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Abstract 
 
  
 Requirements for high-performance computing have led hardware 
designers to construct multiprocessor systems using different processor 
architectures and thus providing best computing performance for a specific 
computing problem. The integration of different processor architectures is also 
employed in processor designs to offer compatibility for today’s mainstream 
processor architectures. Examples are the Itanium and the AMD-64 processors 
which offer compatibility for the IA-32 architecture. This trend in hardware 
technology needs to be supported by advances in software technology. 

This thesis will attempt to provide design solutions for operating systems 
in tightly-coupled heterogeneous systems. The case study of an Itanium-based 
system will provide an answer concerning the suitability of the theoretical 
solution. 
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Chapter 1 

Introduction 
 
 
 This chapter presents the topic of this thesis. A background of the research 
area together with the considered approach is given. 
 

1.1 Background 
 

1.1.1 The case for heterogeneous computing 
 

The computer industry today shows an increasing technological trend 
towards the construction of heterogeneous computing systems. These computing 
systems are composed of multiple, independent but cooperating processor cores. 

The main reason for constructing heterogeneous computing system is the 
fact that no microprocessor architecture has yet been proven efficient for the 
large diversity of computing problems. Applications may have different 
processing requirements which may imply support of different computing models 
ranging from simple additions to vector operations, floating point multiplications 
and signal-processing. Current trends in hardware technology provide either 
general-purpose processors which perform acceptably for a large scale of 
computing models or specialized processor architectures which are tuned to solve 
a specific computing problem. For a given computing problem, the processing 
throughput of general-purpose processors may fail drastically in face of 
specialized processors, designed to provide a maximum computing performance 
for a specific processing requirement. Therefore, to achieve a maximum 
throughput for an application requiring support of different computing models, 
computing systems often integrate different specialized processors. Each 
specialized processor in the system receives workload according to its computing 
model, while the results are gathered to provide a global solution.  

These computing systems are built today from a collection of workstations 
connected over a high-speed network. This simplicity of interconnection of 
different processor architectures is practically the driving force in constructing 
this type of computing systems. However, this simplicity of construction doesn’t 
always meet system requirements like reduced size, power consumption and cost. 
Such system requirements are found in embedded system applications, which 
extensively use the computing performance of heterogeneous computing [1]. In 
this case, the simple interconnection of a collection of workstations doesn’t 
provide a viable solution and a better integration of different processor 
architectures is required. This integration eventually leads to tightly-coupled 
computing systems having different processor architectures sharing a main 
memory. 
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1.1.2 Architectural compatibility  
 
A second reason for designing heterogeneous computing systems is simply 

to offer system compatibility with certain processor architectures. The integration 
of different processor architectures is not intended to provide better processing 
throughput, but it is intended to offer either backward compatibly for a certain 
processor architecture or an integration bridge with existing computing systems. 
A direct applicability of this approach is illustrated today by the passage from 32 
to 64 bit computing systems. Processor architectures like IA-64 and AMD-64 
integrate backward support for the IA-32 architecture in order to smooth out the 
passage to the new processor architecture. Applications developed for IA-32 will 
be able to run unmodified on both IA-64 and AMD-64 architectures. If we see the 
first reason for designing heterogeneous operating systems as being related to 
performance, this second reason is strictly related to functionality. In both cases, 
multiple processor architectures are required to access a shared main memory. 
 
 

1.2 Motivation and problem definition 
 

Current approaches for heterogeneous systems employ middleware 
architectures and virtual machines, which are user-level layers attempting to 
provide a uniform view of heterogeneous computing resources distributed over 
all computing nodes. These solutions for heterogeneous computing are 
extensively used in loosely-coupled systems, but their applicability for tightly-
coupled heterogeneous systems is questionable. First, the user-level middleware 
introduces performance penalties for high-performance computing. In tightly-
coupled systems, the presence of shared memory enables kernel-level 
mechanisms for communication over architectural heterogeneity, which could 
provide better performance results than the user-level approach. Secondly, there 
is a functional requirement concerning processors integrating multiple 
architectures: user-level binaries should be able to exploit any of the underlying 
processor architectures. In the latter case, the operating system must offer user-
level support for any processor architecture. As such, the solution strictly 
depends on kernel-level mechanisms. Designing such an operating system is the 
goal of this thesis: 

 
Provide design solutions for operating systems in tightly-coupled 
computing systems exhibiting heterogeneous processor architectures. 
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This problem definition reveals some issues which will directly influence 
the design of such an operating system: 

 
1. The nature of the computing system: could either be represented by a 

single processor with multiple architectural states or by multiprocessor systems 
with heterogeneous processor architectures. 

 
2. Heterogeneity of processor architectures: is represented by the 

incompatibility of binary code and data type representation. 
  
 

1.3 Approach 
 

The design of an operating system is highly influenced by the nature of the 
computing system. A complete study of the targeted computing context will 
therefore be undertaken. Each system configuration may require different design 
approaches.   

Another important element in the design is providing solutions to 
incompatibles introduced by the architectural heterogeneity of the system. The 
binary incompatibility radically influences the way in which the kernel can be 
constructed. That is, one kernel image can usually not execute on different 
processor architectures, so the kernel must be tailored for each processor 
architecture. In addition to binary incompatibility, the presence of different data 
representations constitutes an obstacle for communication across different 
processor architectures. Therefore, the design should also provide a solution for 
communication in a heterogeneous environment.  
 The design approach requires a case study for performance and functional 
analysis. We will use as such the Itanium processor to provide experimental 
results. Itanium natively supports the IA-64 architecture together with the IA-32 
architecture, and therefore constitutes a viable example of a heterogeneous 
computing system. This experimental approach will provide answers concerning 
the suitability of the theoretical solution.  
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1.4 Construction of the thesis 
 

The rest of the thesis is organized as follows: 
 
Chapter 2 - Discusses some of the main research trends in the field of the 

heterogeneous computing and their possible implications on the 
topic of this thesis. 

 
Chapter 3 - Presents the proposed solution. This solution will focus on 

providing multiple design models, each with different applicability 
levels depending on the nature of the computing system. This 
proposed solution is only a theoretical approach without an 
experimental evaluation. 

 
Chapter 4 - Discusses a case study of the proposed solution: Itanium 

processor (IA-64 and IA-32) and L4 microkernel. The design of the 
operating system will be based on a design model which shows 
better applicability for this specific case study.  

 
Chapter 5 – Presents the experimental evaluation of the operating 

system design discussed in the previous chapter. 
 
Chapter 6 - Analyzes the suitability of the theoretical solution with 

respect to the experimental results. 
 
Chapter 7 - Gives a recapitulation of the main issues discussed in this 

thesis: motivation, proposed solution and experimental results. A 
final conclusion is drawn concerning the research topic of this 
thesis and directions for future work are proposed. 
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Chapter 2 
 

Related Work 
 
 

This chapter gives an overview of the main approaches in heterogeneous 
computing systems. The focus is set on two architectures which define the 
current trends in heterogeneous computing: the RACE architecture which 
provides a solution (hardware and software) for scalable heterogeneous 
computing systems and InterWeave, a middleware for shared state in distributed 
heterogeneous systems. Both architectures are based on multicomputer systems. 
An addition, this chapter presents an example of an operating system (IA-64 
Linux) supporting binaries of two processor architectures, IA-32 and IA-64.  
 
 

2.1 RACE: Heterogeneous Multicomputer System 
 
 The RACE architecture [2] delivers a complete hardware-software solution 
for heterogeneous multicomputer systems. 
 The hardware approach of RACE is not as relevant as the software 
approach for the research topic of this thesis, but it deserves at least an overview, 
mainly for its remarkable architecture in terms of modularity and scalability. The 
hardware architecture of RACE is composed of computing nodes, I/O nodes and 
connection fabric (connecting the nodes of the system either through bus 
architecture or switching network). Each computing node is composed of one or 
more processors of the same architecture, local DRAM memory and an ASIC1 
providing a DMA controller (offering access at local memory to any other 
computing nodes) and address mapping logic (enabling the local processors to 
access any DRAM location in any remote computing node). Different computing 
nodes can have different architectures. In short, the hardware architecture is 
represented by heterogeneous computing nodes with local physical memory and 
a mechanism for memory access at any physical memory from any computing 
node in the system. Every memory location in the system can be accessed by any 
processor in the system, so a cache coherency problem could be raised. The 
problem of cache coherency has an efficient solution in this case due to physical 
distribution of memory: a computing node is concerned by cache coherency only 
in relationship with its own local memory. Whenever a processor either reads or 
writes data from/into a remote memory, each local processor sharing that 
memory invalidates the cache entry corresponding to the accessed data. This 
mechanism reduces drastically the amount of traffic for “snooping” memory 

                                                 
1 Application-Specific Integrated Circuit 
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addresses, as a processor has to watch only the local memory bus which is 
composed from a reduced number for processors (till three processors) 
comparing with the entire computing system. This solution for cache coherency 
provides data coherency for hardware-shared memory (accesses on same 
physical memory location), but it doesn’t solve software-shared memory 
coherency (information replicated on multiple computing nodes on different 
physical memories). The software-shared memory problem requires a software 
approach due to complexity of “bookkeeping” at hardware level of all the memory 
transactions on different computer nodes. Moreover, a software approach is 
better suited in this case as it can exploit the specific requirements of an 
application in terms of software-shared memory. The software approach for data 
coherency is usually implemented by a middleware layer. 
 The question now concerns how the software architecture of RACE couples 
with the hardware architecture. The solution proposed by RACE is largely 
influenced by the modularity of the hardware architecture: each processor has its 
own single-processor operating system, completely independently from any other 
operating system running on remote computing nodes. This approach allows 
removal or insertion of computing nodes with no effect at kernel level for already 
existing operating system instances. As such, the kernel is not required to provide 
support for heterogeneous computing. Threads running on different computing 
nodes are independent, each having its own address space. There is however a 
mechanism implemented on top of this operating system which transparently 
handles the communication among computing nodes and the access on physical 
memory located on remote computing nodes. This mechanism enables software 
shared memory among remote threads. 
 This software approach is the result of modularity of the hardware 
architecture which enforces modularity at operating software level. The physical 
distribution of the memory makes practically impossible to achieve a tightly-
coupled operating system. The only suitable solution for this hardware design is a 
single-processor operating system per computing node with a user-level 
mechanism for inter-processor communication. 

In conclusion, the RACE architecture provides a good design model of 
user-level support for heterogeneous computing.  

 

2.2 InterWeave: Shared State for Heterogeneous Distributed 
Systems 
 
 InterWeave is a middleware architecture for distributed shared state [3]. 
This architecture is designed to provide a distributed shared state in systems 
ranging from tightly coupled multiprocessor system to distributed heterogeneous 
systems spread around different geographical locations. 
 As an alternative to message passing, InterWeave allows processes to 
share memory regions of their own address space across heterogeneous 
distributed computing nodes. This facility enables processes to share information 
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replicated around multiple locations with different data type representations. The 
shared information has a static structure (the structure of a replica doesn’t 
change upon creation), but its content can change over time. All mechanisms for 
providing data coherency among replicas are provided by the middleware. The 
coherency mechanism is based on the server-client model. Servers manage a 
persistent copy of the replicated data and provide this data whenever a client 
requests it. Each time a client is started and connects to the server, a copy of the 
data is sent by the server to the client. Whenever a client updates its local copy of 
shared data, these updates are forwarded to the server which takes care of 
updating its persistent copy of the replicated data. Any request following an 
update will receive data which reflects the current distributed state. The 
applicability of the centralized model is based on communication scalability 
between server and clients (to avoid a bottleneck by increasing number of 
clients), communication reliability (to avoid transmission of erroneous data) and 
server reliability (to avoid crashes which will bring the entire system down). This 
coherency model has different variations ranging from full coherency (always 
obtain the most recent version of data) to relaxed coherency (which accepts a 
difference between the delivered version and the persistent copy managed by the 
server, either considering a time difference of the local copy or a percentage of 
information out-of-date). An important aspect for this centralized coherency 
model is the connection scalability: when having many accesses on global shared 
data, low connection scalability may transform the server in a bottleneck. This 
risk increases its chances when the targeted coherency model is full coherency 
and each access on global shared data needs to be confirmed by the server.  
 One important issue for a coherency mechanism is the protocol for 
delivering updates between clients and the server. InterWeave offers two 
concepts: polling and notifications. With pooling, the client regularly requests 
updates from the server. With notifications, the server has an active role of 
informing the client whenever an update on the client’s data is required. Another 
aspect of the update protocol is the granularity of the data to be updated and 
transferred: transfer only the modified regions of shared data or transfer the 
entire shared data. The choice for a certain approach depends on the size of the 
update compared to the size of the shared data and the frequency at which 
updates are performed. 
 In addition to coherency mechanisms among distributed replicas, the 
InterWeave middleware provide mechanisms for exchanging data between 
computing nodes with heterogeneous data formats. The model proposed by 
InterWeave for exchanging data with heterogeneous representations is the model 
offered by all classical middleware systems like CORBA or .Net: conversion of 
data types from machine-specific format to a generic InterWeave format (“the 
wire format”). This generic format serves as exchange format between clients and 
the server (Figure 2.1). Another issue introduced by heterogeneity of data types is 
the usage of pointers on non-atomically shared data. Pointers to data types 
typically vary according to the size of data type representation (e.g. pointing to 
the next  machine word value from a vector increases the pointer location with 4 
bytes on 32 bit architectures and with 8 bytes on 64 bit architectures). Again this 
issue is solved by InterWeave by providing the concept of machine-independent 
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pointers (MIP). To achieve independency from data type representations 
(especially data type sizes), the pointers are always handed out with direct 
reference to the addressed data type (e.g. a pointer to the third element of a word 
vector is handed out literally as the address of the vector + 2 words, instead of 
expressing the pointer in the equivalent number of bytes). Thus, pointers are no 
longer dependent on the size in bytes of each data type representation, but the 
measurement unit is the data type itself. Data updates exchanged between clients 
and server are therefore using Machine Independent Pointers. 
 
