
Preliminary Thoughts On Memory-Bus Scheduling

Jochen Liedtke Marcus Völp Kevin Elphinstone

System Architecture Group, CS Department
Universität Karlsruhe

fliedtke,völp,kevinelpg@ira.uka.de

1 Rationale

Main memory is typically significantly slower than the processors
that use it. Such slow memory is then amortized by fast caches.
Effective scheduling, particularly for soft or hard real-time, has
therefore to include cache control, even on uniprocessors. Al-
though cache scheduling is currently still an open research issue,
we assume in this paper that uniprocessors are effectively schedu-
lable in the presence of caches.

In this paper, we focus on SMP-specific memory scheduling.
A small SMP multiprocessor typically incorporates multiple pro-
cessors (with per-processor caches) that work on a global main
memory. Processors and main memory are connected by a single
memory bus, i.e. all processors share the same bus.

Assume that we have 4 job mixes that can be correctly sched-
uled on 4 independent uniprocessors. What happens if we put
those 4 job mixes on a 4-processor system with a single mem-
ory bus? Without any additional scheduling provisions, the shared
memory bus can, in the worst case, stretch each schedule by a fac-
tor of 4. This is clearly unacceptable. In general, it would mean
that the real-time capacity of an n-processor system is only 1=n
of the capacity of a uniprocessor system. Multiprocessors would
be unusable for real-time applications.

Therefore, memory-bus scheduling is desirable. Memory-bus
scheduling should enable us to give soft and perhaps even hard
guarantees in relation to memory bandwidth and latency to real-
time applications. For non real-time applications, it should help
optimize a system’s overall throughput and/or latency.

Related Work Work in this area seems to be rare. The author’s
are only aware of Frank Bellosa’s work [?].

2 The Scenario

Hardware

Our hypothetical SMP system consists of n processors that share
a single memory unit/bus. We assume ideal hardware that mul-
tiplexes and arbitrates the bus at zero cost. Memory is always
accessed in cache-line units. Each such read or write is called a
memory transaction. To keep our model simple, we also assume
that each memory transaction has a constant cost of time c, i.e.
m transactions need time mc, independent of whether the trans-
actions are reads or writes, come from a single or from multiple
processors, access adjacent or randomly scattered memory loca-
tions.

We need some hardware support to monitor and control bus
transactions, e.g. performance-counter registers on the Pentium
processor. We assume readable performance counters per proces-
sor that monitor

� the number of memory transactions executed on processor i,

� the time for which the processor’s bus unit was active (in-
cluding bus wait time) for those transactions.

Performance counters should also be loadable such that they gen-
erate a processor interrupt once a predefined value is reached.

Memory transaction quanta can thus be allocated to processors
by appropriately loading the the counters such that each processor
raises an interrupt as soon as it has exhausted its allocation.

�-Windows

Applications specify their requirements and expect to get guaran-
tees from the scheduling system. Typically, the specified numbers
are averages that refer to certain windows in time. For example,
processor i requires ki memory transactions in time �, however,
the transactions can be arbitrarily distributed over the �-window.

Note that the sliding �-windows do not form a fixed pattern
in time, i.e. they do not slide between fixed time intervals. �-
windows are free to begin at any appropriate time. Requirements
and guarantees always refer to the relevent sliding window, e.g.
“processor i requires a rate of R memory transactions per �-
window.”

Low and High State

We assume a simple two-priority model for memory requests.
Memory transactions of a processor currently in low state may be
arbitrarily delayed. Typically, low-state processors will compete
in a best-effort manner for the memory bus. Conversely, high-
state processors need to be served with priority to fulfil scheduling
guarantees.

Later, it will be an interesting point of discussion whether this
simple model suffices for realistic scheduling policies. Here we
primarly use it to illustrate the scheduling problem.

Scheduling Problem

Due to practical importance and generality, we focus on a system
that runs a mix of real-time and non-real-time applications. Any
real-time application specifies its required resources and requests
hard or probabilistic guarantees so that it can meet its deadlines,
i.e. so that its execution will not be delayed more than a certain up-
per limit. Non-real-time applications are not controlled by dead-
lines, and consequently, they attempt to utilize the remaining re-
sources in the best possible way.

