
WIP: Energy Container for Database-Oriented
Sensor Networks

[Extended Abstract]

Simon Kellner
System Architecture Group

Universität Karlsruhe
simon.kellner@kit.edu

ABSTRACT
Energy remains the most critical resource in sensor net-
works. In static sensor-net applications where most events
can be calculated a priori, energy management is often done
implicitly and manually by application developers.

With the advent of database interfaces to sensor nets, this
is no longer possible due to dynamically created queries.
There are several scenarios in which it is desirable to get an
accurate account of the resources a sensor net consumed on
behalf of a certain query.

In this work, we propose to adapt the Resource Container
concept from the desktop computing world to sensor net-
works in order to facilitate dynamic energy accounting.

1. INTRODUCTION
Energy still is the most critical resource in sensor networks.
Current energy supplies already take up most of a sensor
node’s space, but can provide the desired node lifetimes of
years only when sensor-net application designers give a high
priority to a long sensor-net lifetime. Sensor-net Operating
Systems (OSes) like TinyOS [2] encourage energy saving by
not providing a convenient CPU-abstraction such as threads,
which could, for example, tempt application developers into
creating CPU-intensive waiting loops and thus into wasting
energy.

Database interfaces to sensor nets like TinyDB [3] make it
easier for users to retrieve sensor data: A sensor-net applica-
tion is formulated as a request in an SQL-like language and
interpreted by the sensor net until the request expires. The
program on the sensor nodes only needs the ability to in-
terpret and execute such requests. This eliminates the need
to reprogram sensor nodes and allows multiple queries to be
processed simultaneously.

Such dynamic systems can support multiple users in a sensor
net, each with his own set of queries. In this scenario it is
desirable to account the energy consumption of each query,
e.g. to bill users based on their sensor net “usage”, or to find
the query with the highest energy consumption and cancel
it before it wears down the energy supplies.

On traditional computers on the desktop or in the server
room, Resource Containers (RCs) are used for this purpose.
In this work, we investigate how this concept can be adapted

to TinyOS, an OS widely used on sensor nodes. We consider
RCs for energy accounting only, although the concept can
be used for all resources an OS manages.

2. BACKGROUND
In this section, traditional Resource Containers as they are
used in PCs are introduced as well as the properties of
TinyOS that are relevant to this work.

2.1 Resource Containers
Resource Containers are an OS-abstraction introduced by
Banga, Druschel and Mogul [1] in 1999 and consist basically
of OS-provided storage for accounting data. The idea is to
separate OS abstractions for CPU and resource accounting,
because resource usage is independent of CPU abstractions.

Instead, it is dependent on tasks: A task is loosely defined
as something a user wants the system to do (e.g., serving a
web page or drawing a picture). In modern systems, such
a task is no longer identical to a process: A web-server can
use threads to serve different web pages simultaneously (one
process working on several tasks), or several processes co-
operate to accomplish one task (e.g., graphical application
and X-server).

In an RC-enabled system, every process can create RCs,
change its active RC and share an RC with another process.
Continuing both examples above, a web-server can bind each
of its threads to a separate RC, and a graphical application
can share an RC with the X-server.

One such implementation of RCs for Linux is described in
[4]. Here, when a process creates a new RC, the RC is bound
to a file descriptor. This has the advantage that existing
code used for user-land handles to kernel objects can be
reused. The RCs are organized in a hierarchy in which each
parent RC holds the accounting data aggregated over all its
children. So a process cannot cheat the system by creating
new RCs, since they will all have the same parent.

In summary, RCs give administrators and users the ability
of accounting tasks, which usually has a higher significance
than process-based accounting.

2.2 TinyOS
TinyOS, one of the most prevalent OSes for sensor nodes,
is event-driven. It does not provide “convenient” CPU ab-



stractions known from other OSes like processes or threads.
All activities in TinyOS can be seen as responses to inter-
rupts. These responses typically consist of few instructions
and some commands to peripheral hardware that will trig-
ger the next interrupt, allowing the processor to sleep in the
meantime. This design does not tempt inexperienced pro-
grammers into creating energy-expensive polling routines.

Instead of high-level processor abstractions like threads or
processes, TinyOS opts for a low-level abstraction in order
to save stack memory, the TinyOS tasks (not to be mistaken
for the RC-related tasks). TinyOS tasks run until comple-
tion and cannot be interrupted by other TinyOS tasks. This
is a strong incentive to keep them short, as other operations
would suffer serious delays. Instead, a long-running TinyOS
task should enqueue (post) itself in the run queue and quit,
postponing its work in effect. In summary, a typical work-
flow of packet reception, sensor queries, a bit of computa-
tion and packet transmission on a sensor node is distributed
across several of its devices and held together by TinyOS
tasks and interrupts, interspersed with sleep intervals.

The original RC concept associates processes or threads with
one or more RCs on which the OS can account resource
usage. In the absence of these processor abstractions the
association of resource use with RCs is more difficult.

3. RESOURCE CONTAINERS IN TinyOS
The focus of this work is on how to attach RCs to queries ex-
ecuted by a TinyOS application, since dynamically created
queries are the most interesting targets for on-line account-
ing. However, RCs can be used to account other tasks as
well.

In the following we assume that the application can identify
queries through an ID which is present in all packets related
to that query.

3.1 Normal Resource Containers
A normal RC is associated with a query. As soon as an
application learns the ID of the query currently being pro-
cessed, it informs TinyOS that it wishes to switch to the RC
associated with this query. The selected RC is then bound
to the current TinyOS task.