 
 

2.3 IA-32 support in IA-64 Linux 
 
 Linux IA-64 [4] is an example of an operating system offering support for 
two processor architectures: IA-32 and IA-64. This support is based on the 
Itanium’s capability to execute both the IA-32 and the IA-64 instruction set. 
While the support for IA-64 user-level binaries is natively offered by the kernel, 
the Linux system interface for IA-32 user-level binaries is emulated based on the 
native implementation in IA-64. The Linux system interface is represented by a 
collection of systems calls. The main issue is the incompatibility in data 
representation between IA-32 and IA-64 arguments. For system calls which show 
no data incompatibility between IA-32 and IA-64, the IA-32 emulated interface is 
represented by a thin system layer which simply passes the arguments between 
the IA-32 thread and the IA-64 system call handler. In this case, the IA-32 system 
calls employ the IA-64 implementation. However, for system calls raising data 
incompatibility issues, IA-64 Linux provides different system call handlers for IA-
32 and IA-64. This approach leverages an important amount of work for the IA-
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Figure 2.1: InterWeave model for distributed shared state 



  

 17

32 emulated interface. In addition to system call interface, the IA-32 support 
includes additional mechanisms: IA-32 memory model, IA-32 absolute file 
system paths, IA-32 signal delivering, management of the I/O port space, 
preservation of IA-32 architectural registers. 
 In conclusion, IA-64 Linux provides an IA-32 execution environment 
which enables execution of heterogeneous applications composed of IA-32 and 
IA-64 binaries. 
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Chapter 3 
 

Design of Multi-Architecture Operating 
Systems (MA/OS) 
 
 

This chapter discusses the guidelines for designing a Multi-Architecture 
Operating System. We first study the nature of the computing systems requiring a 
MA/OS. Each of these computing systems will represent a base of discussion for 
the main design models of a MA/OS. In addition, a general approach for 
constructing this type of operating systems will be presented. 

 
 

3.1 Computing systems 
 

The first issue in designing an operating system is finding the targeted 
computing system. According to Flynn’s classification [5], computer systems can 
be divided in four classes based on the number of instruction and data streams. 
The classification doesn’t take the processor architecture into consideration. 
However, heterogeneous systems can generally fit in the case of MIMD (Multiple 
Instruction/Multiple Data Streams), as they exhibit multiple instruction streams 
with associated data streams due to architectural heterogeneity.  

A classification of computer systems which does take the processor 
architecture into consideration was proposed in [6] and it constitutes a result 
from the field of heterogeneous computing. The classification of heterogeneous 
systems is based on two orthogonal concepts: the number of execution modes 
and the number of execution models. The execution mode is related to the type of 
parallelism supported by the machine (e.g. vector, SIMD, MIMD). This concept is 
independent of the execution model, which refers either to different architectural 
states of the machine or to different performance levels (e.g. different clock 
rates). We will concentrate on the number of architectural states exhibited by the 
computing system, as the incompatibilities between different architectural states 
influence directly the design of the kernel. As such, the classification provides two 
categories which fit to our targeted computing system: Single Execution 
Mode/Multiple Machine Model (SEMM) and Multiple Execution Mode/Multiple 
Machine Model (MEMM) with the remark that the interest on machine model is 
strictly related to heterogeneity of architectural states and not to the performance 
within the same architectural family.  

However, from the point of view of an MA/OS, there exists an additional 
criterion which is not taken in consideration in any of these classifications: the 
number of architectural states per processor. This criterion has an important 
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impact on designing an MA/OS. We therefore propose a classification that takes 
into account the number of computing nodes (labeled as processors) and the 
number of architectural states. These two criteria are orthogonal: a processor 
can have multiple architectural states, while an architectural state can be 
supported on multiple processors. Based on these two criteria, computing 
systems can be classified in four classes: 

 
1.   SPSA (Single Processor/Single Architecture): a mono-processor system 
2. SPMA (Single Processor/Multi-Architecture): a mono-processor with 

multiple architectural states (e.g. Itanium, AMD-64) 
3. MPSA (Multi-Processor/Single Architecture): a system composed of 

multiple processors with the same architecture (e.g. current SMP or 
homogeneous distributed systems) 

4. MPMA (Multi-Processor/Multi-Architecture): a system composed of 
multiple processors exhibiting multiple architectural states 
 
A MA/OS is exclusively related to multiple architectural states, so only two 

classes of the above classification are concerned: SPMA and MPMA. As such, 
there exist two types of MA/OS: SPMA/OS and MPMA/OS (Figure 3.1). In the 
case of MPMA systems, the focus of MA/OS is related to tightly-coupled systems 
as described in section 1.2. 

 
 

 
 

The reason for choosing the number of architectural states per processor 
as a criterion is related to the parallelism in execution of the different 
architectural states. A processor with multiple architectural states can execute in 
only one architectural state at the time. This type of systems exhibit temporal 
heterogeneity: at one single point in time, only one type of architectural state is 
present in the system. In contrast with SPMA systems, the MPMA systems 
exhibit spatial heterogeneity, as multiple processors with different architectures 
execute in parallel (Figure 3.2). As a consequence, each of these classes of MA/OS 
introduce different design issues to tackle: temporal heterogeneity may imply 
that the architectural state of the kernel changes with time, while the spatial 
heterogeneity may assume that multiple kernel instances with different 
architectures execute in parallel and share global structures. 
 

MA/OS

SPMA/OS MPMA/OS

Figure 3.1: Classification of MA/OS 



  

 20

 
 

3.2 SPMA computing systems 
 

The first computing system in the area of an MA/OS is the “Single 
Processor/Multi-Architecture” (SPMA) system. The SPMA system refers to a 
family of processors designed to offer more than one type of architectural 
support.  This type of processors may be considered as a composition of logical 
processor cores, each logical core having its own architectural state, but sharing 
some of the processor’s resources like the instruction and data bus or the cache 
memory. Yet, from all the logical cores, only one logical core is capable to access 
the shared processor resources at any single point in time. Examples of these 
processors are the Itanium and the AMD-64 which support two architectural 
states: IA-32 and IA-64. 

The set of solutions to answer the requirement of architectural 
heterogeneity for user-level applicability can be divided into two classes, one 
class employing a single architectural state at kernel level, while the other class 
integrating the architectural heterogeneity at kernel level. Each of these 
approaches has its advantages and disadvantages, so the choice for a specific 
design model is influenced by other design requirements. 

The first solution for designing a SPMA/OS employs a single architectural 
state at kernel level and it is based on current designs in single-processor 
systems. The kernel is developed for a single architectural state which generates a 
single kernel binary image. The user-level applications built for the kernel’s 
architectural state will be able to directly invoke the operating system services. 
The missing piece from the puzzle is how to couple architectural heterogeneity at 
user-level with single architectural state at kernel level. Even if a user-level 
application was built for a different architectural state than the kernel’s 
architecture, this application still needs to perform kernel requests. Therefore, 
the missing piece is a mechanism for communication across architectural 
heterogeneity between the kernel at one side and the user-level application at the 
other side. This mechanism is the only issue of this design. As an overview of this 
solution, one may notice that one architectural state has a higher degree of 
importance than all others as it defines the kernel’s architectural state. All other 
architectural states are only supported at user-level. As any request for a kernel 
service is accomplished in one single architectural state of the system, this 

SpaceSpace 

Time Time

Arch1 Arch2 

a) Temporal heterogeneity b) Spatial heterogeneity 

Figure 3.2: Types of architectural heterogeneity in MA/OS 
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solution could also be modeled as a master-client approach: the kernel’s 
architectural state is the master architecture while all other architectures are 
client architectures. The master architecture provides services in behalf of client 
architectures. From the point of view of the operating system, the master 
architecture performs all critical operations (e.g. kernel’s system calls, exception 
handling) while client architectures serve only to execute non-critical operations 
(e.g. user-level binaries). From the user’s perspective, this design approach could 
be regarded as native and secondary architectures.  

The second design approach for a SPMA/OS employs architectural 
heterogeneity at kernel level. This design approach raises an important issue as 
any single machine binary cannot execute on multiple architectural states due to 
binary incompatibility. Therefore the binary code of the kernel has to be split up 
between architectural states. One acceptable solution is to provide a 
homogeneous kernel structure in term of architectural state and to implement 
this kernel structure for multiple architectural states. In this way, the binary 
incompatibility is solved by providing a kernel instance per each architectural 
state exhibited by the processor. Each kernel instance can provide kernel services 
to user-level applications built for the same architectural state. This design 
approach apparently solves the initial issue: provide architectural heterogeneity 
at user-level. Each user-level application can request kernel services as the 
operating system provides a kernel instance built for each architectural state 
exhibited by the system. The question now is how to construct such a single 
operating system image based on a set of architectural-dependent kernel 
instances. Looking at the first design approach of a SPMA/OS, the design issue 
was the interface point between the user’s requirement for architectural 
heterogeneity and the kernel approach for single architectural state. The main 
issue of the second design approach is the interface at kernel level among 
multiple kernel instances. The second design approach can be labeled as an equal 
opportunity model: critical operations for the operating system can be performed 
in any architectural state by the appropriate kernel instance.  

In conclusion, there are two main design approaches for SMPA operating 
systems. Both approaches still have an internal issue which will be discussed 
further in this chapter. 

 
 

3.3 MPMA computing systems 
 

 The second computing system in the area of MA/OS is the “Multi-
Processor/Multi-Architecture” (MPMA) system. The term “MPMA” refers to 
multi-processor systems composed of processors with heterogeneous 
architectures connected through a system bus and sharing the main memory. 
Processors in such a hardware configuration are able to perform concurrent 
accesses on main memory which generate data coherency issues at cache level 
and require in addition exclusion mechanisms on shared data structures.  These 
issues are the main research topic of SMP (Symmetric MultiProcessor) systems 
and solutions are either provided at hardware level (cache coherency protocols) 
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or at kernel level (exclusion mechanisms on shared data structures). The defining 
property of SMP systems is the homogeneous architecture of internal processors. 
This approach allows a smooth hardware coupling of processors on the shared 
memory bus and provides the ability of running the same kernel image on all 
processors based on same architectural state. The MPMA systems introduce an 
important difference with SMP systems in tightly-coupled multiprocessor 
systems, namely the architectural heterogeneity of processors sharing the main 
memory. These computing systems are labeled as exhibiting spatial heterogeneity 
(Figure 3.3). 

 
As for SPMA/OS, the essential design requirement for such an operating 

system is to provide architectural heterogeneity for user-level applications. In 
other words, the operating system must provide the capability to develop 
applications which exploit the architectural heterogeneity of the underlying 
system (e.g. run threads of a given task on different processor architectures 
depending on their computational requirements).  
 The first design approach found for SMPA operating systems we labeled as 
native and secondary architectures: a single architecture serves for kernel 
implementation, while all other architectures are only supported at user-level. 
This approach doesn’t fit well with the execution parallelism of MPMA systems. 
Translated to MPMA systems, this design approach defines a certain processor 
(master processor) which runs the kernel of the operating system, while all other 
processors (client processors) are supposed to run only user-level binaries. Of 
course, the interaction between the user-level binaries and the kernel cannot 
longer be treated through an architectural switch, since it basically requires 
passing a request from one processor (running the user-level binary) to another 
processor (running the kernel).   
 The second design approach suitable for SPMA systems was labeled as 
equal opportunities: there is a different kernel instance per each architectural 
state. At first sight, this design approach is more suitable for MPMA systems than 
the previous one as the spatial heterogeneity of the kernel fits with the spatial 
heterogeneity of the computing system. Therefore, each processor runs its own 
kernel image and user-level binaries running on top of these kernel instances can 
simply access the kernel services without the problem of architectural 
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heterogeneity or the need for an inter-processor communication. The design 
issues don’t stop here as the user-level applications should be able to take 
advantage of the architectural heterogeneity of the systems. If there is no 
mechanism for interaction between the kernel instances, the user-level 
applications will only be mono-architectural, without possibility of solving 
problems requiring heterogeneous computing. Two solutions providing support 
for inter-kernel cooperation can be envisaged: a user-level approach and a 
kernel-level approach. The former approach employs middleware architectures: a 
user-level layer providing cooperation between heterogeneous applications. A 
kernel instance can have no or limited knowledge of the existence of other kernel 
instances. As a consequence, the kernel instances are practically independent one 
from another and thus they are not required to obey the same design structure. 
The latter approach requires implementing the inter-kernel cooperation at kernel 
level. This solution is suitable when the operating system should provide 
transparency for any architectural state. In addition, this approach is probably 
more challenging than the former one in terms of kernel design as it requires 
synchronization and coherency mechanism to achieve cooperation at kernel level. 
 

3.4 Design models 
 
 The SPMA and MPMA systems show the same design models for the 
kernel structure. These design approaches could be divided in three classes: 
 

1. User-level support for heterogeneity:  
Each architectural state has its own kernel instance independent from 
each other; support for architectural heterogeneity is implemented at user-
level 

 
2. Native and secondary architectures: 
 A single architectural state is considered for the kernel design; support for 

architectural heterogeneity is implemented at kernel-level 
 
3. Equal opportunity 
 Each architectural state has its own kernel instance, while sharing a global 

state; support for architectural heterogeneity is implemented at kernel-
level 

 
 These classes show different approaches in designing a MA/OS. The 
essential requirement is support for architectural heterogeneity for user-level 
applications. This requirement could be fulfilled either by taking into account the 
architectural heterogeneity of the system at kernel level (design 2 and 3) or by 
implementing this support at user level (design 1). The latter case has a limited 
influence on the kernel’s design. The next sections will elaborate on these design 
approaches. 



  

 24

3.5 User-level support for heterogeneity 
 
 In this design approach, the kernel has no responsibility in offering 
support for architectural heterogeneity, so any of the classical concepts in single-
processor operating systems may apply. The support for architectural 
heterogeneity is left for implementation at user level. This approach applies only 
to multiprocessor systems (MPMA) where each processor is running its own 
kernel image. In SPMA systems, due to temporal heterogeneity, the kernel’s 
support is always required for switching the architectural state of the processor 
and activating another kernel instance. For these systems, support for 
architectural heterogeneity exclusively at user level cannot be achieved. 
 The user-level support offers the mechanisms to access the services of 
another kernel instance running on another processor. Each kernel instance has a 
User-level System Interface (USI) which publishes the interface of the local 
kernel. The USIs communicate with one another to provide a global system image 
(Figure 3.4). 

 
  

There is no requirement on having identical design structures for the 
kernel instances. The only requirement is having each USI exposing a generic 
system interface accepted by all USIs in the system.  

An example of collaboration between USIs is presented in Figure 3.5. 
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 This design approach has the advantage of simplicity: the kernel design is 
not affected by architectural heterogeneity. There are although limitations 
introduced by this design concerning the nature of a task itself. Threads of a task 
should be able to share kernel objects like file descriptors or IPC objects and most 
important of all, the same virtual address space. As there is no cooperation at 
kernel level between the kernel instances, threads running on different 
processors have no possibility to share kernel objects. The only object they are 
able to share is the physical memory, with mechanisms for synchronization 
implemented at user level. However, an application may still require coherent (or 
semi coherent) virtual address spaces across all processors.  
 
