses by permitting legitimate requests to be forwarded in
preference to those deemed excessive. Lastly, the system



TCB should be able to support any conceivable system se-
curity policy without the need to modify the kernel.

The kernel need not actually perform any of these se-
curity checks itself. Rather, the kernel must enable its
system’s TCB to enforce these requirements. The goal is
for the kernel to provide the system with the flexibility
to enforce its security requirements while providing high-
performance IPC services. Therefore, systems with no se-
curity requirements execute at the highest IPC efficiency,
while those with some subset of the security requirements
above may enforce those with a minimal number of IPCs
and system calls.

An important issue is determining the security require-
ments that must be enforced by reference monitors and
those which can be enforced by the servers themselves. An
effective enforcement mechanism must mediate all IPCs,
prevent tampering of security policy, and be sufficiently
simple that it can be validated [1]. In general, reference
monitors are necessary to control (i.e., block) any commu-
nication channel. However, once a communication channel
between a client and server is authorized, a server may me-
diate IPCs on that channel. Since servers define the map-
ping of their data to their objects, they must be trusted to
perform the accesses requested on their objects anyway.
However, servers must also be able to protect the security
policy from tampering to be entrusted with its enforcement.
The degree of this trust may be tempered by limiting the
policy managed by the server and the amount of time in
which IPC is monitored solely by the server.

3. Solution Proposal

In this section, we describe our redirection mechanism.
In this mechanism, the kernel implements IPC given a redi-
rection policy specified by a user-level process called redi-
rection controller. A redirection controller is privileged to
set redirection policy for the processes in its redirection set.
Since a redirection controller is a user-level process, the sys-
tem designers are free to implement redirection policy as
desired for their system.

The kernel implements IPCs that may be redirected de-
pending on the policy specified. Redirected IPC is de-
scribed by the following formalism. We define a redirection
function R that maps an IPC source process (s) and desti-
nation process (d) to an interim destination (i),

R�s� d� �� i� for s� d� i � P

where P is the set of all processes.
Let � designate traditional IPC, thus s � d represents

an IPC from process s to process d. Given this, we define a
new IPC mechanism s� d to be s� R�s� d�.

The redirection controller has the ability to set R for
each s in its redirection set, the set of processes for which

R may set redirection policy. For example, setting R such
that R�s� d� � d allows direct, unrestricted IPC from s to
d, setting R�s� d� � i redirects IPC from s to an interim
destination i. Arbitrary redirection can be implemented by
the redirection controller within its redirection set, and the
redirections can be established dynamically.

Interim destinations can block, revise, or forward IPCs
between sources and destinations. In general, interim desti-
nations can be used as reference monitors, IPC tracers, and
debuggers to name just a few examples.

In order to authorize operations properly, the destination
needs to know the identity of the original IPC source. The
kernel specifies the identity of the direct source (i.e., the
interim destination) of an IPC, but the interim destinations
are permitted to specify the an original IPC source (called
“deceiving” IPC in the Clans & Chiefs model). However,
this specification must be limited to prevent interim desti-
nations from claiming unauthorized sources. If i is acting
as an interim destination for IPC from source s to destina-
tion d, then i is permitted to send IPC to d specifying s as
the original source of the message (i

s

� d). Permissible IPC
deceit is specified by

i
s

� d iff R�s� d� � i

If multiple interim destinations are used, the destination can
assume that all deceits are specified by

i
s

� d iff

�
R�s� d� � i

R�s� d� � x� i
x

� d

In general, multiple interim destinations may forward an
IPC and specify a original source. Therefore, trust in the
validity of the original source specified in the IPC received
by the destination is an issue. The kernel only provides:
(1) a valid identity of the last interim destination and (2) a
restriction on the set of sources that can be claimed by an
interim destination. Thus, the number of possible sources
for an interim destination should be commensurate with the
system’s trust in that interim destination. In addition, in-
terim destinations can build a user-level chain of interim
destinations to aid the final destination in authentication. In
this case, each interim destination appends its identity to a
chain of destinations. If there are any untrusted interim des-
tinations, at least one will be discovered by a trusted interim
destination or the final destination itself. If an untrusted in-
terim destination appears in a chain, the destination may not
believe the identity of the source. In which case, a secure
channel may be established between the source and desti-
nation.