Processors currently executing a non-real-time application ob-
viously are in low state. Processors executing a real-time applica-
tion are in high-state as long as they do not exhaust their guaran-
teed resources. The relevant questions are:

1. How do real-time applications specify their memory-bus re-
quirements?

2. Given these requirements, how can we implement admission
control?

3. Given an admitted memory-transaction schedule, how can
we enforce it?

3 A Naive Approach

3.1 Simple Bandwidth Limitation

Key assumption of this approach are:

1. Requirements can be specified as bandwidth requirements.

2. Admission control can be based on adding bandwidth re-
quirements.

3. Enforcing maximum bandwidth enables bandwidth guaran-
tees.

Each processor specifies its requirements as Ri, which is the re-
quested number of memory transactions per �-window. Non-real-
time applications specify Ri = 0 which means they do not have
hard requirements but will try to get as much bandwidth as pos-
sible. Real-time applications can also exceed their specified re-
quirements. However, they run only in high state while Mi < Ri.
Once their claimed requirements are exhausted, they switch to low
state and are then treated like non-real-time applications for the re-
maining �-window.

How can we ensure that all high-state processors, i.e. those with
Mi < Ri get enough memory bandwidth? A naive idea would be
to allocate only free memory bandwidth to low-state processors,
basically only �=c �

P
Ri. This solution has two serious dis-

advantages: (1) It is wrong (see Section 3.2). (2) It is not very
useful in general because of its inflexibility and its insufficient
bus utilization when processors do not exhaust their guaranteed
bandwidths. In particular, it seems totally infeasible for mixing
best-effort and real-time applications.

The fundamental reason for (2) is the fact that we always con-
clude from lower effective memory bandwidth consumption that
the processor did not get enough memory bandwidth, i.e. we as-
sume bus contention. However, effective memory bandwidth can
drop without bus contention occuring. Cache miss-rates change
when the processor runs multiple threads with different character-
istics, and even a single thread will have phases of high and low
memory bandwidth consumption.

A processor’s bus time tells us how much the processor suffered
from bus contention: Si = Ti �Mic is the bus stall time for the
current �-window. Adaptive methods to distribute unused high-
state memory-bus bandwidth to low-state processors might thus
be possible.

3.2 A Counter-example

Before we discuss possible scheduling algorithms in more detail,
we should first focus on whether our assumptions (1-3) were cor-
rect.

Assume processor P1 runs a program that repeatedly accesses
memory for one time unit, and then does calculations for two time
units. The program on P2 is similar but needs only one time unit
for calculations between two memory accesses. P1 requires 33%

P1

P2

Figure 1: An illustration of how combining two processors (P1
and P2), each with memory bandwidth requirements (33% and
50%), does not necessarily produce expected bandwidth consump-
tion.

memory bandwidth, and P2 requires 50%. Combining P1 and P2
can result in a systematic behavior as shown in figure 1. Although
we have free bus bandwidth left, the resulting total bandwidth con-
sumption is only 66%, not 50%+33% = 83% and P2 is effectively
slowed down by a factor of 1.5

We have to conclude:

� Bandwidth consumption does not necessarily add properly.
Given n bandwidth requirements bi, we can not calculate the
the resulting global effective bandwidth consumption. Also,
a worse conclusion is that we can not decide whether each
processor effectively gets its required bandwidth. Admission
control solely based on bandwidth specifications seems im-
possible.

A further surprising result is that we might see bus bottlenecks
although there is still free bandwidth available, e.g. 33% in the
counter-example.

4 Burst-Based Scheduling

4.1 Insisting On Bursts

We have learned that access patterns are at least as important as
bandwidth. However, we do not see a realistic possibility to spec-
ify, handle, and enforce access patterns.

Therefore, we propose that all real-time applications
access memory only through bursts, i.e. through dense
sequences of memory transactions.

All requirements are specified only in relation to bursts. A burst
requirement Bi means that processor i wants to be able to execute
one burst of Bi memory transactions in a �-window.

Nicely, overlayed, multiple bursts do not not generate gaps be-
tween memory transactions. The memory bus is 100% utilized
as long as there is at least one burst. Therefore, the problems of
our counter-example disappear. Admission control is simple: all
bursts can be satisfied if

P
Bi < �=c.

1. Can we implement all real-time applications such that they
access memory only in bursts?
Given large L2 caches and assumed a working cache-
scheduling policy, such behavior should be possible. The
basic idea is to load/store L2 pages in bursts. (However,
see also Section 6 which describes how to handle non-bursty
programs.)

2. Can we enforce bursty behavior of real-time applications?
Yes. As soon as a processor detects a bus time ti < Æ for
some interval Æ, it decides that the burst is over and changes
the application’s state to low until the end of the �-window.
Any further memory transactions are low priority and have
no guarantees.

3. Can non-bursty memory transactions of low-state processors
violate the full-utilization properties of bursts?
No, since they cannot generate additional gaps on the mem-
ory bus.

4. How can we schedule the memory bus such that the admitted
bursts are guaranteed and simultaneously as much as possi-
ble of the remaining memory-bus bandwidth can be used by
low-state processors?
See following algorithm.