 

3.6 Native and Secondary Architectures 
 

This design approach requires the kernel’s support in order to offer 
architectural heterogeneity for user-level applications. As described earlier, the 
native architecture is the kernel’s architectural state, while all other architectures 
are labeled as secondary architectures. This design approach has a direct 
applicability for current processor architectures exhibiting multiple architectural 
states (e.g. Itanium family). These processors have a native architecture which 
provides a maximum computing performance and usage of processor resources, 
while other architectures are supported only for backward compatibility and do 
not perform as well as the native architecture. For performance reasons, it is 
therefore preferable to have the kernel built for the native architecture. 
Moreover, the secondary architectures are used only on temporary basis, so 
developing a kernel instance for each secondary architecture is not justifiable. 
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This design approach provides a mechanism to couple the user-level need for 
heterogeneity with the native architecture of the kernel while avoiding the 
requirement for a kernel instance per each architectural state. This mechanism 
for supporting a secondary architecture can be labeled as an emulation layer 
(Figure 3.6). The term “emulation” doesn’t refer here to instruction set emulation 
as the processor is capable of executing the instruction set of secondary 
architectures. Instead, the term “emulation” refers here to system interface 
emulation: each secondary architecture receives a system interface according to 
own architectural specifications. These system interfaces are not natively 
supported by the kernel, so they have to be emulated based on the kernel’s native 
interface. Basically, this emulation mechanism implements a conversion process 
between each secondary architectural interface and the kernel’s native interface. 
Due to the intermediary mechanism for accessing the kernel’s services, the 
binaries implemented for the secondary architectures will often suffer a 
performance overhead compared to binaries for the native architecture.  

 

 
There are different design criteria which must be taken in consideration 

when constructing an emulation layer: 
 
1. communication protocol between the kernel and user-level binaries:  

functional interface vs. shared data 
1. location at operating system level:  

user-level vs. kernel-level emulation 
2. location in the execution stack of a system call:  

top vs. bottom design 
 
 These criteria influence both the kernel design and the operating system 
performance. The kernel design is directly influenced by the location of the 
emulation layer. On SPMA systems, the emulation layers could be integrated at 
kernel level. However, this approach doesn’t apply to MPMA systems where the 
parallelism in execution of each architectural state requires parallelism in 
execution of the emulation layers and the kernel. Basically, each user-level binary 
running on a different processor should either rely on the kernel (when running 
on the native architecture) or on an emulation layer (when running on a 
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secondary architecture). Therefore, the MPMA systems accept only user-level 
emulation layers with a “spatial” decoupling from the kernel. When integrated at 
kernel level in SPMA systems, an emulation layer may take into consideration 
another design criterion: whether the native kernel should be aware of the 
presence of the emulation layer or not. In the former approach, the emulation 
layer sits on top of the kernel proper and filters communication between user-
level binary and the kernel without the kernel noticing its presence.  In the latter 
approach, the kernel has to acknowledge the presence of the emulation layer and 
to invoke its mechanisms when communicating with user-level binaries of 
secondary architectures. Another criterion which may influence the design 
approach for an emulation layer is whether the communication between user-
level binaries and the emulation layer is synchronous (functional interface) or 
asynchronous (shared memory). The advantages and disadvantages of these 
strategies are discussed further in the following section. However, there is no 
ideal design model for such an emulation layer and the choices for specific 
strategies are depending on specific design requirements for the operating 
system. 
  

3.6.1 Functional interface vs. Shared data 
 

This criterion refers to the nature of the communication protocol between 
the user-level binaries and the kernel. The communication protocol depends 
strictly on the specific system interface according to each architectural state. Even 
if the kernel provides its own native interface, system interfaces for other 
architectural states may have different specifications concerning the 
communication protocol. Commonly speaking, each architectural state should 
have structurally the same system interface as the native kernel if they rely on the 
same kernel architecture. However, this might not be always the case and the 
emulation layer should consider the appropriate communication protocol in 
relationship with user-level binaries.  

Generally speaking, the system interface may either be composed of a 
functional interface (system call interface) or shared kernel-user data 
structures. Each of these communication strategies has its own advantages and 
disadvantages.  

 
 1. The functional interface is the most commonly-used strategy for 
user-kernel communication in kernel design. The functional interface is 
composed by a collection of system calls. The interface of each system call is 
defined through a list of parameters to be provided by the user-level binary and a 
list of result parameters to be returned by the system call function. Both types of 
parameters could be provided either through the memory stack or the register 
file. In addition to passing on the system call parameters, the emulation layer 
must also provide a conversion mechanism between the user’s data type 
representation and the kernel’s data type representation. This mechanism must 
be integrated in the emulation layer since both partners (the user-level binary 
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and the kernel) interact with the system interface according to their own data 
type representation (Figure 3.7). 

The access to arguments passed via memory stack doesn’t constitute an 
issue as the kernel has access to any user-defined virtual address space. The 
emulation layer simply reads the arguments from their stack location, converts 
them to the kernel’s format and invokes the native system call. For arguments 
passed via register file, however, the working registers of a secondary architecture 
may not be the same as the working registers of the native architecture. The 
solution therefore requires reading the arguments from the original register 
location, performing the data type conversion of their contents and then writing 
the arguments to the register locations defined in the native system call interface. 
This approach allows transparency between the user-level binaries and the 
kernel, both at data type representation and argument location. 
 

 
 

 
2. The second approach to user-kernel communication is represented by 

shared kernel-user data structures. Even not as common as the functional 
interface, this communication strategy finds its place in kernels where a faster 
way to access kernel data structures from the user level is required without 
blocking its execution (as imposed by a synchronous invocation of a system call). 
The architectural heterogeneity raises the question concerning the usage of the 
shared memory. Direct access on shared data requires every binary having the 
same data representation. Writing shared data according to different data 
representations destroys the internal coherency. This shared data will eventually 
make no sense for anyone trying to read it. Two main approaches for 
implementing shared data in heterogeneous environments can be envisaged. In 
the first approach, data is stored according to a generic data representation and 
both the user-level binary and the kernel access the shared data through an 
interface which provides data conversion mechanisms. The second approach for 
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shared data in heterogeneous environments is the usage of replicated data 
managed by a coherency mechanism. In this approach, the user-level binary 
accesses its copy of the shared data according to its own data type representation, 
while the kernel accesses its own copy. The coherency mechanism should assure 
that the two copies remain identical in terms of information content. Physical 
shared data (access on the same memory location) is replaced therefore by 
logical shared data (the same data is replicated at different memory locations) 
(Figure 3.8).  

 
 
The question now concerns the location of the coherency mechanism. 

When located in the emulation layer, data coherency among replicas of shared 
data can be provided only when the user invokes a system call. This is not always 
the case: the user may change the shared data without invoking the kernel, while 
the latter may want to use the shared data. There is no access to coherency 
mechanism between these two accesses on shared data, so the kernel will access 
out-of-date information. In addition, the kernel may itself modify the shared 
data, which makes the user’s copy of shared data out-of-date. One solution to this 
problem is to perform the coherency mechanism whenever the user thread is 
activated by the scheduler (update the user’s replica from the kernel’s replica) or 
whenever the thread is deactivated (update the kernel’s replica from the user’s 
replica). While the user thread is deactivated, there is no attempt to modify the 
user’s replica, so the kernel’s replica will always have up-to-date information. 
Moreover, as the user thread is not active, there is no concern if its replica is up-
to-date. The thread is concerned on having a coherent replica only when it starts 
to run. Therefore, the coherency mechanism should also be integrated at 
scheduler level. This approach is probably the only reliable to provide logical 
shared memory, but it reduces the transparency of the emulation layer in 
relationship with the kernel: the kernel’s scheduler has to be aware of the 
presence of logical shared memory. 
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Another issue for implementing logical shared memory concerns the 
update protocol of replicated copies: full or partial coherency. The general case is 
to offer access to the entire content of shared data and thus replicas have to 
contain the same information. There are alternatives when there is no need for 
full coherency (e.g. the shared memory is composed of multiple buffers and only 
of subset of these buffers are required at a certain access on shared data). In such 
cases, providing full coherency only induces a performance overhead. Therefore, 
a partial coherency mechanism may be implemented, in which coherency is 
provided only for those portions of the replicated data required at the moment of 
the access.  
 

3.6.2 User-level vs. Kernel-level emulation 
 

The emulation layer may be implemented either as a user-level or as a 
kernel- level layer. In the first approach, the emulation layer is a user-level task. 
Whenever a user-level binary issues a system call according to a non-native 
architecture, the kernel reflects the arguments of the system call out from the 
kernel to the user-level emulation task. The emulation task handles argument 
conversion according to native interface of the system call and then issues the 
native system call. This user-level approach for system interface emulation is also 
known as the trampoline mechanism (Figure 3.9) and it has been used 
extensively by kernels like Windows 2000 (to emulate MS-DOS system calls), the 
Mach microkernel (to emulate UNIX system calls) [7] and the L4 microkernel (to 
emulate Linux system calls for L4Linux) [12]. 

 

 
 
 However, the separation of the emulation layer from the kernel is not 
possible without the kernel’s support for implementing a trampoline mechanism. 
The trampoline mechanism should be able to recognize the architectural state of 
the system call and to forward the system call arguments to the appropriate user-
level emulation task. 
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 A second approach is to integrate the emulation layer in the kernel design 
(Figure 3.10). The advantage of this approach is the reduced performance 
overhead in invoking a system call according to a non-native architecture as this 
approach prevents the overhead of a second kernel entry (in the trampoline 
mechanism there is a first kernel entry when issuing the non-native system call 
and a second kernel entry when performing the native system call). However, the 
user-level emulation has some advantages over the kernel-level emulation in 
terms of flexibility (user-level emulation provides a more convenient mechanism 
to add or modify a system call interface of a non-native architecture than the 
kernel-level emulation) and security (adding more code to the kernel increases 
the size of the Trusted Computing Base and introduces the likelihood of system 
fatal bugs) [7]. 
 

 
 
 

3.6.3 Top vs. Bottom Design 
 
 If deciding to implement the emulation layer at kernel level, the next 
question which arise is related to the actual location in the execution stack of the 
native system calls: the emulation layer could either be implemented on top of a 
system call function (on top of the kernel) or it could be placed at the base of a 
system call function (on the bottom of the kernel). 

In the first approach, the emulation layer is practically transparent to the 
native system call functions and therefore the system call functions don’t require 
any modifications. The emulation layer handles all argument conversion on top 
of each native system call function, so that no knowledge about architectural 
heterogeneity is required at system call level (Figure 3.11).  
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 The second design approach places the emulation layer on the bottom of 
the system call functions. Arguments are no longer translated to the appropriate 
data type representation on top of each system call function. Instead, each system 
call function invokes the appropriate data conversion mechanism provided by the 
emulation layer (Figure 3.12). Therefore, this approach requires a total 
integration of the emulation layer in the kernel and practically requires modifying 
each system call function. This requirement influences not only the invocation of 
non-native system calls, but also the invocation of native system calls. The 
performance of native system calls may be affected.  

As a guideline, it is preferable to have as much transparency for the 
emulation layer as possible in order not to alter the performance of the native 
kernel. On the other hand, providing total transparency of the emulation layer in 
relationship with the kernel may generate a considerable overhead for the non-
native threads (e.g. may require logical shared data to separate the user’s data 
type representation from the kernel’s data type representation). However, the 
focus of the kernel design should in general be on the performance of the native 
architecture since most of the binaries are probably intended to use the 
processor’s native architecture. As a rule of thumb, it is desirable that the 
emulation layer doesn’t interact with the normal functioning of the kernel.  
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3.7 Equal opportunity 
 
 The equal opportunity takes a totally different approach from the first two 
design models of a MA/OS. This approach takes into consideration the 
architectural heterogeneity within the kernel design itself. In other words, this 
design approach provides a kernel instance for each architectural state of the 
system. Advantages of this approach could be expressed in terms of user-level 
performance: the user-level thread is able to directly access the services of a 
native kernel without the overhead of either the emulation layer (see section 3.6) 
or the user-level system interface (see section 3.5). Comparing with the previous 
design approaches, the task of achieving a global system state is performed at 
kernel level (Figure 3.13). The question now is how to achieve a global system 
state. Each kernel instance has its own kernel structures which should be made 
coherent across all kernel instances. Issues to provide a global system state are 
related to the inherent distribution of global data structures and the 
incompatibility between data type representations across different architectural 
states.  
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When user threads are utilizing the kernel services, there is considerable 

effort to keep a coherent global state, making it likely for the global performance 
to decrease. Other factors influencing the global performance are the size of the 
global data structures, the number of kernel accesses modifying these global data 
structures and the number of kernel instances sharing a global system state. 
 When designing a kernel which follows the “equal opportunity” model, one 
should therefore focus on: 

- the global data structures 
- the coherency mechanism for logical shared data 

 

3.7.1 Global data structures 
 
The first criterion influencing the global performance in the Equal 

opportunity design is related to amount of global data structures. Global data 
structures reflect the global state of the kernel and these data structures directly 
influence the coherency mechanism. This mechanism enforces data coherency 
whenever an access on global data structures is required. Different strategies 
could be provided to assure data coherency, but in all cases the performance of all 
these mechanisms is highly influenced by the amount of data to keep coherent. 
Therefore, in order to improve the system’s performance one should attempt to 
minimize the number and size of global data structures. These data structures are 
often related to kernel’s abstractions like threads, address spaces, etc. Minimal 
kernels like microkernels should have a smaller amount of work in synchronizing 
global data structures due to the minimalism in choosing the kernel’s 
abstractions.  

Generally speaking, a kernel design for a multiprocessor system employs 
local and shared data structures. The global data structures provide multiple 
accesses from different locations within the kernel. The concept of shared data 
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has a problem fitting in heterogeneous multiprocessor systems due to 
incompatibility between data type representations. Two different strategies may 
be envisaged for implementing shared data in a MA/OS: 

 
- Global data representation (together with data conversion mechanisms for 

accesses according to other data type representations) 
- Multiple data representations (together with a coherency mechanism for 

implementing logical shared data) 
 

1. Global data representation: A single data representation is selected. 
Any data structure with global semantics will be encoded using the global 
data representation. Whenever there is an access to global data using 
another data representation, a mechanism is invoked to provide the right 
data format. This strategy implies direct data access for architectural 
states having the global data representation, while accesses having other 
data type representations can access the global data only indirectly, 
through an interface which provides data conversion.  Of course, the 
interface access induces a performance overhead for any architectural 
state not having the global data representation. The important question is 
therefore which data type representation to use as the global one. This 
choice could be based on different performance criteria: frequency of 
operations on global data structures with a certain data type 
representation (e.g. a certain data type representation is dominant), 
facility of data conversion between a particular data representation and all 
other available data representations (e.g. a certain data type 
representation is the extension of all others), etc. After selecting the global 
data type representation, data conversion mechanisms from the global to 
all other data representations are required. These mechanisms are 
embedded in each access interface according to the specific data type 
representation handled by the interface.  