4. Examples

In this section, we aim to demonstrate the power and
flexibility of the IPC redirection mechanism. In the first ex-



DS

M

RC

Figure 1. Process M monitors operations by
its processes as specified by RC.

ample, we show how a reference monitor architecture can
be constructed. In the second example, we show how the
Clans & Chiefs model may be emulated.

4.1. Reference Monitors

Consider Figure 1. Process RC is the redirection con-
troller for the system. Process M is a monitor for processes
s and d. Process RC redirects all IPCs sent from s to d to
M . That is, R�s� �� � M . The monitor performs all access
control checks for these processes, and it may send IPCs to
the destinations directly (i.e., R�M�x� � x). Suppose that
s wants to send an IPC to d. The kernel redirects the IPC
to M which authorizes the IPC and forwards it to d. Any
return IPC from d to s is automatically redirected to its ref-
erence monitor, which could be M or some other process.

In this application, the reference monitorM enforces the
system’s security policy on the two processes. The refer-
ence monitor maintains the capabilities for s to invoke op-
erations on d. First, it can prevent s from making operation
requests to objects on d. Second, it is capable of revoking
any of s’s capabilities for invoking operations on d when
changes in access control policy occur. Third, the monitor
can prevent s from using capabilities to perform operations
on d that it may have been delegated by other processes.
Fourth, it can prevent s from implementing a denial-of-
service attack on d by limiting the number of requests that
may be sent. Fifth, different monitors may implement dif-
ferent mechanisms to enforce the security requirements of
their processes effectively and efficiently. Note in this sce-
nario, the monitors are trusted to specify the source of the
IPC to the destination.

The IPC redirection mechanism enables significant flexi-
bility in access control enforcement by enabling the redirec-
tion controller to assign monitors to individual processes.
Thus, the authorization mechanism used may be customized
to the security requirements of the monitored process. Also,

the redirection controller can change the current monitor of
a process when security requirements demand it.

In addition to changing a process’s monitor, the redirec-
tion controller may remove the monitor from individual IPC
paths. Security requirements must be such that access con-
trol policy can still be enforced without the monitor. The
requirements for permitting the redirection function map-
ping R�s� d� � d are: (1) s can communicate with d; (2) d
does not need protection from denial of service attacks from
s; and (3) d is trusted to enforce authorization requirements
on s. Delegation is controlled on accesses using transferred
capabilities (by the monitor or server). The first condition
can be determined from s’s permissions. The second condi-
tion depends on the system’s trust in s and d’s ability to in-
form the monitor about a potential denial of service attack.
The third condition requires either: (1) that s is trusted or
(2) that d can obtain a representation of the system security
policy for s to d’s objects and d is trusted not to modify this
policy. While d must be trusted to perform the operations
requested on its objects, it may not be trusted to protect the
access control policy from tampering. We limit the possi-
bility of inadvertant tampering by providing a system autho-
rization library that authorizes operations using a read-only
access to system security policy. Servers manage the ca-
pabilities they grant using this library. The library enables
a reference monitor to take over authorization using server
capabilities on demand, so temporary control by servers is
possible (e.g., until policy changes) [4].

The IPC mechanism permits re-establishment of control
of a communication channel dynamically. If security policy
changes for s’s access to d’s objects, then the redirection
controller may reset the redirection function for s � d to
R�s� d� � M . This enables M to modify d’s representation
of s’s security policy or shut off communication between s
and d altogether.

4.2. Clans & Chiefs

We now demonstrate the flexibility of our mechanism by
specifying a Clans & Chiefs policy using IPC redirection.
The Clans & Chiefs mechanism has the following proper-
ties: (1) each member of a clan may send an IPC directly to
any other member of the clan; (2) an IPC sent to a member
of another clan is redirected to the clan’s chief; (3) an IPC
destined for a member of the clan that originated from a pro-
cess in another clan is redirected to the destination’s chief;
and (4) clans may be nested such that a chief may belong
to a clan of another chief. Clans & Chiefs enables the im-
plementation of a wide variety of security policies. For ex-
ample, mutually distrustful monitors may control IPC both
into and out of their clan. Also, sub-clans can be created
whose chiefs enforce different security policies.