4.2 A Safe Scheduling Framework

High-state processors are either between two bursts or within a
burst. When the first memory access after a non-memory phase
occurs a new burst starts and the corresponding �-window begins.

Mi is the number of memory requests executed by processor
i from the beginning of its current burst up to now. Outside
a burst, Mi is 0.

Ti is the time from the beginning of the current burst on pro-
cessor i until now. Outside a burst, Ti is 0.

At most Pi = Bi �Mi memory transactions are still out-
standing for the current burst.

��Ti is the available time for executing the outstanding Pi

memory transactions.

When a burst starts, an average rate ofBi=� memory transactions
over the future�-window would be sufficient so that the processor
gets its required burst of Bi in a �-window. Once the burst has
started, this changes. In general, processor i is in good shape as
long as it will get at least rate

ri =
Pi

�� Ti

:

This can easily be ensured by allocating only free memory band-
width, i.e. at most 1=c�

P
ri to all low-state processors together.

Such strategies, we call hard. Unfortunately, hard strategies are
far too restrictive to achieve good utilization.

We are looking for more deliberate scheduling strategies that,
nevertheless, keep the burst guarantees valid. The key idea is

We are completely free to distribute memory transac-
tions over the next period of length d if a hard strategy
after the period of d could keep all guarantees valid.

Assuming that no high-state processor gets memory bandwidth in
the next interval and that all � � Ti > d, we have to allocate a
memory rate of

ri(d) =
Pi

�� Ti � d

to high-state processor i. This is possible if
P

ri(d) < 1=c.

The deliberate scheduling distance D is given by
the maximum d for which all ri(d) are defined andP

ri(d) < 1=c holds.

Within the deliberate scheduling distance, we can apply arbi-
trary memory scheduling policies without compromising admit-
ted guarantees. Such soft policies should be likely to schedule the
system such that all active bursts terminate in time. However, this

likelyhood makes a big difference when compared to hard poli-
cies. Since soft policies may fail they can usually better adapt to
the effective system behavior and achieve much better utilization.

The deliberate scheduling distance tells us how “risky” a policy
we can currently use. Furthermore, D is a measure for success of
the so far applied soft policies: if D increases the current soft pol-
icy is helpful; a decreasing D signals the danger that hard policies
might become necessary soon.

Guaranteeing close to 100% of the bandwidth to be available
for high-state bursts is a bad idea. If no burst is busy, all ri would
be Bi=�, i.e.

P
pi would be 1 so that we have no freedom at

all, D = 0. Consequently, we would have to run a hard policy
and give zero bandwidth to low-state processors. (Surprisingly,
the situation gets better as soon as a burst starts: D will grow.)

Lower reservations, say only 80%, give us a deliberate schedul-
ing distance ofD = 20%� so that we can use soft policies as long
as no burst is active. Once a burst starts, D can shrink or grow.

4.3 Soft Policies

The simplest soft policy is not to schedule at all. It might be a
good choice for a large D.

Another soft policy restricts the memory transaction rate of the
low-state processor(s) that perform the most memory transactions
in the recent past. The restriction typically depends on the current
deliberate scheduling distance, the totally guaranteed burst band-
widths, the number of currently active bursts, and the effective
total bandwidth in the recent past.

More restrictive and more sophisticated policies allocate mem-
ory transaction rates based on reservations and current use. De-
pendent on the current deliberate scheduling distance, they over-
book to achieve good memory-bus utilization.

5 Implementation Issues

5.1 Burst Detection

To detect the beginning of a burst, we can allocate 0 memory trans-
actions to the processor. The first memory request then raises an
interrupt signaling the begin of a burst.

A perhaps better suited variant uses a system call for signaling
the burst. The processor can then execute memory transactions
before the guaranteed burst starts, however it operates in low state
until the system call happens. In practice, this solution is ben-
eficial because (1) it permits precise application-controlled burst
synchronization, and (2) it automatically handles mixes of real-
time and non-real-time applications on the same processor. Non-
real-time applications operate as usual and thus run in low-state.
Real-time applications will explicitly start bursts and thus run in
high state.

Once a burst starts, the processor sets its own Ti and Mi to 0
(performance counters) and allocates Bi memory transactions for
itself. Furthermore it sets an alarm to now+�. Exhaustion of
the allocated memory transaction quantum as well as the � alarm
obviously signal a burst end.

5.2 Burst Gaps

However, it is much harder to detect a burst end before � is over
and before the memory transaction quantum is exhausted. To get
rid of access pattern problems, we defined that a burst ends as soon
as a time gap in memory requests occurs. Remember that this
is a serious problem. Without burst-gap detection, a non-bursty

program could slow down other processors so that they do not get
their guaranteed bandwidth.