 
2. Multiple data representations: This strategy allows direct access to 

global data using different data type representations. The key element of 
this solution is replication of data. This replication process requires a 
suitable coherency mechanism. The data conversion mechanisms between 
different data type representations will be integrated in the coherency 
mechanism. 

 
 Each data representation strategy has its own advantages and 
disadvantages, so the choice is strictly based on specific performance criteria. 
Based on these two strategies for implementing shared data in a MA/OS, each 
kernel data structure could be associated with one of the following classes: 

 
1. Exclusive resources: This class is represented by resources with no 

global semantics. Exclusive resources are represented by local data 
structures with no global semantics and by the architectural state (e.g. 
registers, trap and fault exceptions, software interrupts). These resources 
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are employed either with local or with architectural scope and thus they 
have no effect on the global state of the MA/OS.  

 
2. Shared resources: Resources from this class have shared access from 

multiple locations within the kernel, either with sequential or parallel 
access. For sequential access, one must assure that after each access, the 
shared structures are left in a consistent state. Concerning the parallel 
access, synchronization mechanisms must prevent concurrent access on 
the same resource, either by locking resources during access or by 
serializing accesses on shared resources.  

 
3. Distributed resources: A distributed resource is a collection of non-

identical resources which may be placed on different locations within the 
kernel. A coherency mechanism must guarantee that one particular 
resource is only accessible at one location within the kernel. Examples of 
distributed resources are global thread identifiers and external interrupts 
(interrupts provided by a shared APIC2). The coherency mechanism must 
enforce non-replication of these resources.  

 
4. Replicated resources: A replicated resource is a global resource from 

which copies are placed in different locations within the kernel. An 
example of a replicated resource is the replication of a virtual address 
space among parallel kernel instances. In that case, the page tables of each 
kernel instance should contain the same information. A coherency 
mechanism is required to guarantee the integrity of information across all 
copies of a replicated resource.  

 
The classification above shows which resources are concerned by 

coherency mechanisms. The exclusive resources don’t influence the global system 
state. Resources with global semantics are represented by the shared, distributed 
and replicated resources. While the shared resources require only 
synchronization mechanisms for concurrent access, the distributed and 
replicated resources require a coherency mechanism (Figure 3.14). 

A kernel design may require any of these types of global resources. The 
amount of the global resources directly influences the performance of the 
coherency mechanism. Besides the amount of global structures, the amount of 
updates also influences the performance of the coherency mechanism:   achieving 
data coherency requires keeping track of updates on global data.  Different 
coherency strategies can be envisaged depending on the use case and on the 
nature of the computing system. 
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3.7.2 Coherency mechanism 
 

Replicated and distributed data structures along with coherency 
mechanisms are key issues of a MA/OS. Whether the MA/OS exhibits temporal 
(SPMA) or spatial (MPMA) heterogeneity, it is often the case that the kernel 
and/or user-kernel shared structures have to be replicated according to different 
data type representations. Replication inevitably requires a coherency 
mechanism as a key requirement of a replication process is to guarantee that 
replicas reflect the global state of the replicated resource.  

 
A coherency mechanism provides two services: 

1. Reading a global data structure delivers data which reflects the global state 
2. Updating a global data structure must leave the data in a coherent state 
 

The design of such a mechanism is mainly base on the following criteria: 
 

- type of global resource: 
distributed vs. replicated 

- location inside the kernel:  
centralized in one location vs. distributed in multiple locations 

- update strategy on global resources:  
push vs. pull protocols 
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Resources concerned by coherency mechanisms are either distributed or 
replicated and they require a different coherency mechanism: 

 
1. Distribution coherency: This coherency mechanism is related to 

distributed resources. As a distributed resource is a collection of non-
identical atomic resources (e.g. global thread identifiers), the coherency 
mechanism should ensure that each atomic resource can be used in only 
one location of the kernel. Using the same atomic resource in multiple 
locations within the kernel will destroy the integrity of the distributed 
resource. 

 
2. Replication coherency: This coherency mechanism has to guarantee 

that each access on a copy of the replicated resource will issue data which 
reflects the global state of the replicated resource. 

 
Even if these types of coherency mechanisms have different purposes 

(distribution and replication coherency), the global architecture of such a 
mechanism is generally based on two computing models: centralization and 
distribution. Therefore, architecturally, coherency mechanisms could classify in 
two main classes: 

 
1. Centralized mechanisms: A mechanism from this class is centralized in 

one location of the kernel. Considering the case of multiple kernel 
instances, the coherency mechanism is handled by a single kernel instance 
in behalf of all kernel instances. Whenever a global resource needs to be 
accessed and/or updated, the centralized coherency mechanism is 
invoked. These mechanisms basically follow the server-client model. 

 
2. Distributed mechanisms: A mechanism of this class is composed of a 

collection of sub-mechanisms which are spread in different locations of 
the kernel and which cooperate to provide a coherent state for the global 
resource. In the case of multiple kernel instances, each kernel instance 
may be provided a sub-mechanism as a part of a global coherency 
mechanism. 

 
Figure 3.15 shows an overview of these two approaches. Each of these 

approaches has its own advantages and disadvantages. The first approach 
implements the coherency mechanism in one single location of the kernel and 
thus avoids replication of code at multiple locations. The disadvantage of this 
approach is due to centralization itself: the centralized location could become a 
bottleneck if the number of accesses on global data managed by this coherency 
mechanism is relatively high. The second approach solves this problem as 
multiple locations of the kernel can accept requests for performing global 
coherency. On the other hand, this approach shows also a disadvantage due to 
distribution itself: the sub-mechanisms have to cooperate to provide global 
coherency. This communication induces a performance overhead in providing 
global coherency. In conclusion, the choice between these two architectures 
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depends on many performance criteria like the amount of accesses on global data 
or the overhead of communication intra-kernel. 

 

 
  
 
The distributed mechanism to achieve data coherency introduces another 

design element: the level of coherency, either full or lazy. When full coherency is 
required, a sub-mechanism propagates an update on the global resource to all 
sub-mechanisms, in order to keep coherent data at each instant of time. In the 
second approach, lazy coherency, updates are propagated “only when” they are 
required. A distributed resource accepts only full coherency as it imposes the 
non-replication of its atomic resources at each instant of time. On the other hand, 
the requirement for a replicated resource is being able at the moment of the 
access to obtain coherent information, although without any requirement 
whether all replicas contain identical information at the any instant of time. 
Based on these data coherency models, two families of update strategies could be 
envisaged: 

 
1. Push protocols: This family of protocols guarantees that at each instant 

of time a global resource is kept coherent. Whenever an update on a global 
resource has to be performed, this update is communicated to all sub-
mechanisms of the global coherency mechanism. For replicated resources, 
this protocol can have two different approaches depending on whether the 
replicas are updated by the initiator of the update (direct update) or each 
replica is updated by a corresponding owner (indirect update). The first 
approach is suitable if the initiator of the update has access to all replicas 
and no security barriers exist in accessing them. If this is not the case, the 
second approach communicates the update to the owner of the replica.  
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Figure 3.15: Architecture of coherency mechanisms 
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2. Pull protocols: This family of protocols is suitable only for replicated 
resources. These protocols don’t guarantee that at each instant of time all 
replicas contain the same information, but instead they provide a 
mechanism to achieve coherency whenever the replicated resource is 
accessed. Thus, each update is performed only on the local copy and thus 
assuring that the local copy has the up-to-date information. Whenever 
data is accessed again, information from all replicas is requested to verify 
if whether the local copy still has up-to-date information or whether 
another copy was in the meanwhile updated. If the local copy contains out-
of-date information, the up-to-date information is requested from another 
replica. This protocol has also two approaches depending on whether the 
requester accesses directly the other replicas (direct access) or it delegates 
the owner of each replica to deliver the information required (indirect 
access). In addition, this family of update protocols has another criterion 
to take in consideration: the atomicity of the replicated resource. If a 
replicated resource is not atomic and the information of the local replica is 
not required entirely at the moment of the access, one may choose to 
update only the required information in the local copy.  

 
Designing a coherency mechanism is a complex task which should take 

into consideration different factors like performance criteria and usage patterns 
of different global resources. Figure 3.16 shows a classification of coherency 
mechanisms which could be employed to decide on an appropriate design for a 
specific coherency issue. 
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3.8 Design framework of a MA/OS 
  
 This chapter discussed three design models for a Multi-Architecture 
Operating System: User-level support for heterogeneity, Native and Secondary 
architectures, and Equal opportunity. Each of the proposed designs takes a 
different approach in providing a global system state: the first design achieves a 
global state at user level, the second approach implements this requirement at 
the interface between the user and kernel, while the third approach is dedicated 
to kernel-level support for global system state. However, one should notice that 
proposed design models provide solutions to overcome the heterogeneity of the 
computing system, but none of these designs discusses the nature of the kernel 
services. In conclusion, the design of a MA/OS has to focus on two different 
topics: overcome the heterogeneity of the underlying computing system and 
provide operating system services. These two topics are orthogonal: overcoming 
the heterogeneity of the system is independent from the services provided by the 
kernel. Considering the title of this operating system, MA/OS, the term MA refers 
to the heterogeneity, while the term OS refers to kernel services. Each of these 
terms corresponds to a different sub-design: the “MA design” could be labeled as 
the horizontal design (as the architectural heterogeneity is distributed 
horizontally), while the “OS design” could be labeled as the vertical design (as a 
kernel structure is built vertically). Each of these sub-designs may have a 
different degree of importance in the design process of a MA/OS. However, both 
of these sub-designs influence the system’s performance and their synergy and 
co-design provide the global design of the MA/OS (Figure 3.17). 
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Figure 3.17: Horizontal/ vertical co-design of a MA/OS 
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Chapter 4 
 

Case study of a MA/OS: L4 and Itanium 
 
 This chapter presents an example on how to design a MA/OS. This case 
study is based on the Itanium processor (as a SPMA system) and the L4 
microkernel (as the base design for the kernel). This study will attempt to verify 
the applicability of design models discussed in the previous chapter. The 
operating system design, together with the implementation and the experimental 
results will provide a way to effectively analyze the theoretical design model.  
 

4.1 Motivation 
 
 There are reasons to believe that a microkernel architecture as L4 can 
deliver best performance for a MA/OS design. This hypothesis is basically based 
on the architectural minimalism of a microkernel design which provides a small 
amount of system calls and kernel abstractions. As described in the previous 
chapter, the design of a MA/OS is composed of two orthogonal sub-designs: the 
horizontal design which handles the architectural heterogeneity and the vertical 
design which provides the kernel services. The microkernel design constitutes the 
vertical design of the MA/OS, while the choice for a horizontal design decides 
practically the performance of the global MA/OS. The integration of the 
microkernel in a MA/OS design may have an impact on its performance. The 
implementation provides an experimental evaluation of the effective performance 
of a microkernel based MA/OS.  
 

4.2 Description of the experimental approach 
 

A convenient experimental scenario consists in choosing a SPMA system 
(a processor with multiple architectural states). The choice was settled for an 
Itanium I processor which exhibits two architectural states, IA-64 and IA-32.  
Concerning the horizontal design, the “Native and Secondary Architectures” 
represents the most reasonable design for an Itanium-based system. The main 
reason for choosing this design is the difference in performance levels offered by 
Itanium for its architectural states: the IA-64 performs considerably better 
compared with IA-32. Therefore, the kernel of the system should be built on the 
native architecture (IA-64), while the IA-32 should be considered as a secondary 
architecture. The vertical design will be represented by the L4Ka::Pistachio. 

The MA/OS is the synergy between the horizontal and the vertical design. 
This synergy requires implementing in the IA-64 version of Pistachio (vertical 
design) an emulation layer for IA-32 architectural state (horizontal design). The 
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general issues for integrating an IA-32 emulation layer in an IA-64 kernel will be 
discussed previously from studying the L4Ka::Pistachio design. These general 
issues will represent the discussion base for building an IA-32 emulation layer in 
Pistachio. The final outcome of this case study will be the experimental analysis 
regarding the performance of the MA/OS compared with the original design of 
Pistachio. This comparison will help understand how the performance of 
microkernel design is influenced by integrating it in a MA/OS and whether the 
eventual losses in performance are acceptable enough for constructing such an 
operating system. 
 
 

4.3 Support for IA-32 in Itanium processor 
 
 The first step in the design process of the operating system is an evaluation 
of the targeted computing system. Itanium qualifies as a SPMA (Single 
Processor/Multi-Architectures) system as it provides two architectural states, IA-
64 and IA-32. The IA-64 is the native architectural state and provides best 
performance and usage of processor resources, while IA-32 provides a lower 
performance and is able to exploit only a reduced subset of Itanium’s resources 
(e.g. registers, address space). An interesting question concerns the reasons for 
integrating a second architectural state which doesn’t perform as well as native 
architectural state. The IA-64 was intended as a candidate for the next processor 
architecture following the today’s mainstream architecture, the IA-32. The IA-64 
is definitely a more powerful architecture than the IA-32, but this fact is balanced 
by having the IA-32 practically running most of the applications intended for 
personal computing. Porting these applications for the new IA-64 architecture 
should be primarily justified by economical factors: is this gain in computing 
power balanced by the costs in porting these applications? The IA-64 designers 
have probably considered this scenario and it was clear that the introduction of 
IA-64 will not be such a smooth process. The decision was to integrate backward 
compatibility for IA-32 architecture in the new IA-64 architecture. As such, a 
migration process from IA-32 to IA-64 could be easily envisaged: first the IA-32 
hardware should migrate to IA-64 while running the same IA-32 applications. 
Afterwards the applications are incrementally ported to IA-64 as soon as software 
distributors decide migrating their products. 
 