Consider Figure 2. In this scenario, M�, M�, and M�



M4

P1 P2 P3

M3M2M1

P4

RC

Figure 2. Simulation of Clans & Chiefs model
with 3 clans. Also, P� is inserted in M�’s
clan and the M� clan is created dynamically
(not possible in the standard Clans & Chiefs
model).

are monitors that correspond to chiefs in a Clans & Chiefs
implementation. Each monitor control the flow of IPCs to
and from a single process. RC is the redirection controller
as before (and in the Clans & Chiefs model,RC is the chief
of M�, M�, and M�). To simulate the Clans & Chiefs se-
mantics, RC sets the redirection functions of the individual
processes as follows:

� P1: R�P�� P�� �M�� R�P�� P�� � M�

� P2: R�P�� P�� �M�� R�P�� P�� � M�

� P3: R�P�� P�� �M�� R�P�� P�� � M�

Similarly, the chief’s IPCs are redirected:

� M1: R�M�� P�� � P�� R�M�� P�� �
M�� R�M�� P�� � M�

� M2: R�M�� P�� � M�� R�M�� P�� �
P�� R�M�� P�� �M�

� M3: R�M�� P�� � M�� R�M�� P�� �
M�� R�M�� P�� � P�

The chiefs can all intercommunicate directly because
they are in RC’s clan.

If a new process is entered into a clan, then its redirec-
tion functions are set according to the clan that it is entered.
Consider a P� that is added to M�’s clan. Its redirection
functions are

R�P�� P�� � P�� R�P�� P�� �M�� R�P�� P�� � M�

The redirection functions of other processes are analogous.

In addition, RC may introduce a new process M� such
that M� and M� are added to M�’s clan. Therefore, M�
and M� can no longer communicate directly with M�, but
instead,

R�M��M�� � M�� R�M��M�� � M�

and vice versa for M� as the sender. Adding a new chief
is not possible in the L4 implementation of Clans & Chiefs
system without recreating the processes.

In addition, relaxations of the Clans & Chiefs semantics
that enable better performance are possible. For example,
it may not be necessary for both M� and M� to authorize
IPC between P� and P�. They can share read access to the
security database, so M� can authorize P�� P� and M�
can authorizeP�� P�. Because P� andP� are controlled
via different security policies, it may be preferable to keep
one monitor for each. Of course, the optimization of the
previous section (enabling R�P�� P�� � P�) can also be
implemented.

5. Implementation

Implementation of our redirection mechanism requires
that the kernel be extended to: (1) store and act on the redi-
rection information, (2) provide an interface for the redi-
rection controller to modify redirection information. This
section focuses on the first requirement rather than the sec-
ond, as we expect the second requirement’s contribution to
the mechanism’s overhead to be small. We envisage redi-
rection policy to be infrequently modified compared to the
frequency of IPC itself.

The efficiency of the implementation of redirection itself
is of paramount importance as it is potentially applied to ev-
ery IPC. The obvious naive implementation of redirection
is to store R in a two-dimensional array. Each IPC would
involve an array lookup based on source and intended des-
tination to produce the redirected destination. This method
has potential for fast lookup as it involves a simple calcula-
tion based on readily available information in the IPC code
path, together with a single memory reference. However
this method is space inefficient requiring N � log

�
N bits,

where N is the maximum number of processes.
A better strategy for implementation is to consider R

a translation function analogous to virtual to physical ad-
dress translation in virtual memory implementations. Vir-
tual to physical address translation via page tables is well-
understood (see Jacob [3] for a list of references). R would
be analogous to a sparse virtual address space which is best
translated by an inverted page table (i.e., hash table). In-
verted page tables also have the advantage of less impact on
the data cache compared to hierarchical arrangements.

The protocol works as follows. Given the identity of the
source and the destination processes, the kernel can attempt



to retrieve the redirection data entry from the inverted “page
table.” If there is no redirection entry for the combination
of source and destination, then the kernel has a redirection
fault, upon which it forwards the IPC to the redirection con-
troller of the source. The redirection controller can block,
revise, or forward the IPC (i.e., act as an interim destina-
tion). Additionally, it can set one or more entries of redi-
rection data to redirect future IPC to the appropriate desti-
nation. We expect that redirection data will change infre-
quently, so few redirection faults will occur.