A simple burst-gap detector could periodically check the pro-
cessor’s bus-busy time. As soon as it grows slower than processor
clock, a gap in the memory-request stream is detected. This algo-
rithm requires some correcting terms in our formulas. For exam-
ple, the memory-request gaps that are due to the algorithm itself
have to be discarded. Since gap detection is done periodically, it
can be up to one period late. Resulting effects have to be taken
into consideration in our formulas. High accuracy requires short
check intervals. The consequent interrupt-handling costs might be
unacceptable.

Fortunately, as long as the deliberate scheduling distance D is
large enough, there is no need to detect burst gaps quickly. It is
sufficient to check for gaps whenever we adapt the current soft
policy, or calculate a new D value, etc.

However, once a hard policy is effective, gaps must be detected
quickly, preferrably with low software overhead, perhaps through
hardware support. A bus-unit-idle performace counter would do
the job.

5.3 Inter-Processor Communication

Each processor has to publish its Pi and Ti values periodically.
Adding some correcting terms in our formulas —basically calcu-
lating a lower bound forD provided the maximum time difference
is �— permits us to do this unsynchronized, i.e. inexpensively.
Policy schedule decisions can be distributed in a similar way.

6 Getting Rid of the Burst Restriction

6.1 Multiple Bursts

The restriction to one burst per �-window made our reasoning
simpler but it is not application friendly. First, applications might
need multiple bursts per window. Second, a burst might be unin-
tended, resulting in early interruption. Both problems are solved
if we permit a limited number of gaps per burst. In addition to
the burst length Bi, an application can also specify the maximum
number of potential gaps Gi.

However, to ensure that an application has not more than Gi

gaps in its memory transaction stream, we need additional hard-
ware support. A performance counter that counts rising or falling
edges of the bus-unit busy line would suffice. Such a counter
counts the events when either the bus unit switches from idle to
busy or from busy to idle, i.e. gaps in the memory transaction
stream.

6.2 Intermittent Bursts

An even more powerful mechanism is a counter counting both
memory transactions and the bus unit’s idle-busy transitions. As
illustrated by our counter-example (see Figure 1), each gap could
impose additional costs of at most c, the cost of one memory trans-
action. Such a memory+gap counter therefore measures directly
an upper bound of the memory costs.

Assume we use this memory+gap bandwidth measure _Bi =
Bi + Gi per �-window, not the pure memory bandwidth Bi we
used so far. Instead requirements of 33% and 50%, we get then
requirements of 66% and 100% for P1 and P2 in our counter-
example that obviously cannot be combined without performance
loss.

To get a general model, we systematically include the gaps in
requirements and measurements, i.e. we replace the requirements
Bi by _Bi = Bi + Gi and the measured Mi by _Mi = Mi +Hi

where Hi denotes the effective number of gaps in processor i’s
memory transaction stream. _Bi requests are then specified by the
applications, _Mi values are measured by the memory+gap perfor-
mance counter.

The modified formulas of Section 4.2 again give us a safe
scheduling framework that can now as well be applied to non-
bursty real-time applications. Nevertheless, it seems useful to
keep the burst abstraction in so far that bursts have definite start
and stop points. Otherwise, non-exhaustive bursts (bursts with
less memory+gap requests in a �-window than reserved, i.e.
_Mi <

_Bi) would unnecessarily over-reserve bandwidth after the
burst has finished and, even worse, before the burst has started. In
contrast to the original burst-based method, memory-inactive pro-
cessors would therefore seriously restrict our scheduling freedom.

So we extend we extend our burst concept to intermittent burst
that can include gaps. The non-trivial problem of intermittent
bursts is how to decide when a non-exhaustive intermittent burst is
over. We experiment with two ideas: (1) Burst ends are signaled
through a system call similer to burst begins; (2) a burst ends when
a gap of specifiable length i is detected.

6.3 (Non-)bursty Application Revisited

Ensuring that an application is 100% bursty in its memory ac-
cesses requires strict control of the L2 cache. Intermittent bursts
enable us to weaken this condition substantially. For example, an
application can now combine requirements such as “needs a 95%
L2 cache-hit rate” and “needs intermittent burst rate (_Mi=�) of
20%”. The second requirement ensures that cache misses are han-
dled fast enough.

7 Conclusion

We have presented a framework that should permit first experi-
ments with hard and soft real-time scheduling on multiprocessors.
In particular, the framework supports mixes of real-time and non-
real-time applications on SMPs that share a single memory.

The presented methods can also be applied to systems that use
asymmetric processors, e.g. one general-purpose CPU and two
DMA processors, such as a disk and a network controller. In
the above example, the DMA processors only have to be pro-
grammable and incorporate the performance-counter mechanism.