 The IA-32 is supported at two levels: 

1. IA-64 ISA Level:  
Provides a mechanism for switching between IA-32 and IA-64 

2. Processor Level:  
Provides the hardware implementation of IA-32 architectural state 
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4.3.1 Support at IA-64 ISA Level 
 

IA-32 and IA-64 have to provide mechanisms for switching the current 
architectural state of the processor to IA-64 and respectively to IA-32. These 
mechanisms are provided either as instructions for explicit switch or they are 
integrated in the processor’s architecture for implicit switch. The latter approach 
concerns the automatic switch to IA-64 for performing critical processor 
operations as exception handling. As a consequence, the Itanium processor 
depends exclusively on the IA-64 architectural state, while the IA-32 is provided 
only as a secondary architectural state. 

In conclusion, the IA-64 architecture provides two mechanisms for 
switching the processor’s architectural state: 
 

1. Explicit switch: Both the IA-64 and IA-32 Instruction Set Architectures 
(ISA) were provided special instructions for switching the current 
architectural state. In order to perform the architecture switch, an explicit 
demand (by issuing these special instructions) has to be performed. The 
IA-64 ISA provides natively a special branch instruction (br.ia) which acts 
like a regular branch instruction with the difference of changing in 
advance the processor architectural state to IA-32 (Figure 4.1). As a result 
of switching to IA-32 architectural state, the processor’s register file is 
configured according to the IA-32 register layout with the first effect of 
limiting the instruction pointer to 32 bit addresses. This implies that the 
branch target of this special branch instruction must point inside the first 
4 GB of the virtual address space. Considering the switch back to IA-64, 
IA-32 ISA was not natively designed with a special instruction for 
switching the processor’s architectural state to IA-64 (obviously because at 
the time the IA-64 architecture didn’t exist!). With the introduction of IA-
64 architecture and Itanium processors, an instruction for switching from 
IA-32 to IA-64 was required, so the original specification of IA-32 ISA was 
updated with an IA-64 extension subset (including a special instruction for 
switching to IA-64). As the IA-64 extension subset is not defined in the 
original IA-32 specification, the x86 processors are not supporting these 
instructions. This information is important for software designed to run 
on both x86 and IA-64 processors, as the usage of the IA-64 extension 
subset induces software incompatibility with the x86 processors. 
Considering the architecture switch, the IA-32 ISA is extended with a 
branch instruction providing switch mechanism to the IA-64 architectural 
state: the JMPE instruction. This instruction acts like a branch instruction, 
although changing in advance the processor’s architecture to IA-64 before 
modifying the instruction pointer according to the target instruction. This 
branch is performed relative to the IA-32 address space layout (with 
instruction pointer set on 32 bits) and it requires that the address of the 
target instruction will point inside the first 4 GB of virtual address space. 
There is no kernel protection for performing the architecture switch: this 
mechanism is accessible to both kernel and user level. Despite this fact, 
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software designers should evaluate both the advantages and disadvantages 
of mixing IA-32 and IA-64 binaries. At kernel level, this approach is not 
highly recommended, on one hand for performance reasons, but also for 
system stability. However, at user level, there are no such 
recommendations, but the main argument against this approach would 
probably be the incompatibility of the IA-32 software with x86 processors. 
The usage of architecture switch at user level will be probably extremely 
limited as, on one hand, software packages compiled for x86 processors 
don’t use mixed binaries (32 and 64 bit) and on the other hand software 
compiled for IA-64 processors are not usually interested in integrating IA-
32 binaries, mainly for performance reasons. Even if for limited usage, this 
requirement may exist, so the access to these mechanisms is allowed at 
user level (it can although be prevented by explicit kernel control of 
processor settings). 

 
2. Implicit switch: A processor operation in Itanium architecture 

automatically demands setting the processor’s architectural state to IA-64: 
the exception handling. The exception handling for IA-32 and IA-64 is 
performed in a unified manner. Whenever an IA-32 thread causes an 
exception (e.g. General Protection Fault), the architecture switch is 
performed before fetching the interrupt vector (Figure 4.2). As such, the 
IA-32 exception will be handled in the native IA-64 architectural state. 
Once the exception is handled, the IA-64 interrupt handler may choose to 
return the processor’s control to the faulting IA-32 thread by issuing the 
Return from Interrupt (rfi) instruction. Whenever this instruction is 
issued, the processor’s architectural state is restored to the state which 
caused the exception. In the case of an IA-32 faulting thread, the result of 
this approach is an implicit switch of the processor’s architectural state to 
IA-32. 
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4.3.2 Support at Processor Level 
 

Any architectural state depends on the processor’s support for 
implementing its Instruction Set Architecture. In the case of IA-64 processors, 
the guiding choice was the backward compatibility with IA-32 binaries. As a 
direct consequence, current IA-64 processors (e.g. Itanium family) integrate a 
hardware implementation of the IA-32 architecture. Probably this support will 
disappear in the years to come if the software environment will be enough mature 
for IA-64 (e.g. applications migrated to IA-64, compilers capable of taking 
advantage of the IA-64 performance). In the meanwhile, the IA-32 will still be 
present in the IA-64 processors. The only concern is how to make the CISC 
architecture of IA-32 taking advantage of the underlying VLIW architecture of 
IA-64. 

The hardware implementation of the IA-32 architectural state on IA-64 
processors is composed of three elements: register file, instruction set and 
memory layout. This hardware implementation practically produces an IA-32 
virtual processor inside the IA-64 processor. The elements of this hardware 
implementation are as follows: 
 

1. Register file: The IA-64 processors provide hardware support for the IA-
32 register file by mapping the IA-32 registers on the native IA-64 register 
file. All IA-32 registers (general registers, IP, EFLAGS, segment registers, 
FPU, MMX and SSE [8]) are mapped on equivalent IA-64 registers. The 
IA-32 registers reserve only the lower 32 bits of the 64 bit registers, the 
upper half being either sign-extended or zeroed. As the number of the IA-
64 registers is extremely large compared to the IA-32 register file, only a 
subset of these registers are used when running in the IA-32 architectural 
state (for a complete description of IA-32 register mapping on IA-64 
register file see [9], [10]). However, a subset of the IA-64 register file is 
shared between the two architectural states, so these registers can be 
modified in any of these two architectural states. In order to preserve the 
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integrity of an architectural state, the shared registers should be saved and 
restored when switching between IA-32 and IA-64. 
 

2. Instruction set: The IA-32 instruction set is hardware implemented: any 
instruction defined in the IA-32 instruction set can be executed on the 
Itanium processor. This capability of executing IA-32 instructions is 
activated by a switch to the IA-32 architectural state. Outside this state, 
the IA-32 instructions are not recognized as valid instructions. When 
running in the IA-32 architectural state, the instruction stream is filtered 
by a processor sub-component (the iVE – intel Value Engine) which 
translates the IA-32 instructions into IA-64 instructions (Figure 4.3). As a 
consequence of this processor design, the IA-32 instructions are executed 
as native IA-64 instructions. The performance of the IA-32 
implementation depends on the capability of the IA-32 hardware 
emulation to take advantage of the native IA-64 architecture. There is an 
important conceptual difference between IA-32 and IA-64 as one is 
defined as a CISC architecture, while the other is VLIW architecture. The 
main requirement of VLIW architecture is to provide dependency-free 
instructions in each instruction bundle as no mechanism at hardware level 
is provided to detect and prevent these dependencies. This task should be 
performed at software level by the VLIW compiler when translating the 
high-level code (e.g. C/C++) into IA-64 assembler instructions. For IA-32 
instructions, there is no requirement for a dependency-free relation, so the 
task of dependency detection and resolution is performed by the IA-32 
emulation component (the iVE), which induces a performance overhead 
for executing IA-32 instructions. Moreover, the task of translating IA-32 
instructions into IA-64 instructions and packing them in bundles is also 
time-expensive which inevitably induces slower performances when 
running IA-32 instructions on IA-64 processors. 

 
3. Memory layout: The IA-32 memory layout contains conceptual 

differences with the IA-64 memory layout and therefore it requires a 
special implementation on IA-64 processors. The IA-32 memory layout is 
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Figure 4.3: Hardware support for IA-32 ISA 
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essentially based on two management strategies: segmentation and 
paging.  The segmentation mechanism was introduced in the x86-family to 
offer protection mechanisms between tasks sharing the same address 
space. This memory model was extended by the paging mechanism with 
introduction of virtual address spaces. The paging mechanism provides at 
the same time the management of virtual address spaces (mapping 
memory from physical to virtual memory locations), but also protection 
mechanisms as each virtual page has access rights. With introduction of 
the virtual address spaces, tasks are no longer required to share the same 
address space. The virtual address space itself becomes the protection 
mechanisms between tasks. However, there is an additional protection 
requirement inside a virtual address space: protect the kernel code from 
user access. This protection requirement could be fulfilled by associating a 
privilege level to each operation on the page (read, write, execute). In this 
way, the user access on kernel pages can be prevented by limiting the user 
access rights on these pages. This memory model was actually adopted in 
the native IA-64 memory model. This approach eliminates the 
segmentation mechanism from the initial IA-32 memory model, which 
became on the same redundant with the virtual address space mechanism 
concerning the task protection and harder to manage than the paging 
mechanism. The implementation of the IA-32 memory model on IA-64 
processors can rely on the native IA-64 memory model for some 
mechanisms like paging, but requires also implementation of specific 
mechanisms for the IA-32 memory model like segmentation.  

The following IA-32 memory mechanisms can be supported by the 
IA-64 memory model: 

 
•  The IA-32 memory addressing (e.g. Instruction Pointer, direct 

memory addressing): This mechanism is compatible with the IA-64 
memory model as memory addresses defined on 32 bits in IA-32 can 
be extended to 64 bits by zeroing the upper 32 bits. Therefore, it is 
noticeable that the size of the address space is limited to the lower 4 GB 
(232 bytes) of the initial 264 byte address space when running in IA-32 
architectural state. 

 
• The IA-32 paging mechanism: On IA-32, this mechanism supports 

page sizes of 4 KB and 4 MB.  This approach is compatible with the IA-
64 memory model as these page sizes are also supported by the IA-64 
paging mechanism. Therefore, the IA-32 paging mechanism can fully 
rely on the IA-64 memory model (e.g. page tables, page fault handling). 

 
In conclusion, the memory addressing and the paging mechanism 

of IA-32 can rely on the equivalent mechanisms of the IA-64 memory 
model. However, the conceptual difference between IA-32 and IA-64 
memory models is represented by the segmentation. This memory 
mechanism cannot be handled natively by the IA-64 memory model and it 
requires a special implementation. This implementation should be 



  

 49

IA-32 
addresses 

IA-64 
addresses 

 
Segmentation 

(iVE) 

 
Paging 
(MMU) 

Zero 
Extension 

(iVE) 

Virtual Address 
Space (64 bit) Hardware 

Address Space 

64 bit page 
handling 

Figure 4.4: Memory addressing in IA-32 and IA-64 modes 

provided by the IA-32 emulation component (the iVE) as this hardware 
component receives the IA-32 instruction stream. The translation process 
of an IA-32 instruction to an IA-64 instruction should convert the memory 
addresses of arguments according to the segment layout (Figure 4.4). Any 
IA-32 segmentation fault can be acknowledged at this level and triggered 
as an exception. However, this segmentation mechanism assumes that the 
appropriate segment layout has been setup previously from switching the 
processor’s architectural state to IA-32. This task should be performed by 
the operating system. The segmentation mechanism induces an additional 
performance overhead in translating IA-32 instructions into native IA-64 
instructions. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 



  

 50

4.4 Horizontal design: IA-32 emulation layer on an IA-64 
kernel 
 
 

The best design approach for an Itanium based operating system is the 
“Native and Secondary Architectures” discussed in section 3.6.  The IA-64 
represents the native architectural state, while the IA-32 architecture can be 
considered as the secondary architecture.  

This design approach provides an IA-64 kernel which natively performs 
IA-64 kernel services and an IA-32 emulation layer which provides emulated IA-
32 kernel services. The IA-32 emulation layer simply establishes a 
communication channel between the IA-32 threads and the IA-64 kernel. 
Generally speaking, a communication process can be established if the two 
partners are “speaking the same language”. This is actually not the case with the 
IA-64 kernel and the IA-32 threads: the IA-64 kernel supports only the native IA-
64 kernel interface, while the IA-32 threads access this interface according to the 
IA-32 specifications. This communication incompatibility is generated by the 
differences in data type representation between the two architectures: on IA-32, 
both the long and the pointer occupy 32 bits, while on the IA-64, these data types 
are represented on 64 bits. When the arguments required by the communication 
protocol involve these two data types, compatibility issues in communication may 
appear. As a consequence, the communication channel has to provide a 
mechanism to solve any communication issue generated by the incompatibility in 
data type representations. This mechanism acts like a translator enabling 
communication between “speakers with different languages”. This solution 
provides architecture transparency for IA-32 threads: an IA-32 thread cannot 
make the difference between running on an IA-32 operating system and running 
on an IA-64 operating system. 

Besides the interface compatibility with IA-32 threads, the IA-64 kernel 
should also provide support for IA-32 faults and traps. This requirement is due to 
an implementation aspect of Itanium processors which states that all types of 
interrupts will be handled in the native IA-64 mode (see section 4.3.2). Even if a 
subset of IA-32 faults and traps are triggered as native IA-64 exceptions (e.g. 
page fault), most of the IA-32 exceptions require special handling. 