The energy consumption of all further activities coming from
this TinyOS task is accounted to the selected RC. If the
TinyOS task posts a new TinyOS task or sets up a new
timer, this binding can be stored by the scheduler or timer
system, and can be used to switch back to the stored RC
automatically on the corresponding wake-up call.

The OS here clearly depends on the application for cor-
rect accounting, but this is both feasible and necessary in
a sensor-net application. It is necessary to prevent produc-
ing hard-to-maintain code, and it is feasible because there
should be only few places where this RC-switching occurs,
namely when a sensor-net application starts processing a
query.

3.2 Anonymous Resource Containers
Since TinyOS applications spend most of their time sleeping
and perform only minimal amounts of processing, energy

consumed during interrupt handling is not negligible.

For example, a timer interrupt may cause the activation
of a communication device, which is subsequently used to
send stored sensor data to other nodes. The sensor node
is not aware of the query ID until it accesses the packet it
is about to send. In the meantime, the activation of the
communication device can consume a substantial amount of
energy that cannot be assigned to the correct RC at that
moment.

As a solution, the interrupt handler can allocate a tempo-
rary, anonymous RC and use it to account both its own
energy consumption and the device activation. Later, when
the application becomes aware of the query ID, it can switch
to the RC associated with the query, causing the temporary
RC to be merged and released.

3.3 Special Resource Containers
It may be necessary to employ special RCs to provide addi-
tional information or to handle cases where the correct RC
is not known.

3.3.1 Root Resource Container
One RC worth mentioning is the RC for the whole node. It is
used to collect the amount of energy consumed by the whole
node, regardless of queries. This information is of interest
to the nodes themselves in order to estimate the amount of
remaining energy. It can also be regarded as another data
source and can itself be the target of a query.

3.3.2 Idle Resource Container
Some energy consumption simply can not be clearly ac-
counted to a query, e.g., the energy spent during sleep (idle
energy). We call the problem of accounting this energy con-
sumption in a fair manner accounting fairness.

One way to address the issue of idle energy accounting is
to distribute the accounted idle energy among all queries
known to the sensor node. To achieve this, a special RC for
this energy class is present in the system. At certain times,
this RC is cleared and its content distributed among all ex-
isting normal RCs. This has to be done both periodically
and on creation/expiration of a query:

• Periodically so that the accounting information remains
recent,

• At query instantiation to avoid penalizing this query
by accounting sleeping energy spent before its instan-
tiation, and

• At query expiration to avoid losing accounted energy.

The fairness of this distribution is subject to discussion and
thus should be handled by a project-dependent policy. Pol-
icy examples include equal distribution and partitioning ac-
cording to duty-cycle or used energy.

So, one can picture the RCs in a 3-level hierarchy: the root
RC for the node, named RCs for the queries and anonymous



RCs to account energy consumed for a (yet) unknown pur-
pose. In this hierarchy the root RC contains the aggregated
accounting data of the named RCs, while the anonymous
RCs will eventually be merged with one of the named RCs.

3.4 Shared Data
Caching the acquired sensor data introduces another in-
stance of the accounting-fairness problem. Without addi-
tional measures, the first query to sample data bears the
cost of acquiring it, subsequent queries can use it at almost
zero cost. If the accuracy of timing or accounting can be re-
laxed, some trade-offs between one of them and accounting
fairness can be considered.

A trade-off between timing accuracy and accounting fairness
can be implemented as a subscriber model for sensor data:
The sensor data is sampled either on time-out after the first
subscription or when enough parties subscribed to this sen-
sor data. The energy is split among all of the subscribed
parties.

Another trade-off between accounting accuracy and fairness
can be implemented by assigning a value to the sampled
sensor data that decays with every access. For example, the
initial query bears 3/4 of the costs, the next query 3/4 of the
remaining costs, and after a time-out, the rest is distributed
across all queries that acquired this data.

3.5 Resource Container Aggregation
RCs lend themselves quite naturally to sensor nets with dy-
namically created queries. When receiving a new query, a
sensor node allocates an RC for this query, accounts the
query’s energy costs to that RC and sends the accounted
data back together with the responses to this query.

RC contents can easily be aggregated by summation over
all RCs with the same query ID. The design of RCs to store
all of the energy accounted to it since its creation makes it
resilient to occasional packet loss. When accounting infor-
mation is lost in the network due to temporary packet loss,
the aggregated accounting information at the data sink may
be incorrect, but it will be correct again once the temporary
packet loss is over.

To allow the data sink to compare the collected aggregated
RC values and to detect packet loss, a node should addi-
tionally send the number of sensor nodes involved in an ag-
gregate, if this information is not already present in the
aggregated sensor data.

4. CONCLUSION
Resource Containers are an elegant concept for resource ac-
counting in traditional operating systems. This concept can
be adapted to the field of sensor networks, where pure event-
driven operating systems prevail.

The benefit of this concept is accurate accounting of sensor
network tasks, which is useful information to developers,
administrators and users.

5. ACKNOWLEDGMENTS
This work is done as part of the BW-FIT project ZeuS.

6. REFERENCES
[1] G. Banga, P. Druschel, and J. Mogul. Resource

containers: A new facility for resource management in
server systems. In Proceedings of the Third Symposium
on Operating System Design and Implementation
(OSDI’99), Feb. 1999.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for
programming languages and operating systems, pages
93–104, New York, NY, USA, 2000. ACM Press.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 491–502,
New York, NY, USA, 2003. ACM Press.

[4] M. Waitz. Accounting and control of power
consumption in energy-aware operating systems.
Master’s thesis, Department of Computer Science 4,
University of Erlangen, Jan. 2003. SA-I4-2002-14.