Using the above mechanism, the cost of applying R to
any IPC is approximately the cost of performing a TLB re-
fill in software per IPC, without the TLB-specific overhead.
This is approximately 10 instructions depending on the ar-
chitecture, plus the cost of referencing the redirection data
in memory (if it is not in the cache). This analysis assumes
that the redirection hash table size is tuned so as to achieve
a high ratio of first probe hits. This is not unreasonable if
hits resolved via entries in collision resolution chains result
in the entry being promoted to the front of the hash chain.
Our expectation is that such a hash table will be signifi-
cantly smaller than the naive implementation which always
achieves a lookup in a single probe.

Currently, L4 has the best IPC performance. An analy-
sis of the inherent cost of performing IPC [7] revealed that
in a typical implementations, register-only IPC consists of
50-80 instructions contained in 6-14 instruction cache lines,
which accesses 4-6 cache lines of data.

Our redirection mechanism, if added to the L4 IPC path,
would increase the number of instructions by approximately
12-20%. In the absence of cache misses, we would expect a
similar increase in the number of cycles needed to perform
IPC.

If cache misses are prevalent, cache miss cost is the dom-
inant contribution to IPC cost. Liedtke reports Pentium IPC
times of 295 cycles assuming the maximum number of L1
cache misses during IPC, but no L2 cache misses. The ideal
time (i.e., no cache misses) is 121 cycles. In this situation,
one can consider the cache footprint as a rough estimator
of IPC performance. Our redirection mechanism increases
the instruction cache footprint by approximately 12-33% (2
cache lines), and data cache footprint by approximately 16-
25% (1 cache line).

Based on this simple analysis, we expect our redirection
mechanism to add less than 50% overhead to L4 register-
based IPC. Indeed, we hope to achieve an average over-
head of approximately 20%. For IPC involving messages
in memory, which is much more expensive, we expect the
overhead of our redirection mechanism to become insignif-
icant.

6 Summary

In this paper, we presented a mechanism that uses ker-
nel redirection to provide a basis for efficient access con-
trol. This mechanism enables the removal of access control
management from the kernel, so a variety of system-specific
representations and mechanisms can be implemented. We
demonstrated how the mechanism can be used to implement
a reference monitor architecture that satisfies our security
requirements and an architecture that implements Clans &
Chiefs’ semantics. In general, we expect that an efficient
implementation is possible that may add only 20% to L4
register-based IPC time and have a negligible performance
effect on long (i.e., greater than 8 byte) messages. Future
work includes the examination of the actual performance
effects of the mechanism, the extension of the model to sup-
port hierarchical redirection controllers, and application of
this mechanism to other services, such as debugging.

References

[1] J. P. Anderson. Computer security technology planning
study. Technical Report ESD-TR-73-51, James P. Anderson
and Co., Fort Washington, PA, USA, 1972.

[2] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-
schatz. Building efficient operating systems from user-level
components in Pebble. In Proceedings of the 1999 USENIX
Annual Technical Conference, 1999. To appear.

[3] B. L. Jacobs and T. N. Mudge. A look at several memory
management units, TLB-refill mechanisms, and page table
organizations. In ASPLOS-VIII, 1998.

[4] T. Jaeger. Secure Internet Programming: Security Issues for
Distributed and Mobile Objects. Springer-Verlag, 1999. To
appear.

[5] T. Jaeger, J. Liedtke, and N. Islam. Operating system pro-
tection for fine-grained programs. In Proceedings of the 7th
USENIX Security Symposium, pages 143–156, Jan. 1998.

[6] J. Liedtke. Clans & chiefs. In Architektur von Rechensyste-
men. Springer-Verlag, Mar. 1992. In English.

[7] J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig,
G. Heiser, N. Islam, and T. Jaeger. Achieved IPC perfor-
mance. In Proceedings of the Sixth Workshop on Hot Topics
in Operating Systems, pages 28–31, May 1997.

[8] S. E. Minear. Providing policy control over object operations
in a Mach-based system. In Proceedings of the 5th USENIX
Security Symposium, 1995.

[9] R. Rashid, A. Tevanian Jr., M. Young, D. Golub, D. Baron,
D. Black, W. J. Bolosky, and J. Chew. Machine-independent
virtual memory management for paged uniprocessor and
multiprocessor architectures. IEEE Transactions on Com-
puters, 37(8):896–908, Aug. 1988.

[10] J. E. Tidswell and J. M. Potter. Domain and type enforce-
ment in a micro-kernel. In Proceedings of the 20th Aus-
tralasian Computer Science Conference, 1997.