The emulation of the IA-32 system interface and the IA-32 exception 
handling are the main issues of the IA-64 kernel support for the IA-32 
architectural state. In addition, the kernel has to offer support for the IA-32 
memory segmentation (by properly initializing the segment related tables and 
registers) and to handle context switches between the IA-32 and the IA-64 user-
level binaries.  
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4.4.1 IA-32 Emulation Layer 
 

 This mechanism emulates the IA-32 system interface for interaction with 
IA-32 threads. As described in section 3.6.1, the system interface is composed of a 
functional interface and kernel-user shared data. The functional interface 
consists of an orthogonal set of system calls, each system call providing access to 
a kernel service. When performing a system call, the user-level binary has to 
respect the exact definition of the system call interface. The system call interface 
is described in terms of arguments to provide for the system call function and 
results to be returned to the user-level binary. Two mechanisms are employed for 
exchanging arguments over the system call interface, either using the 
architectural registers or the virtual memory layout. The communication over the 
register file has the advantage of being much faster than the memory 
communication. The advantage of being faster is balanced as everywhere in 
computing by the limited size. Even if registers are a faster way for exchanging 
arguments, there are cases when their storage capacity cannot hold the entire 
stack of arguments required to be exchanged between the user-level binary and 
the system call function. In those cases, the memory becomes the only suitable 
alternative. The memory has the advantage of being large enough to store 
arguments, but on the other side, it provides much slower access to data then 
registers and sometimes, due to page faults, it can induce a considerable 
performance overhead. The IA-32 emulation layer has the task of adapting both 
types of communication: register-based and memory-based (Figure 4.5).  
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The main issue of the IA-32 emulation layer is the incompatibility in data 

type representation of long and pointer on IA-32 and IA-64. This data 
incompatibility requires a data conversion mechanism. This mechanism is 
composed of two stages according to the direction of the argument stream 
(orientated to/from the system call function): 

 
a. Data conversion of parameters: This stage provides data conversion of IA-

32 arguments to IA-64 arguments according to IA-64 system call 
specification. This operation is performed whenever the IA-32 user-level 
binary issues a system call and arguments are provided. This data 
conversion process usually sets the 32 unused bits in the IA-64 arguments 
with default values (e.g. 0 or -1 depending on system call specification) 
and leaves unmodified the information provided in the original IA-32 
arguments. This data conversion mechanism doesn’t induce any loss of 
information. When IA-32 arguments are provided using the register file, 
one should also consider the sign extension of 32 bit arguments induced 
by transition to IA-64 mode.  

 
b. Data conversion of results: This stage provides data conversion of IA-64 

arguments to IA-32 arguments according to IA-32 system call 
specification. This operation is performed whenever the IA-64 system call 
intends to return the results to the calling IA-32 user-level binary. This 
data conversion process may induce loss of information as 32 bits of the 
64 bit results will be “cut off” in order to adjust their size according to the 
IA-32 system call specification. This loss of information may cause 
unwanted effects, like abnormal functioning or even crashing of certain 
IA-32 user-level applications. Therefore, special care has to be taken case 
by case in order to avoid the loss of information. To achieve this goal, the 
32 bits to be cut off should contain no significant information (only default 
values). One way to comply with this requirement is to define a receiver-
dependent strategy for arguments: information is contained on 32 bits 
when the receiver is an IA-32 thread. As such, data conversion of 
arguments to IA-32 specification avoids the loss of information. An 
efficient solution to this problem is the “inflation” mechanism:  the 
information is stored on the least significant 32 bits, while unused 32 bits 
are simply initialized with default values (e.g. 0 or -1 based on system call 
specification). The “deflation” process will safely retrieve the information 
without loss of data (Figure 4.6). However, this approach is not generally 
applicable, especially when the sender assumes that receiver is an IA-64 
thread. This case is usual for kernel services which assume that the 
requester is an IA-64 thread. The only scenario when the “inflation” 
mechanism could be applied is the IPC communication between IA-64 and 
IA-32 threads. 
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4.4.2 IA-32 Exception Handling 
 

All exceptions triggered on Itanium processor are serviced in the native 
IA-64 mode. As such, exceptions raised during execution of an IA-32 binary 
require IA-64 exception handlers. Whenever an IA-32 instruction triggers an 
exception, the processor automatically switches from the IA-32 to the IA-64 
architectural state (see section 4.3.2). The first step in exception handling is 
saving the register context. As described in section 4.3.2, the IA-32 registers 
occupy only a subset of the IA-64 register file. Therefore, only this register subset 
needs to be preserved during IA-32 exception handling. The next step in 
exception handling is activation of the appropriate handler. The IA-32 exceptions 
are triggered either as native IA-64 exceptions (e.g. Page Fault which allows 
integration of IA-32 page fault handling in IA-64) or as IA-32 exceptions. The 
latter case requires special IA-64 exception handlers as described in [9]. Once the 
exception is handled, the final step is restoring the register context. If the kernel 
decides to return the processor control to the faulting IA-32 thread, the previous 
register context should be restored. The switch to the IA-32 architectural state 
will be performed automatically by issuing the rfi instruction (Figure 4.7). 
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4.4.3 IA-32 Memory Segmentation 
 

The memory model of the IA-32 architecture has some conceptual 
differences with the IA-64 memory model, namely the segmentation mechanism. 
These differences are solved by implementing the IA-32 memory model at 
processor level (see section 4.3.2). Therefore, the IA-32 instructions are able to 
transparently use the IA-32 memory model on Itanium processors. However, the 
support for the IA-32 memory model at hardware level still requires memory 
management at kernel level. The kernel should manage the page tables (for 
paging mechanism) and the segment tables (for segmentation mechanism). The 
page tables are natively managed by the IA-64 kernel in behalf of the IA-32 
threads as IA-32 page faults are triggered as IA-64 page faults. On the other 
hand, the segmentation is not a native IA-64 memory mechanism, so the IA-64 
kernel doesn’t have implemented support for segment tables. However, the IA-32 
binaries require a suitable segment layout, so this mechanism has to be 
introduced in the IA-64 kernel. This mechanism should properly initialize all 
segment selectors (CS, DS, SS, ES, FS, and GS), segment descriptors (CSD, DSD, 
SSD, ESD, FSD and GSD) and segment tables (GDT, LDT and TSS) before 
activating the IA-32 architectural state. Generally speaking, the segmentation 
was introduced in x86 family to provide protection mechanisms between 
processes sharing the same address space. When having only one task per virtual 
address space, there is no actual need for segment protection. The only protection 
concerns the kernel code which may reside in the user address space. The fact 
that IA-32 binaries can physically access only the first 4 GB automatically induces 
a protection mechanism: the IA-64 kernel can be placed at memory addresses 
greater than 4 GB and thus forbidding access on kernel code to any IA-32 user-
level binary. As a consequence, both paging access rights and segmentation 
become useless for kernel code protection as the kernel code is not even residing 
in the memory region physically accessible to IA-32 user-level binaries. However, 
this optimistic approach must provide an answer concerning the location of the 
segment tables: this kernel data is required by the IA-32 execution environment 
and it must be placed in a memory region below the 4 GB architectural limit. The 
first approach is to use the segment protection and to limit the size of the user 
segment below the memory area used to store the segment tables (as 
implemented in Linux IA-64 [4] - Figure 4.8). An alternative approach is to use 
the paging protection for memory pages storing segment tables. These memory 
pages will provide access rights only for kernel’s privilege level. As such, a flat 
segment model can be implemented, which completely eliminates the need for 
segment protection. 
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4.4.4 Transition between IA-32 and IA-64 
 

The transition between IA-32 and IA-64 requires three phases at kernel 
level:  architecture switch to target architecture, saving the register context of the 
previous architectural state and restoring the register context of current 
architectural state. The architecture switch is performed either explicitly by the 
kernel (e.g. in IA-32 emulation layer) or automatically by the processor for 
exception handling (see section 4.3.2). In both cases, the kernel has to perform 
the task of context saving and restoring. This task of register preserving across 
architectural switch is required in a variety of execution scenarios: system calls 
performed by an IA-32 thread (Figure 4.9), preemption (Figure 4.10) and 
activation (Figure 4.11) of IA-32 threads, IA-32 exception handling (Figure 4.7). 
All these scenarios can consider the task of context saving and restoring as 
regular switches between two threads, even if these particular cases involve 
different architectural threads. However, there is an advantage for customizing 
the context switch for cases involving IA-32 threads: the IA-32 execution 
environment employs only a small subset of the IA-64 register file. From the 
point of view of an IA-32 thread, only this subset needs to be saved and restored 
(see section 4.3.2). This approach reduces considerably the amount of work for 
saving and restoring the register context of an IA-32 thread.  
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4.5 Vertical design: L4Ka::Pistachio 
 
 The vertical design defines the kernel services of an MA/OS. The choice for 
the L4 microkernel is based on the advantages introduced by the microkernel 
technology:  
 

1. minimalism: L4 defines only a few kernel abstractions, a reduced system 
call interface and a low amount of global data structures 

 
2. uniform communication interface: any communication process in L4 

is conducted over a single communication mechanism, the IPC system call 
 
3.  flexibility: the microkernel can be tailored to meet specific requirements 

for an operating system 
 
4. portability: providing kernel instances for different architectural states 

requires a low amount of code translation due to reduced size of the 
kernel’s code  

 
 The L4 microkernel is the most recent approach in microkernel technology 
and it provides excellent results in a critical microkernel area like the IPC 
mechanism. The message passing is the foundation of microkernel based 
operating systems and the performance of this mechanism influences the overall 
performance of the operating system. 
 For a complete description of L4 system interface and data types, see [11]. 
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4.6 Co-design process of the MA/OS 
 

The design process of a MA/OS requires two orthogonal sub-designs: the 
horizontal design which provides a solution to the architectural heterogeneity of 
the computing system and the vertical design which provides the kernel services 
independent of any architectural state.  

The best suitable horizontal design for an Itanium based system is the 
“Native and Secondary architectures” (see section 3.6). The main issues of this 
design model were discussed previously in this chapter (see section 4.4). These 
issues generally apply to any MA/OS build on top of an Itanium based system.  

The choice of this experimental approach for a vertical design is the L4 
microkernel (see section 4.5). The microkernel technology looks very promising 
for designing MA/OSs, mostly due to minimalism in kernel abstractions and 
global data structures.  

Given the horizontal and the vertical designs, the main question is the way 
to couple these two sub-designs. In this case study, the base of the global design 
is the L4 microkernel, as it provides the kernel services. The horizontal design 
(the IA-32 emulation layer) is only a solution on how to adapt a kernel structure 
to comply with the architectural heterogeneity of the computing system.  

The global design has some specific requirements which influence the 
construction of the operating system: 

 
1. Provide operating system transparency for the IA-32 user-level binaries 

The IA-32 user-level binaries are enabled to run on an IA-64 operating 
system on “as is” basis, without any adjustments required. The IA-64 
kernel has to adapt its system interface to support the IA-32 system 
interface. 

 
2. Reduce as possible the performance overhead for IA-64 user-level 

binaries 
The integration of the IA-32 support in the IA-64 kernel may induce a 

performance overhead for native IA-64 binaries. This side effect should be 
prevented or minimized as possible. User-level binaries are more likely to 
use the IA-64 rather then the IA-32 (for computing performance), so the 
performance overhead for IA-64 user-level binaries should be reduced as 
possible.  

 
These two requirements have an important influence on the kernel design 

and implementation. One direct consequence is the modularity in implementing 
the support for IA-32 user-level binaries: a separation of the IA-32 support from 
the native IA-64 kernel is less likely to induce a performance overhead for IA-64 
user-level binaries. This approach complies with the second requirement of this 
design. 

The global design must integrate the mechanisms of the horizontal design 
into the vertical design while respecting the global design requirements.  
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4.6.1 IA-32 emulation layer in Pistachio IA-64 
 

Pistachio IA-64 should integrate the IA-32 system interface defined 
according to the L4 specifications. The IA-32 system interface defined in L4 
microkernel consists of a functional interface (the set of system call interfaces) 
and shared user-kernel data structures (the KIP and the UTCB).  

Each system call interface is described in terms of arguments to provide 
for the system call functions and results to be returned to the calling thread. 
These arguments can be provided either through the register file or through 
shared user-kernel data (the UTCB). The register file provides a much faster way 
to exchange arguments than memory and therefore, they have a higher usage in 
the user-kernel communication process. In the case of L4, this method of passing 
arguments is employed by all system call functions. However, in spite of the 
performance advantage of register communication, there are cases when the 
memory storage cannot be avoided, especially when the arguments cannot fit in 
the register file. As a point in case, the message to be transmitted through an IPC 
system call may be too large to fit in the register file. In this case, the arguments 
that cannot fit in registers are written in memory in a reserved memory area, 
both user and kernel accessible: the UTCB. Another reason for using the memory 
storage for exchanging arguments is fast access on user-configuration data (the 
TCR) and on kernel-configuration data (the KIP). Direct access on these data 
structures prevents the overhead of a system call for retrieving this information. 

In short, the L4 system call interface is defined using the register file and 
user-kernel shared data (UTCB and KIP). Both methods of transferring 
arguments are architecture specific: the structure of the register file depends on 
the CPU architecture, while the UTCB and the KIP contain data types which have 
architecture specific representations. As a consequence, the IA-32 system 
interface has a different implementation from the IA-64 system interface. The IA-
32 system interface will be integrated in the IA-32 emulation layer. 

The first element of the L4 system interface is the functional interface, 
composed of a set of system calls. The implementation of a system call is 
structurally divided in two stages: the system call stub and the system call 
function. The system call function is the stage practically performing the kernel 
service, while the system call stub is only the system call interface which handles 
the interaction with the outside world (the user-level binaries).  The system call 
stub handles all issues related to arguments: availability, correctness according to 
specification, data conversion. This structural separation of the system call 
implementation enables the support for different system call interfaces: a system 
call stub will be provided according to the target specification, while the system 
call function itself remains unmodified. This approach reduces considerably the 
task of an emulation layer. The IA-32 emulation layer has only to provide the IA-
32 system call stubs in order to achieve IA-32 system call compatibility (Figure 
4.12). 
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The IA-32 system call stubs mainly provide a data conversion mechanism 

between IA-32 and IA-64 argument specifications.  
The first stage of this mechanism is to locate the arguments. The 

arguments have architecture-specific locations: in the register file, a register 
location on IA-32 may be different than the required location in the IA-64 system 
call interface, while in memory, data types are aligned according to a specific data 
type representation. The solution for register communication is to access the 
register locations either as defined in the IA-32 specification (when receiving 
arguments from the IA-32 user-level binary) or according to the IA-64 
specification (when receiving arguments from the IA-64 system call function). 
Considering the shared memory communication, the shared data structures are 
encoded according to the IA-32 data type representation. This approach is a 
consequence of the first design requirement to provide operating system 
transparency for the IA-32 user-level binaries. The IA-64 system call function can 
choose to access the shared memory through a data conversion mechanism. 
However, this approach doesn’t comply with the second design requirement: 
modification of the kernel access mechanism on shared memory may involve an 
important performance overhead for the IA-64 user-level binaries. The best 
suitable approach in this case is the usage of logical shared data (see section 
3.6.1).  
 The second stage of the data conversion mechanism is to provide 
argument translation between IA-32 and IA-64 argument formats. Among the 
primitive data types, only the long and the pointer have different representations 
on IA-32 and IA-64 architectures. In addition to these primitive types, L4 
arguments with associated semantics have also different representations on IA-
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32 and IA-64: thread id, fpage, IPC-related data types (map item, grant item, 
string item), schedule-related data types (clock, time).  

The data conversion process is performed whenever an IA-32 thread 
attempts to communicate with the kernel or with another thread. These 
communication scenarios are as follows: 

 
 
a. IA-32 thread – kernel: This communication process is initiated by the IA-

32 thread, so the emulation layer intervenes to mediate the 
communication between the IA-32 thread and the system call function: 
the arguments provided by the IA-32 thread are converted into IA-64 
arguments and they are delivered to the system call function. In addition, 
IA-64 results provided by the system call function are converted according 
to IA-32 specification and returned to the IA-32 thread (Figure 4.13). This 
latter stage raises most of the questions: the system call function assumes 
(as it is normally intended) that the communication partner is an IA-64 
thread and thus the results have to be provided according to IA-64 
specification. Stepping down the arguments from 64 bit to 32 bit 
representation may eventually cause loss of information. Fortunately, the 
system call function was invoked from an IA-32 execution context and this 
fact may partially solve the data conversion issue: pointers and other 
“litigious” data types are issued by the IA-32 thread and therefore the 
system function should perform its work biased by the IA-32 context. 
However, this “fortuned” scenario cannot be guaranteed as an all-purpose 
solution, so the possibility of implementing a correct IA-32 emulation 
layer lies only on how kernel designers thought on this inter-architectural 
compatibility when specifying the system call interfaces. A suitable 
approach to solve the argument compatibility issue is to specify system call 
results using only 32 bit information. The L4 system call functions are 
either issuing return codes using less than 32 bits (on both IA-32 and IA-
64) or simply providing information concerning the invoking thread (in 
the case of an IA-32 thread this information will regard only 32 bits of the 
64 bit arguments). 
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b. IA-32 thread – IA-64 thread: The frequency of this communication case is 

limited by the fact that IA-64 thread identifiers cannot always become 
accessible to IA-32 threads: as the IA-64 thread identifiers are represented 
on 64 bits, stepping down to 32 bit thread identifiers may induce loss of 
information and deliver a different thread identifier than the original one. 
One way to verify if an IA-32 thread is able to access an IA-64 bit thread 
identifier is to perform a thread id conversion test: the thread identifier is 
stepped down to 32 bits and then “inflated” to the 64 bit representation 
using default values based on specification. If the initial thread identifier 
and the resulted one are identical, communication between the IA-64 
thread and any IA-32 thread can be established (Figure 4.14). 
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Once assuring that communication can be established, the IA-32 
thread is able to initiate the communication process with the IA-64 thread 
without any further concern: the emulation layer “inflates” the IA-32 
arguments to IA-64 equivalent arguments and invokes the IPC system call 
function.  From this point on, there will be no other concern for data 
conversion: the receiver is a native IA-64 thread and it receives the results 
in the 64 bit format (Figure 4.15). 

 
 
 

c. IA-64 thread – IA-32 thread: The frequency of this case is also limited by 
the same reason as described previously in IA-32 thread – IA-64 thread 
communication: the IA-32 thread should be able to correctly retrieve the 
thread identifier of the sender. Even if a wrong thread identifier is 
retrieved due to data conversion mechanism, the actual communication 
process is not directly disturbed. However, this side effect can influence 
further communication processes if the IA-32 thread relies on the sender’s 
identifier received during previous communication process. Therefore, the 
thread id conversion test should be employed as previously to guarantee 
that the IA-64 thread identifier will be correctly received by the IA-32 
thread. This communication process is initiated by the IA-64 thread, so no 
data conversion is required when providing the arguments to the system 
call function. However, a data conversion process is required when 
returning the results to the IA-32 thread. In addition, the IA-64 thread 
should be aware that results will be stepped down to 32 bits and thus to 
provide arguments using only 32 bit information (Figure 4.16). 
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d. Between IA-32 threads: This communication scenario raises no particular 
issue: arguments are provided using 32 bits and they are returned using a 
32 bit representation. Therefore, any loss of information is avoided. The 
only possible remark is the overhead induced by the emulation layer: even 
if two IA-32 threads are communicating, arguments may still be converted 
to 64 bit format in order to be properly acknowledged by the system call 
function. In addition, results of the system call function are provided in a 
64 bit format, so they have to be stepped down to 32 bits. In consequence, 
two data conversion stages are introduced in the execution stack of this 
communication process even if they may not be required (Figure 4.17). L4 
microkernel provides two IPC implementations: the fast path and the slow 
path. The fast path is an optimized IPC mechanism for a specific 
communication case. The unnecessary conversion process of IA-32 
arguments to IA-64 format may be avoided by offering a specific 
implementation of the fast path IPC. However, communication cases 
which don’t apply to fast path IPC must use the slow path IPC. In this case, 
the IA-32 system call stub invokes an IA-64 system call function which 
handles the IPC communication in a generic manner. Arguments will have 
to be provided in IA-64 format and results to be converted to IA-32. 
Therefore, this approach introduces unnecessary data conversion stages. 
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 These communication scenarios show different issues to tackle, starting 
from an appropriate system call interface for inter-architectural communication 
to the awareness of the architectural state of the communication partner. The L4 
microkernel has a suitable system call interface for IA-32 and IA-64 inter-
communication: all IA-64 data types are defined in L4 as an extension of the IA-
32 data types. The only requirement concerns the IA-64 threads: they should be 
aware that the communication partner is an IA-32 thread and to provide 
communication arguments correctly acknowledgeable by the IA-32 thread. 

The entry points of the IA-32 system call stubs have to be made accessible 
to the IA-32 user-level binaries. On L4, a thread is capable to access directly the 
entry point of a system call by consulting its memory address in the KIP. 
Therefore, these system call stubs should be placed at memory locations 
accessible to the IA-32 user-level binaries. Considering the IA-32 execution 
environment, the memory layout is limited to the first 4 GB of the IA-64 virtual 
address space. As a consequence, the system call entry points should be placed in 
the memory region below the 4 GB limit. Different approaches for this problem 
may be envisaged: 

 
a. Place the kernel below the 4 GB limit, including the IA-32 system call 

stubs: However, this approach is not efficient from the point of view of the 
IA-32 threads as the IA-64 kernel will occupy some of their address space. 
Therefore, the best suitable approach is to place the kernel in the upper 
region of the address space and thus freeing up the 4 GB memory space for 
IA-32 threads. 
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b. Place the IA-32 system call stubs below the 4 GB limit and the kernel 
outside the 4 GB limit: This approach solves all the problems met in the 
previous scenario. However, it requires placing some of the kernel code 
(the IA-32 system call stubs) in the user-accessible memory space. If the 
IA-32 system call stubs are linked together with the kernel image, this 
binary code should be mapped in the memory region below 4 GB (Figure 
4.18). 

 
c. Provide a system call trampoline below 4 GB and place the kernel together 

with the IA-32 system call stubs outside the 4 GB limit: In this approach, 
the kernel code is placed completely outside the user-accessible memory 
space. The trampoline provides indirect entry points for the actual system 
call entry points. When a thread invokes a system call, the system call 
entry in the trampoline will provide a jump to the actual entry point in the 
kernel. This approach solves all problems met in previous scenarios. 

 
 
 Besides the functional interface, the L4 microkernel provides also shared 
data structures for user-kernel communication. The shared structures should be 
handled as follows in order to comply with the design requirements: 
 

a. The Kernel Interface Page (KIP): The KIP stores information concerning 
the kernel configuration. The user-level binary can read this information 
directly from the KIP, but it has no access right to modify this data. As 
defined in current L4 specification [11], only one KIP structure is provided 
per address space. The structure of the KIP is architecture dependent, so 
the IA-64 threads should be able to directly access a KIP structure 
represented on 64 bits, while the IA-32 threads should be able to access a 
KIP structure on 32 bits. Besides providing the appropriate data type 
representation, the IA-32 compliant KIP structure should provide the 
system call entry points as defined in the IA-32 system call interface. 
When the address space contains only one architectural type of threads 
(either IA-32 or IA-64), the kernel can provide only one KIP structure, 
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formatted according to the nature of the threads sharing the address 
space. The alternative is represented by the co-existence of different 
architectural types of threads in the same address space. In this case, an 
IA-64 compliant KIP and an IA-32 compliant KIP have to be provided 
(Figure 4.19). In addition, the L4 functional interface should provide an 
appropriate system call for setting multiple KIP structures per address 
space. A solution is to use the Space Control system call to provide 
memory locations for different KIP structures associated with different 
space control values. The KIP structure will be formatted according to the 
space control value. In addition, the system call providing the KIP address 
(Kernel Interface) should deliver the appropriate KIP structure according 
to the nature of the calling thread. 

 

 
 

b. User-level Thread Control Block (UTCB): This data structure stores 
information concerning the thread configuration (TCR) and the 
communication arguments for the IPC system call (MRs and BRs). This 
shared memory is both kernel and user writable as it serves as a 
communication support for exchanging arguments between the user and 
kernel. The structure of the UTCB is architecture dependent, involving 
“litigious” primitive types (long), but also most of L4 data types. An IA-32 
thread should be able to access its UTCB structure according to IA-32 
specification in order to guarantee operating system transparency.  In the 
same time, the IA-64 kernel is constructed to access the UTCB structure 
according to native IA-64 specifications. The solution to this 
communication problem lies on using logical shared data:  two UTCB 
structures are provided, an IA-32 compliant structure and an IA-64 
compliant structure. The IA-64 kernel is able to access its UTCB structure, 
while the IA-32 thread will access the IA-32 compliant UTCB structure. 
The missing part is an appropriate coherency mechanism to guarantee 
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that these two copies contain the same information. Different strategies 
concerning coherency mechanisms were discussed in section 3.7.2 and a 
functional design was already presented in section 3.6.1. The basic 
approach is to provide data coherency of replicas at 
activation/deactivation of an IA-32 thread and at invocation of the IA-32 
system call interface (see section 3.6.1 for details). However, this approach 
induces a performance overhead in activating/deactivating an IA-32 user-
level thread and performing an IA-32 system call. 

 
This management policy of the shared user-kernel structures complies 

with the global design requirements: the IA-32 thread has complete operating 
system transparency by having access to data structures (KIP and UTCB) 
formatted according to its specification. In addition, this approach prevents any 
modification of the kernel access mechanism on shared data and thus complies 
with the second design goal: minimize the performance overhead for the IA-64 
threads. 
 

4.6.2 IA-32 Exception Handling in Pistachio IA-64 
 
 As described in L4 specification [11], each thread may have an associated 
thread which handles at user level the cause of the exception. When a thread 
triggers an exception, the kernel exception handler sends an exception IPC to 
associated exception thread. The exception IPC has an architectural dependant 
format, so the kernel exception handler should verify the nature of the associated 
exception thread before sending the exception IPC. An IA-32 thread may have 
either an IA-32 or an IA-64 exception thread associated (Figure 4.20). The 
default case in L4 exception handling is having no exception thread associated. In 
the default case, an IA-32 thread will be halted. 
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Figure 4.20: IA-32 Exception Handling in Pistachio IA-64 
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4.6.3 IA-32 Memory Segmentation in Pistachio IA-64 
 
 The kernel must setup the segment tables for the IA-32 threads. This 
process is required whenever an IA-32 thread becomes active. Therefore, the task 
for setting up the segment registers should be integrated in the scheduler. In 
order not to alter the scheduling performance of IA-64 threads, this task should 
be implemented in specific IA-32 functions related to resource loading/saving. If 
the kernel resides outside the 4 GB limit of the IA-32 address space, the segment 
layout can be initialized using the flat segment model. 
 
 

4.6.4 Transition between IA-32 and IA-64 in Pistachio IA-64 
 
 Different scenarios require transition between these two architectural 
states. In all cases, the main requirement is to preserve the register context of a 
thread across architecture switch. The IA-32 threads employ only general 
purpose registers (see the IA-32 register mapping on IA-64 register file [9]), 
while IA-64 threads employ register frames [9] requiring no saving/restoring of 
registers during direct invocation of a system call. So, the preservation of the 
register context is only related to the general purpose registers employed by the 
IA-32 threads. These registers can be modified by the kernel or other thread 
activity, so they should be saved and restored according to the IA-32 thread. 
Another requirement is to assure that the IA-32 segment layout and other IA-32 
architectural registers (EFLAG, FSR, FCR, FIR, and FDR [9]) are in place before 
activating the IA-32 thread. Of course, the IA-64 threads are not concerned by 
this operation. 
 
 
 This design process is an example of co-designing of an MA/OS starting 
from a horizontal design (Native and Secondary Architectures) and a vertical 
design (L4 microkernel). This design leads to an implementation based on the 
L4Ka::Pistachio. The evaluation of this experimental approach will be presented 
in the following chapter. 
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Chapter 5 

Evaluation of the implementation 
 
 
 This chapter evaluates the suitability of the MA/OS design based on the 
Itanium processor and the L4Ka::Pistachio. We first study the fulfillment of the 
design requirements. Once guaranteeing the respect of design requirements, a 
performance analysis of the implementation is undertaken to study the suitability 
of the theoretical solution. 
 

5.1 Evaluation of design requirements 
 

The main goal of the implementation was to verify that the design issues 
were properly tackled and the design requirements were fulfilled. These design 
requirements were presented in the section 4.6: 
  

1. The first design requirement was to provide operating system 
transparency for the IA-32 user-level binaries. The current 
implementation based on L4Ka::Pistachio provides a complete system 
interface for the IA-32 user-level binaries: 

a. IA-32 system call interface: an IA-32 user-level binary is able to issue 
any system call according to the IA-32 specification of the L4 
Version X.2 API [11] 

b. IA-32 compliant Kernel Interface Page (KIP): The kernel creates a 
KIP object formatted according to the IA-32 specification in each 
address space containing IA-32 threads.  

c. IA-32 compliant User-level Thread Control Block (UTCB): Each IA-
32 thread has a UTCB structure formatted according to the IA-32 
specification.  

In short, an IA-32 thread is able to interact with the IA-64 kernel exactly 
in the same way as interacting with the native IA-32 kernel. The first 
design requirement concerning operating system transparency for IA-32 
user-level binaries is thus fulfilled. 
 
 

2. The second design requirement was to reduce as much as possible the 
performance overhead for IA-64 user-level binaries. In contrast 
with the first requirement, which is a functional criterion, this second 
requirement is purely performance driven. The achievement of this design 
requirement can be analyzed only through a benchmarking approach 
concerning the performance of IA-64 threads. The main performance 
criterion in a microkernel design is the IPC performance [13]. The IPC 
performance was measured using two benchmarks: the first benchmark 
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uses a standard IA-64 kernel (without IA-32 support), while the second 
benchmark is based on an IA-64 kernel with the IA-32 support. Figure 5.1 
shows the results of both benchmarks concerning the regular IPC system 
call (slow path). The experimental results show no increase of the number 
of cycles in the second benchmark comparing with the first benchmark. In 
conclusion, the introduction of IA-32 support in the IA-64 Pistachio 
microkernel introduces no performance penalties for IA-64 user-level 
binaries. This result complies with the second design requirement. 

 
 

Figure 5.1: IPC performance (IA-64 – slow path) 
 

 
 

5.2 Performance of IA-32 threads 
 

The question which raises an important interest concerns the IPC 
performance of IA-32 threads.  In order to have a better understanding of each of 
the factors influencing the IPC performance, two benchmarks were setup: the 
first one analyzes the performance of the stub code in invoking the system call 
function, while the second benchmark evaluates the cost in performing the 
system call function. 

The description of each benchmark and their experimental results are as 
follows: 

 
1. Performance of the stub code 
 

This benchmark analyses the performance of the IPC system call stub. It 
doesn’t involve actually an IPC operation between two threads, but requires only 
an evaluation of the cost for preparing the context for issuing the IPC operation. 
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Figure 5.2: IPC system call stub for IA-32 emulation layer 

The IPC system call stub in the IA-32 emulation layer requires the following 
phases: 

- Entering/exiting the kernel with architecture switch 
- Store/restore the thread’s register context 
- Data conversion of arguments: eliminate sign extension and thread id 

conversion 
- Synchronize 32 bit UTCB and 64 bit UTCB  

 
Figure 5.2 shows the architecture of the IPC system call stub for IA-32 

threads, while Figure 5.3 shows the experimental evaluation of each phase for an 
empty IPC (no message register). 
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Figure 5.3: The cost of the IPC system call stub (IA-64 – slow path) 
 
It is noticeable the important overhead in entering/exiting the system call 

stub for IA-32 threads. This cost is artificially introduced by the user-level 
application: when performing an IPC system call using a user-level library 
function, there is a hidden overhead in entering the kernel induces by this user-
level function. The architecture of this library function is roughly the same for 
both IA-32 and IA-64 architectures, so the actual overhead is introduced by the 
slow performance of the IA-32 architecture.  The overhead of the library function 
on IA-64 is actually of 80 cycles, while the remaining 40 cycles is the effective 
kernel entry/exit. This quantitative result illustrates the slow performance of the 
IA-32 architecture on Itanium. The total cost of the IA-32 system call stub is 975 
cycles compared with the cost of the IA-64 system call stub of 315 cycles. The 
overhead for IA-32 threads is of 660 cycles. However, this result applies only for 
an empty IPC. When message registers are provided for IPC transfer, the 
overhead for synchronizing the 32 and 64 bit UTCB replicas increases. Figure 5.4 
shows the experimental results concerning the cost for synchronizing the UTCB 
replicas for an increasing number of message registers.  

 
Figure 5.4: The cost for UTCB synchronization 
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When 60 message registers are transferred, the overhead of the IA-32 
system call stub increases to 1775 cycles (!). 

 
 

2. Performance of the system call function 
 
This benchmark evaluates the effective cost of sending a regular IPC 

between two IA-32 threads. This cost is mainly induced by: 
- the cost of executing the IPC system call function 
- the cost for activating and deactivating an IA-32 thread: saving and 

restoring the IA-32 architectural registers (segment registers, floating 
point control registers, flags registers) 

 
Figure 5.5 shows the execution phases of an IPC operation between two 

IA-32 threads, while Figure 5.6 shows the experimental evaluation of each phase. 
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Figure 5.5: IPC operation between two IA-32 threads 
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Figure 5.6: The cost of performing the IPC function (IA-64 – slow path) 
 
 
 Therefore the overhead for IA-32 threads is induced by the task of 
saving/restoring the architectural registers. These registers are stored in the TCB, 
so the overhead is introduce by the memories accesses. This experimental 
overhead is of 340 cycles. 
 In conclusion, the total overhead for performing an empty IPC is of 1000 
cycles (660 cycles from the system call stub and 340 cycles from performing the 
system call function). The IPC performance for IA-32 threads is thus 2.1 times 
slower (!) than the regular IPC (slow path) for IA-64 threads. A complete 
overview of the IPC performance for IA-32 and IA-64 threads is illustrated in 
Figure 5.7.  
 

Figure 5.7: The IPC performance for IA-32 and IA-64 threads (slow path) 
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By complying with the second design requirement and avoiding 
performance penalties for the IA-64 threads, the entire performance overhead 
has been leveraged out on the IA-32 threads. As a consequence, the performance 
of the slow path IPC for IA-32 threads is considerably lower compared with the 
native IA-64 IPC system call. An optimization is to provide a fast path IPC for 
communication between IA-32 threads, which may reduce the performance 
overhead. To provide a complete optimization of the IPC communication, an 
additional fast path for communication between IA-32 and IA-64 threads should 
also be provided. In addition to the IPC system call, all other L4 system calls 
suffer the same performance overhead for IA-32 threads. This performance 
overhead can be reduced by providing specific IA-32 implementations of each 
system call function. This approach is partially taken by Linux IA-64 [4] for 
system calls raising data incompatibility issues between IA-32 and IA-64. 
However, in the L4 microkernel, the system call functions are the largest part of 
the kernel’s code. This approach practically requires rewriting most of the 
kernel‘s code. This cost can only be justified by a high-usage of IA-32 user-level 
binaries on the Itanium processor. 



  

 77

Chapter 6 

Analysis 
 
 
 This chapter evaluates the suitability of the theoretical design models 
discussed in Chapter 3 with respect to the experimental results produced in 
Chapter 5.  
 

6.1 Functionality vs. Performance 
 

The case study of the L4 microkernel and the Itanium processor shows a 
kernel-level approach for architectural heterogeneity. The IA-64 kernel was 
provided with two system interfaces, one for interaction with the IA-64 threads 
and the other for interaction with IA-32 threads. The implementation showed no 
performance penalties for the IA-64 threads, while the IA-32 threads experienced 
an important performance overhead when performing system calls. This 
overhead is due to design approach: the IA-64 kernel didn’t modify its internal 
functioning for IA-32 threads, but it instead provided an IA-32 interface to 
communication with IA-32 threads. This approach leverages an important 
overhead on IA-32 threads, while the IA-64 threads are not affected. By 
modifying the IA-64 kernel to access data structures according to IA-32 
specifications, the global overhead would have been divided between IA-32 and 
IA-64 threads. This approach would have reduced the overhead on IA-32 threads 
considerably, at the expense of IA-64 threads. 

The question is whether is possible to communicate across architectural 
heterogeneity without performance overhead. Considering the first kernel design, 
native and secondary architectures, user threads of any secondary architecture 
will suffer performance penalties when invoking the kernel services for 
communication. This fact is mainly due to data conversion mechanisms 
performed at interface level between the user thread and the kernel. The second 
kernel design, equal opportunity, introduces a kernel instance per each 
architectural state. Communication between two architectural-identical threads 
can be performed without any overhead, but overhead is introduced when 
communicating between two heterogeneous threads:  arguments of one thread 
are converted by the IPC function according to data representation of the other 
thread. In addition, this kernel design implies other requirements which may 
introduce important performance penalties: coherency mechanisms for global 
data structures at kernel level. In conclusion, each kernel design introduces a 
performance overhead for communication across two heterogeneous threads. 

A second approach which deserves to be studied is the user-level support 
for architectural heterogeneity: support for heterogeneous computing is built on 
top of independent kernel instances. An application knows its specific demands 
in terms of heterogeneous computing and it may reduce the amount of data 
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conversion and coherency of global structures to the required functionality. 
However, this solution requires user-level mechanisms for synchronization 
among user threads without using the kernel’s support. So, there is still no 
guarantee that performance will increase in this solution. In addition, this 
solution looses an important functional requirement: unmodified usage of 
heterogeneous applications. Heterogeneous applications can no longer 
communicate transparently by invoking the kernel services. They have to be 
aware of the user-level mechanisms. 

There are cases when the functionality is more important than computing 
performance. Examples include the backward compatibility for a certain 
architectural state and unmodified usage of user-level binaries of non-native 
architectures (e.g. Itanium and IA-32). In both cases, the user-level binary cannot 
adapt its behavior for a different architectural state of the kernel, so the kernel 
must provide this support. In both cases, the kernel-level approach is the only 
suitable solution to provide the required functionality. 

 
 

6.2 The microkernel approach 
 

The case study of L4 microkernel on Itanium processor reveals a useful 
result: the advantages of microkernel technology in constructing Multi-
Architecture Operating Systems. The microkernel technology shows two native 
characteristics which make them particularly attractive: the minimalism and the 
uniform communication interface.  
 The minimalism is the result of including in the kernel design only the 
essential mechanisms to manage the hardware. Less essential services are built 
on top of the microkernel and execute in user mode. The other approach to kernel 
technology is the monolithic kernels which integrate all operating system services 
within the kernel itself. The minimalism of the microkernel technology implies 
fewer global data structures compared with monolithic kernels.  The low amount 
of global data structures is an important requirement for providing heterogeneity 
support at kernel level. Each architectural state may have its own kernel instance 
and due to the low amount of global data structures, the kernel instances may 
cooperate with reduced performance penalties to provide a global system state. 
 The second advantage of the microkernel technology is the uniform 
communication interface. Any communication process occurs in a microkernel 
system through an IPC system call which has the same interface for both kernel 
and user-level services.  The presence of a unique communication interface is 
extremely important for the construction of a MA/OS. All communication across 
architectural heterogeneity is performed through this unique communication 
interface, so only one mechanism to overcome communication heterogeneity is 
required. Therefore, this microkernel advantage of having one single 
communication interface is essentially for the construction of a MA/OS. 
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6.3 Linux based MA/OS 
 
 Constructing a fully fledged MA/OS (e.g. Linux or Windows) for a 
heterogeneous multiprocessor system requires: 

• porting the kernel for each architectural state in the system 
• achieving a cooperation mechanism between parallel-running kernel 

instances 
The cooperation mechanism involves the global data structures of the 

kernel and requires a communication channel at kernel level. However, a 
monolithic kernel like Linux shows a high complexity in terms of global data 
structures. In addition, Linux doesn’t provide a uniform mechanism for 
communication at kernel level. Therefore, the construction of a Multi-
Architecture Operating System based on the Linux kernel cannot be easily 
envisaged.     

However, the native advantages of the microkernel technology in terms of 
minimalism and uniform communication interface offers a simple solution for 
constructing a Linux based MA/OS. The microkernel can be easily ported for 
each architectural state in the system. The uniform communication interface and 
reduced amount of global data structures enable cooperation mechanisms 
between microkernel instances.  The Linux kernel will be ported to execute on top 
of the microkernel instance of one particular architecture. All communication 
between the application and the Linux kernel happens via well-defined IPC [12]. 
The uniform communication interface offered by the underlying microkernel 
structure therefore provides the communication support across heterogeneous 
architectures (Figure 6.1). 
 The microkernel technology offers a communication mechanism with 
reduced overhead across different architectural states. This approach enables 
construction of Multi-Architecture Operating Systems based on complex 
monolithic kernels such as Linux.  
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Figure 6.1: Microkernel based MA/OS 
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Chapter 7 

Conclusions and Future Work 
 
 
 

7.1 Summary 
 
 The objective of this thesis was to develop theoretical design models for 
constructing an operating system capable of managing multiple architectural 
states in a tightly-coupled computing system. This design of an operating system 
is required mainly in the field of heterogeneous computing with direct 
applications in high-performance embedded systems. The main issues in 
designing such an operating system are incompatibilities at the binary and data 
representation levels between different architectural states. 
 The first step in providing a solution for an operating system is a 
classification of the targeted computing systems. These computing systems were 
divided in two classes: SPMA (Single Processor/Multi-Architecture) and MPMA 
(Multi-Processor/Multi-Architecture) systems. Both types of computing systems 
show similar design models which can be classified in a unified manner. The 
classification follows two main directions: user-level and kernel-level support for 
heterogeneity. The user-level support provides independent kernel instances per 
architectural state and user-level mechanisms to overcome the heterogeneity of 
the computing systems. The kernel-level support has essentially two design 
approaches: native and secondary architectures, and equal opportunity.  The first 
approach places the support for architectural heterogeneity at the interface level 
between the kernel and the user. The kernel is constructed for a single 
architectural state, while all other system interfaces are “emulated” based on the 
native system interface. The second approach, equal opportunities, places the 
support for architectural heterogeneity inside the kernel. Due to binary 
incompatibility, each architectural state is provided with a kernel instance and all 
kernel instances cooperate at kernel-level to provide a global system state.  

The theoretical models require practical case studies to evaluate their 
suitability to a specific computing problem. However, the complete 
implementation of these design models is not an option due to the vast spectrum 
of solutions, but also to hardware limitations. Therefore, we focused on one 
particular case study: provide an operating system for the Itanium processor 
based on the L4 microkernel. The Itanium processor has two architectural states 
(IA-32 and IA-64). The best suitable theoretical model for this system is the 
“native and secondary architectures”. This design model is integrated in the L4 
microkernel, while respecting two design requirements: operating system 
transparency for IA-32 user-level binaries and reduced performance overhead for 
IA-64 user-level binaries. The implementation of the design shows the respect of 
the initial design requirements, but reveals a side effect: an important 
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performance overhead for IA-32 user-level binaries. Therefore, achieving kernel 
support for architectural heterogeneity implies certain performance penalties. 
 

7.2 Achievements 
 
 This thesis focused on defining the field of operating systems designed for 
tightly-coupled heterogeneous systems. Specific achievements of this thesis 
include: 
 

• The classification of heterogeneous computing systems based on the 
number of architectural states in the system and the number of 
computing nodes 

 
• Proposition of design solutions for constructing Multi-Architecture 

Operating Systems 
 

• Design and implementation of a microkernel based operating system 
for the Itanium processor 

 
  

7.3 Future work 
 

The first issue which needs further investigation is whether the user-
support for architectural heterogeneity may provide better performance results. 
The kernel approach can always provide a general-purpose solution to 
architectural heterogeneity, but the user-level approach has the advantage of 
knowing the specifics of the computing problem and to exploit the architectural 
heterogeneity for its specific needs while minimizing the performance penalties 
of managing multiple architectural states.  

However, case studies can be found where the kernel-level support for 
architectural heterogeneity is required. In those cases, an important question 
concerns the best suitable design for the kernel services. The advantages of the 
microkernel technology over monolithic kernels make them a promising research 
direction for developing Multi-Architecture Operating Systems.  
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